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Mapping Water Clarity in Small Oligotrophic Lakes
Using Sentinel-2 Imagery and Machine Learning
Methods: A Case Study of Canandaigua Lake in

Finger Lakes, New York

Rabia Munsaf Khan
Milad Niroumand-Jadidi

Abstract—Optical remote sensing of water quality poses chal-
lenges in small oligotrophic lakes due to the diminishing con-
tribution of constituents to the water-leaving radiance as water
clarity increases. For monitoring water clarity over such lakes,
this study utilizes machine learning models and data from citizen
science to develop effective models for retrieving Secchi disk depth
(SDD) in Canandaigua Lake, USA. Using Sentinel-2 band ratios as
input, we trained random forest (RF), adaptive boosting, extreme
gradient boosting, and support vector regression models using
spatiotemporally distributed in situ data within 7 days of Senitnel-2
overpass. Each model was optimized using hyperparameter tuning,
and cross-validation was used for accuracy assessment to compare
the models’ effectiveness in retrieving SDD. The results indicate the
superior performance of RF with an R? of ~0.74 and a root mean
squared error of ~0.72 m. A feature importance analysis for RF
indicated the high relevance of the blue and green bands ratio in
the estimation of SDD. The RF model was subsequently employed
to generate temporal maps for Canandaigua Lake, indicating that
water clarity tends to be higher during the early summer months
(May and June) but declines during late summer and fall (Septem-
ber and October). This pattern can be closely associated with the
increased algal presence in the lake. The spatial variability of
the SDD indicated the possibility of greater sediments entering
from the southern part of the lake. This study can be expanded
to encompass other Finger Lakes, offering a comprehensive under-
standing of water clarity in these lake systems.

Index Terms—Freshwater, machine learning (ML), oligotrophic
lakes, random forest (RF), remote sensing, Secchi disk depth (SDD),
Sentinel-2, water quality.
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I. INTRODUCTION

AKES are an important source of freshwater and are a
L substantial component of the hydrologic ecosystem. They
hold pivotal socioeconomic value by providing ecosystem ser-
vices like drinking and agricultural water, recreational activities,
aquatic habitats, and biodiversity [1]. However, inland waters,
including lakes, are endangered due to numerous natural and an-
thropogenic factors, such as point and nonpoint source pollution,
deforestation, agricultural runoff, and climate change [2], [3],
[4]. Increased nutrient concentration, along with environmental
conditions, can lead to the development of harmful algal blooms
(HABs) that render freshwater unfit for human recreation and
consumption [5], [6]. The harmful effects are not limited to
drinking water only but can affect the entire watershed and its
linked biodiversity [7]. Therefore, it is important to efficiently
manage freshwater resources by timely monitoring of water
quality.

Water quality can be assessed by various parameters, among
which water clarity is often used [8], [9]. The first instrument
used to quantify water clarity was a Secchi disk, which is a
round disk of black and white color (generally ~20 to ~30
cm), used to measure the depth of the water column when the
disk is no longer visible [10]. The resulting depth is known
as Secchi disk depth (SDD) and is affected by the presence of
various dissolved and suspended matter in the water column, also
referred to as Optically Active Constituents (OAC), that changes
the underwater light field as the concentration of OACs change
[11]. These OACs can be plankton or suspended sediments and
are responsible for regulating many biophysical processes, such
as primary productivity and thermal stratification; processes
which can lead to the development of HABs [12]. This measure
of water clarity is widely used by volunteer programs and citizen
scientists, owing to its simplicity and no requirement for prior
knowledge of the field [13], [14], [15]. However, continuous
monitoring in terms of both spatial and temporal domains is
required to gain a comprehensive understanding of trends in
SDD for inland water bodies, which is hindered by the limited
in situ data.

Remote sensing plays a crucial role in providing spatially and
temporally explicit information on large scales as opposed to in
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situ measurements, which are limited both in space and time.
Satellite-based remote sensing data for water quality monitor-
ing often uses ocean color sensors, such as Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), Medium Resolution
Imaging Spectrometer, and Ocean and Land Color Instrument
[5], [16]. However, due to their coarse (~250 to 110 m) spa-
tial resolution, their applicability to small inland water bodies
is limited. Hence, sensors with finer spatial resolutions (e.g.,
Sentinel-2) are required for the smaller lakes (area < 50 km?).
The Multispectral Instrument (MSI) onboard Sentinel-2 pro-
vides freely available data at varying spatial resolutions (10 m, 20
m, and 60 m) across 13 spectral bands with 12 bits of radiometric
resolution and a revisit time of ~5 days. Sentinel-2 has been
used for water quality monitoring globally [1], [17], [18], [19]
specifically for the estimation of water clarity [17], Chl-a [20],
colored dissolved organic matter [21], and suspended particulate
matter [22].

While these studies have demonstrated promising results in
utilizing Sentinel-2 for SDD mapping, certain limitations arise
when monitoring clear water bodies due to the low level of the
water-leaving signal due to the high absorption of pure water.
Clear waters being low in reflectance, pronounces the contri-
bution of artifacts like atmospheric effects. In aquatic remote
sensing, the sensor receives the water-leaving radiance, radiance
from the atmosphere, and specular reflections (sun glints) from
the water surface. The contribution of water-leaving radiance
is often less than 20% of the at-sensor radiance due to the
low reflectance of pure water in the visible and near-infrared
spectrum. In oligotrophic lakes, where the concentration of
constituents is lower, the absorption of water increases, resulting
in a decrease in the water-leaving signal. Thus, atmospheric
artifacts can account for ~90% of the total reflectance posing
severe challenges for retrieving water quality parameters [23].
Therefore, correction for atmospheric contributions is necessary
to accurately estimate the remote sensing reflectance R,.s over
water bodies, particularly clear lakes [24], [25]. The atmospheric
correction methods vary for different environmental conditions,
geographical locations, water types, and the type of remote sens-
ing sensor [25], [26]. Although various atmospheric correction
methods are used in literature, the use of Case-2 Regional Coast
Color (C2RCC) has proved to be promising for clear waters [27],
[28], [29].

The methods for water clarity estimation can be divided
into two broad categories: physics-based and empirical-based
methods. The physics-based methods include model param-
eterization based on the inherent optical properties of water
and the atmosphere [30]. The advantage of using these models
is that they can be generalized outside the range of a given
study area. However, the model application requires extensive
knowledge of the underlying physical properties of the water
bodies, which can be challenging to obtain [31]. On the other
hand, empirical methods fit a regression model between spectral
features and coincident water quality parameter values. The em-
pirical approaches are relatively straightforward to implement,
however, the simple empirical algorithms lack the ability to
accurately model the complex relations between R,.s and water
quality parameters [32]. A solution to this problem is provided
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by machine learning (ML) algorithms as they are based on
nonlinear regression models while being inherently empirical
[33]. Literature also suggests the superior performance of ML
methods over other empirical models [5], [34]. In particular, ML
methods such as random forest (RF), adaptive boosting (AB),
support vector regression (SVR), and neural networks have been
used for estimating water clarity for inland water bodies [35],
[36], [37], [38]. Among the various ML methods, RF and AB
exhibited superior results as compared to other empirical and
ML algorithms [37], [38], [39], [40], [41].

Previous works based on Sentinel-2 images focus mostly on
mesotrophic or eutrophic lakes [15], [39]. It is important to
monitor water clarity over small oligotrophic lakes, especially
when they are the primary source of drinking water for the
neighboring community [14]. One such case is Canandaigua
Lake, which s part of the Finger Lakes in New York State, United
States. These lakes have long been studied in terms of history,
ecology [42], and water quality [43]. To build on these previ-
ous studies, the New York State Department of Environmental
Conservation (NYSDEC) has conducted studies on these lakes
with the help of citizen science. The published reports [13],
[14], [44] indicate the need to closely monitor the quality of
these lakes due to their integral socioeconomic value. However,
continuous monitoring of these lakes using remote sensing data
has been limited since small inland water bodies add to the
existing complexities associated with aquatic remote sensing.
Thus, this study evaluates the suitability of Sentinel-2 processed
data for the estimation and mapping of SDD in Canandaigua
Lake using different bagging and boosting ML methods and
SVR methods. The specific research objectives are defined as
follows: 1) compare multiple ML regression algorithms for
mapping SDD in the oligotrophic water system of Canandaigua
Lake using Sentinel-2 imagery and 2) apply the best regression
algorithm to perform spatiotemporal trend analysis for SDD over
Canandaigua Lake.

II. MATERIALS AND METHODS

A. Study Area

This study is carried out on Canandaigua Lake (meaning
“the chosen place”) with a length of 24.9 km and a shoreline
extending 66 km. This lake has a maximum depth of 83.5 m with
a mean depth of 38.8 m. Among the Finger Lakes, Canandaigua
Lake has a greater watershed area to surface area ratio (i.e.,
11.3), with a watershed area being 482 km? and a surface area
of 42.6 km?. Located in Ontario and Yates Counties, it is a class
AA water body according to water body classification [14] that
renders it the safest for drinking and recreational purposes. With
a total volume of 1600 million m?, this lake provides drinking
water to the city of Canandaigua and neighboring communities
within its watershed.

B. In Situ Data

For this study, SDD is used as a water quality indicator mainly
because of the readily available in situ SDD data. in situ data
over Canandaigua Lake were collected from 2020-2022 for the
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Fig. 1.
Canandaigua Lake. (d) Sentinel-2 imagery over Canandaigua Lake.

months of May to November, using the Citizen Science program
conducted by the Canandaigua Lake Watershed Association
(CLWA). To measure SDD, the Secchi disk is lowered into the
water body until it disappears. The corresponding water depth
is noted, then the disk is lowered further and raised again; the
depth at which the disk reappears is noted again. The average of
these two values is considered to be SDD. These consist of 18
sampling sites which majorly occupy the northern and southern
parts of the lake (see Fig. 1).

In addition, data from the Citizens Statewide Lake Assess-
ment Program (CSLAP) is used for 2018 and 2019. CSLAP
is a lake management initiative taken by the New York State
carried out through a partnership between the NYSDEC and
New York State Federations of Lake Associations. Under this
program, there are two sampling sites for Canandaigua Lake
monitored every two weeks from June to September (which can
extend to October in some cases). The locations of sampling
sites are shown in Fig. 1 as two stars, namely North and South
sites. As measurements over the shallow part of the lake include
contribution from bottom reflectance, these are masked out
and the boundary is shown in Fig. 1. The sampling sites from
shallow areas of the lake are not included in model calibration
and validation. Furthermore, for analysis purposes pixel values
against three transects (North, Middle, and South) are compared
for all years [see Fig. 1(c)].

C. Satellite Imagery

Sentinel-2 satellites (Sentinel-2A and Sentinel-2B) were
launched by the European Space Agency in 2015 and 2017,

(a) Study area showing the relative location of Canandaigua Lake within the conterminous USA. (b) Within the New York state. (c) Sampling sites over

respectively. These satellites are equipped with MSI, collecting
imagery in 13 spectral bands within the blue to shortwave
infrared portion of the spectrum at 10-60 m spatial resolutions.
When using both satellites, the temporal resolution increases to
five days over Canandaigua Lake, which renders them suitable
for monitoring temporal dynamics of water quality parameters
[39]. For this study, Sentinel-2 level-1 imagery from 2017 to
2022 for May to October was downloaded from Copernicus
Open Access Hub. Images with partial cloud cover not hindering
the sampling locations were also used to increase the number of
match-ups with in situ data. The images were then resampled to
20 m before further processing.

D. Methods

1) Data Preparation: The overall methodological frame-
work is presented in Fig. 2. First level-1 data is atmospheri-
cally corrected using C2RCC [45], [46]. C2RCC is suitable for
atmospheric corrections of various sensors such as Sentinel-2,
Landsat, and MODIS [27]. It takes the top-of-atmosphere image
as an input and uses neural network-based inversion of the
radiative transfer function to generate atmospherically corrected
imagery. The output of atmospheric correction provides eight
bands of Rrs in the visible and near-infrared regions.

To colocate Sentinel-2 Rrs pixels with in situ sampling points,
the median value of a 3 x 3 pixel window centered on each
sampling point was selected as the corresponding Rrs value
(match-up) to the measured SDD. To increase the number of
match-ups, a temporal window of seven days before and after
the in situ sampling measurement was applied to Sentinel-2
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Rrs data which is recommended in the literature for such cases
[15], [46]. The total number of match-ups was 125, including
110 from the CLWA Citizen Science program and 15 from the
CSLAP program. A histogram showing the distribution of the
SDD values at these points is presented in Fig. 3. The SDD
generally varies between 3.5 and 9.6 m. These 125 observations
have an average (mean) of 6.2 m with a standard deviation of
1.3 m.

2) Machine Learning Models: This study compares the per-
formance of various ML algorithms, including RF, AB, SVR,
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and extreme gradient boosting (XGB). The performance com-
parison of ML algorithms is also carried out against a sim-
ple empirical algorithm such as multilinear regression (MLR).
Among the ML methods, RF is an ensemble model consisting
of multiple decision trees which use the bagging method [47].
The model generates predictions against each tree based on a
random sample generated from the training data. The final value
is representative of outputs from all decision trees. Although
each tree uses a subset of the whole training data, due to less
correlation between the trees, the output as a whole is more
reliable. As opposed to bagging, there are two models based on
the boosting method that are used in this study: AB and XGB.
Boosting generally uses an iterative training method, reducing
the overall error [48]. AB, in particular, is built so that the models
“adapt” to minimize errors from the previous trees. The advan-
tage of this method is that the results are based on the output of
all trees and not solely on the final tree [49]. XGB was originally
developed by Chen and Guestrin [50] and is more powerful
than regular gradient-boosting machines due to some additional
features. These include tree pruning and regularization, which
can lead to better computation [51]. Finally, SVR is used which
is based on the generation of a hyperplane with the help of
support vectors to differentiate between various values based on
the extreme points in the dataset [52]. The usage of hyperplane
makes it advantageous for multidimensional data. Furthermore,
SVR can work well when the training sample is limited as it
transforms the data to a higher dimension to overcome linearity
[53].

The above-mentioned ML models were implemented using
scikit-learn [54] with Sentinel-2 band ratios as input features as
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compared to single spectral bands as their correlation to the in
situ SDD is comparatively higher and are more robust features
with respect to the atmospheric artifacts [1]. Before model im-
plementation, hyperparameter tuning was carried out to optimize
the model. The model parameters were iterated within ranges
suggested in the literature to find the optimal ones for each
model. In the case of RF, the number of trees (n_estimators)
varied from 10 to 1000 (10, 50, 100, 500, and 1000) and the
optimized value was 500. The criterion of “absolute error” was
used and all other parameters were set at default values. The
same range for the number of trees (n_estimators) was used
for the boosting methods and the optimal value was 1000 for
AB and 100 for XGB. Moreover, for AB, the learning rate was
set to 0.1, and for both boosting models, all other parameters
were used as default. In the case of SVR, two parameters were
optimized: “C” which is the regularization factor and “gamma”
which is the factor of the kernel used, which in this case was the
radial basis function. The range of values tested for “C” were 10
to 1000 among which 100 is the optimal value and the gamma
value of 0.0001 gives the best result between the values 0.0001
and 10. In the case of MLR, no optimization was needed for
the model. Once the hyperparameters were selected for all the
models, they were trained using in situ SDD data and validated
based on a k-fold cross-validation. The number of folds (i.e., k)
was set to 5, which meant that for every iteration, the percentage
ratio of training and validation data split is 80:20. In the case of
RF, the feature importance using Gini importance [55] was also
calculated to visualize which input parameters contribute more
toward the prediction of SDD.

3) Accuracy Assessment Metrics: The statistical accuracy
measures used to assess the performance of ML models were
the coefficient of determination R2, root mean squared error
(RMSE), mean absolute error (MAE), and bias (1)—(4). A value
of R? closer to one indicates higher prediction power and the
value close to zero indicates a lower prediction power of the
model. Conversely, higher RMSE indicates a greater difference
between the estimated and actual value which is why a lower
RMSE is preferred. It is important to note that MAE and bias
were calculated in log space and hence are dimensionless [56].
For interpretation purposes, a bias of 1.2 indicates an overesti-
mation of 20%, and an MAE of 0.8 represents a mean relative
error of 20%.

R =1- ZZ: 1 (4 :i)z e
=1 (Wi —¥i)

RMSE = % Zl 2
MAE = 10 A (il_lﬂoglo yi ) — logio (yi)|> 3)
Bias = 10 A (i > logio (yi ) — logio (yi)> 4)

i=1

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE I
COMPARISON OF ACCURACY ASSESSMENT METRICS IN TERMS OF R2, RMSE,
MAE, AND BIAS FOR MLR, SVR, AB, XGB, AND RF

MLR SVR AB XGB RF
R? 0.64 0.44 0.72 0.71 0.74
RMSE (m) 0.909  1.047 0.746  0.807 0.725
MAE 1.130  1.141 1.109 1.119 1.107
Bias 1.00 0.99 0.99 0.99 0.98

The best performing model in terms of each accuracy metric is presented in bold.

where y; represents the observed values, y; represents the esti-
mated values, y; represents the mean of observed values, and n
represents the number of observations used.

To have a robust selection measure, all accuracy measures
were converted in terms of error and an uncertainty index (UI)
was calculated for each model. Similar work has been carried out
in terms of ranking [28] and normalizing [57] the individual met-
rics. Specifically, the coefficient of determination is subtracted
from 1, the RMSE is converted to a percentage, and the absolute
deviation of MAE and bias from 1 is calculated. For instance, a
bias of 1.02 shows a 2% overestimation, hence only “0.2” will
be included for error calculation. Based on these dimensionless
error values denoted as E;, the Ul is calculated as follows:

"B
ur = 2
n

®)

where E; is the normalized error for each of the accuracy
measures, 7 is the number of accuracy measures, and Ul is the
average of all errors. Based on the Ul, the best-performing model
is selected to generate temporal maps of SDD over Canandaigua
Lake.

III. RESULTS

A. Relative Performance of Machine Learning Models

The performance comparison of ML methods is summarized
in Table I. The RF model outperformed other models in almost
every accuracy metric. It is interesting to note a large difference
in terms of R? between the methods, as compared to other
metrics. RF showed the highest R? of 0.74 closely followed by
0.72 for AB, 0.71 for XGB, and 0.64 for MLR. SVM, however,
showed poor performance in terms of R? (0.44) and RMSE
(1.05 m).

In terms of bias, all models performed similarly with bias
ranging from 0.98 to 1. As this is calculated in log space,
hence, 0.98 indicates an underestimation of 2%. The MAE varies
from the lowest value with RF (1.107) to the highest value for
SVR (1.192), which indicates an error of 10.7% and 19.2%,
respectively, whereas AB and XBG are similar to RFand MLR in
terms of all accuracy measures. The results presented in Table II
show the lowest error (best performance) by RF, followed by AB
(~3.2% increase), XGB (~11.25% increase), MLR (~26.5%
increase), and SVR (~74.78% increase). The performance com-
parison is illustrated in Fig. 4 in terms of a scatter plot showing
the cross-validation results for each algorithm.
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TABLE I
COMPARISON OF INDIVIDUAL AND TOTAL ERRORS FOR THE SELECTION OF 3%5 3
BEST MODEL AMONG MLR, SVR, AB, XGB, AND RF g%; 2
B3/B8
B1/B3
MLR SVR AB XGB RF %% ‘77‘
3/87
(1-R2) 036  0.56 0.28 029 0.6 éf §
RMSE (%) 0.14  0.16  0.115 0.124 0.111 g; ;
I-MAE| 013 0.141  0.109 0.119  0.107 278
34/B6
|1-Bias| 0 0.01 0.01 0.01 0.02 2Bl
1/B6
Ul 0.1575 0.2176 0.1285 0.1358 0.1245 22 g
The model with least error is presented in bold. Jd 8
B4/B7

B. Feature Importance for Random Forest Model

The feature importance for RF based on Gini impor-
tance is illustrated in Fig. 5 with a band ratio of B2/B3
(490 nm/560 nm) with the highest importance, followed by
B2/B4 (490 nm/665 nm) and B1/B2 (443 nm/490 nm). It is
important to note that the highest contributing parameters are
based on the visible bands which are representative of the
plankton and suspended sediments in the lake.

C. Application of Random Forest Model to Canandaigua Lake

The second objective of this research is to test the applicability
of ML models to generate multi-temporal maps of the lake’s
SDD and understand its spatiotemporal variability. To do this,

T T T T
0.04 0.06 0.08 0.10

Random Forest Feature Importance

0.02

o
g
[S]

0.12

Fig. 5. Feature importance for each input feature for the RF model.

RF regression, as the best regression model, was applied to the
cloud-free image of Sentinel-2 for each month (May to October)
and corresponding SDD maps of the lake for the years 2020,
2021, and 2022 were generated (see Fig. 6). Note that some
months are missing due to unavailability of clear (cloud-free)
Sentinel-2 imagery over the lake. It is important to note that
these estimates of SDD are only valid for the optically deep parts
of the lake (i.e., negligible bottom-reflected radiance). For that
purpose, the near-infrared band and visual interpretation of the
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SDD indicating clearer waters.

lake, based on bathymetric data, were used to remove the shallow
water parts from the lake. As the implemented model is based on
the deeper parts of the lake only, hence any estimation provided
by RF for shallow waters would not be reliable. Therefore, the
maps shown in Fig. 6 are masked from the boundaries and only
deeper parts of the lake are visualized. Furthermore, a buffer of
120 m is used to remove the mixed pixels from the boundary of
the lake.

The SDD variability over the lake clearly shows a pattern that
is similar for all years; the water clarity is high in early summer
and low in late summer/fall months. A line of low water clarity
pixels running up the lake is apparent each September, most
obviously in 2021. The line is usually mid-lake but veers close
to the shoreline in places. It tends to thicken and become more
distinct further north. In May and June 2022 patches of low water

clarity are seen at the south end of the lake, and in general, lower
clarity is found along the eastern side of the lake in June of 2020
and 2021. Lower clarity is seen in September and October each
year at the northern end of the lake.

D. Spatiotemporal Trend of SDD for Canandaigua Lake

A comparison between the predicted values from RF against
in situ sampling sites was carried out for a total eight images,
two from 2020 and three from each of 2021 and 2022.

Fig. 7 shows the estimated (by RF) and measured (in situ)
means and standard deviations of SDD for sample points in each
image. The number of sampling points varies for each image as
mentioned in Table III. There is no standard deviation bar for
August 2021 as there was only one matchup site against this
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Fig. 7.

Aug 2021

Oct 2021 Oct 2022

Dates

June 2022

Aug 2022

Comparison of mean (dots) and standard deviation (vertical bars) between estimated and in situ SDD for selected images based on the sampling sites.

The black bars indicate the standard deviation for estimated SDD for each image and the grey bars indicate the standard deviation for in situ SDD for each image.

TABLE III
NUMBER OF IN SITU SAMPLES AND COMPARISON OF ACTUAL SDD RANGE WITH MODEL ESTIMATED SDD RANGE

No. of Ground

Ground SDD Range Predicted SDD Range

Imagery Date Sample Points [m] (m]
June 2020 8 6.25-8.8 5.3-8.1
September 2020 10 4.4-6.7 4.76-6.39
June 2021 7 6.7-8.7 4.2-7.69
August 2021 1 7.2 (Single value) 6.58
September 2020 6 4.6-6.6 4.75-6.05
June 2022 4 5.5-9.4 5.95-8.89
August 2022 6 5.4-6.9 4.8-6.92
October 2022 7 4.3-6.4 4.17-6.12

—— Average SDD (m)

May 2020 June 2020 Sep 2020 Oct2020 May 2021 June2021 Aug2021 Sep2021 Oct2021 May2022 June2022 Aug2022 Sep2022 Oct2022

Fig. 8.
2022.

image. The graph shows a strong similarity between the esti-
mated and in situ values for all images with a slight underesti-
mation for June 2021.

The mean value of the estimated SDD is plotted for all the
temporal maps along with their standard deviation in Fig. 8.
As demonstrated in the temporal maps, the lowest average
values are for the month of October. Specifically, the average for
October 2020, 2021, and 2022 are 4.19 m, 4.19 m, and 4.34 m,
respectively, with an approximate standard deviation between

Dates

Temporal variation of the mean (dots) and standard deviation (black vertical bars) of the estimated SDD for the entire lake for the years 2020, 2021, and

0.43 and 0.53 m. The highest average SDD is shown in the
months of May and June with means varying between 5.9 and
7.8 m with a standard deviation of 0.53 m to 0.83 m.

To further understand the SDD spatial variability in different
regions of the lake, values along three transects were extracted
from each temporal map. The three transects are in the North,
Middle, and South parts of the lake as shown in black lines in
Fig. 1. The extracted values against each transect are plotted
for the years 2020, 2021, and 2022, as shown in Figs. 9—11.
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Fig. 9. Spatial variation along three transects for the year 2020 for Canandaigua Lake. Each line on the graph shows the spatial variation in SDD for the months
of May, June, September, and October.
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Although in terms of monthly variation the variation in SDD
follows a similar pattern, i.e., lowest values in October and
highest in early summer (May and June), it is interesting to
see the variation between the transects. Transect 1 representing
the North side of the lake has less variation in SDD values for
various months as compared to the other two transects. Transect
2 represents the middle of the lake and SDD values against
each month can be separated easily as compared to the North
side of the lake. Finally, transect 3 represents the south side of
the lake and it is the smallest transect in terms of distance as
the lake gets narrower toward the South end. In this transect, the
variability of SDD among different months is larger than in the
other two transects. In addition, the variation along the transect
is relatively smoother for the South side as compared to the
North and middle parts of the lake. As there were some masked
areas due to cloud cover and shadows, there are corresponding
missing values along the transects for those images.

IV. DISCUSSION
A. Model Performance

This study compared the performance of various ML models
in mapping SDD and RF achieved the highest accuracy for
Canandaigua Lake. To the best of our knowledge, this study
is the first one to use remote sensing-based data and ML algo-
rithms to estimate SDD over Canandaigua Lake, hence no direct
comparison with previous studies can be made. The superior per-
formance of RF is associated with its ability to compensate for
missing data and ease in tuning the model on the dataset. It is im-
portant to note that despite the inconsistency in the distribution
of sampling points in both space and time, RF-predicted SDD

provides a reliable estimate for Canandaigua Lake supported
by the validation results. For instance, as the in situ data was
collected by citizen scientists, the samples were not coincident
with the satellite overpass which resulted in a lower number
of match-ups. In addition, due to cloud cover and shadows, the
number of match-ups was reduced further and a longer temporal
window (7 days) had to be selected to have a sufficient number
of samples for training and validation. Furthermore, the data
were collected at different times throughout the day which can
also induce errors due to varying sun angle and illumination
conditions [30].

In comparison with other studies on water clarity, the literature
reports the RMSE values in the range of 30%—40% using linear
empirical models [58], [59]. The results from ML models such
as RF and AB are reported with higher accuracies (R? > 0.65 and
RMSE < 1 m) with Sentinel-2 data [35], [39], [40], [60]. It is im-
portant to note that these studies were carried out on mesotrophic
to eutrophic lakes which have higher concentrations of OACs
hence higher contribution to the reflectance values. Therefore,
water quality estimation over clear oligotrophic lakes in itself
is challenging due to less reflectance from the water body as
compared to turbid water bodies [28]. The collection of in situ
reflectance spectra in addition to the water clarity parameters
will be helpful to analyze errors due to atmospheric correction
methods.

B. Feature Importance

In this study, Gini importance for input features was also
calculated to understand the role of each input parameter in
the estimation of SDD over Canandaigua Lake. To quantify the
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Fig. 12.
of SDD over Canandaigua Lake using RF.

impacts of input features, model validation was carried out using
the top 75%, 50%, and 25% of the input features ranked as shown
in Fig. 5. The scatter plots and associated accuracy metrics are
illustrated in Fig. 12. Although the performance is greater with
all input features involved, this type of analysis is important
when dealing with large amounts of data. For this study, all input
features were used as the dataset was small (N = 125) and the use
of all input features was not resource-intensive. In contrast, for
studies over larger areas with hundreds of sample points over
multiple lakes (such as all Finger Lakes), this type of feature
selection will be helpful to reduce the computation cost while
maintaining comparative accuracy levels. While there is around
a 9% decrease in terms of R2, other accuracy matrices are not
changed significantly for all the proportions of input features.
It is interesting to note that the highest contributing features
in terms of Gini importance for RF belong to visible and near-
infrared bands for Sentinel-2. The highest contributing band
ratio for RF was B2/B3 (blue/green) which is also supported
by literature for SDD monitoring in inland waters [61]. In com-
parison optimal band ratio analysis (OBRA) [62] was carried
out to understand the linear dependency of SDD over Sentinel-2
band ratios. The results for OBRA are presented in Fig. 13 in
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which the highest correlation is shown between SDD and B2/B4
ratio. Although some of the band ratios (i.e., B2/B4 and B2/B3)
among the top 25% of features for RF (as shown in Fig. 5) also
show high correlation linearly, not all of the input features are
correlated linearly with SDD.

For future studies, it will be interesting to add other input
features such as environmental and meteorological parameters,
as well as some indices in addition to the band ratios.

C. Spatiotemporal Variation of SDD

The spatiotemporal maps indicated low water clarity in the fall
months (September and October) as compared to early summer
(May and June). Although the range of SDD generated by RF
and in situ SDD follow a similar pattern temporally, the pixel-by-
pixel accuracy for each image is not accessed in this study. For
instance, the line of low clarity appearing in the September image
of each year can be associated with the presence of foam on that
particular day. In elongated lakes like Canandaigua, when the
upward and downward current meets, it can create this foam-like
separation (see Fig. 14).
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Fig. 13. OBRA for SDD against all Sentinel-2 atmospherically corrected
bands consisting of visible to near infra-red bands. Here A1 and A2 denote the
two wavelengths which result in the best correlation with in situ SDD measured
in terms of R? and RMSE.

Fig. 14. Mid-lake foam patches and streaks on Canandaigua Lake, September
5, 2019. Outboard motor cowl for scale. In addition, the clarity of the lake is
impacted by relatively high phytoplankton concentrations, resulting in a green
color. Photo credit: A. Prestigiacomo, NYSDEC.

For spatial variation in the North and South sides of the lake,
based on the transects, it is observed that the southern side is
affected more in case of storm events as compared to the northern
side of the lake. This indicates a possibility that the nutrients
mostly enter the lake from the Southern side. The southern
transect used for this study falls close to the tributary Vine Valley,
and it is known to have high concentrations of phosphorous [63].
In addition, minor tributaries along the shoreline have small
catchment areas with steep slopes, hence significant erosive
power, and may also contribute to minor turbid plumes into the
lake.
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It is evident from Figs. 6 and 8 that there is a similar pattern
of estimated SDD over all the years. However, this does not
imply that this pattern will occur every year. For instance, a study
recently published on Canandaigua Lake, indicates higher water
clarity for October 2019 [64] which contradicts our observations.
However, it is important to note that the maps generated in our
study are based on a single day and are not representative of the
monthly average. Prestigiacomo et al. [64] reported higher water
clarity in June which aligns well with our observations, whereas
the lower water clarity reported in that study is on August 22 and
September 2 for the year 2019. This is also in agreement with our
observations of low water clarity for September. Decreased SDD
in their study was associated with increased algal greenness and
visible cyanobacterial colonies. Prevailing winds in the Finger
Lakes are south-westerly during the summer, causing buoyant
cyanobacteria to be concentrated in the northern and eastern
areas of each lake, in accordance with the known effects of
lake fetch and orientation [65]. The New York state has seen an
increase in reported cyanobacteria blooms over the last decade
[66], with an associated surge in interest and concern from the
public and professional water managers alike. The correlation
of decreased clarity with increased cyanobacterial colonies and
cyanotoxin concentrations could provide a practical application
of our findings, by providing water managers with a frequent
and spatially distributed perspective of a factor correlated with
cyanobacteria and cyanotoxin hazards. However, there is a need
to analyze longer temporal maps to establish trends in the SDD
variability over Canandaigua Lake, for instance, using historical
and ongoing Landsat missions.

V. CONCLUSION

Water quality monitoring of freshwater resources, especially
lakes, is important as they are continuously endangered and thus,
timely monitoring is required for conserving the ecosystem. For
that purpose, this study assessed the performance of various
ML methods, RF, SVR, AB, and XGB, for mapping SDD for
Canandaigua Lake using Sentinel-2 imagery. Sentinel-2 imagery
was first processed using C2RCC and then 28 band ratios were
used as inputs for all the models. A robust scheme for model
validation comparison revealed the superior performance of
RF as compared to other ML methods. The trained RF model
performed in terms of cross-validation with R> ~ 0.74, RMSE
of about 11%, and MAE and bias of 1.107 and 0.98, respec-
tively, which is greater than the accuracy metrics reported in
the literature for linear empirical models (RMSE ~ 30%). The
feature importance for RF was also calculated and it showed
the highest importance for B2/B3 (the ratio of the band ratio
of blue to green band). The temporal maps for Canandaigua
Lake indicated that the water clarity is generally higher in early
summer (May and June) and decreases in late summer and fall
months (September and October) which are in accordance with
the increased algal presence. The spatial variability of the lake
indicates lower water clarity in the Southern part of the lake
which may be associated with the greater amount of nutrients
entering from the southern end of the lake. However, further re-
search is needed to confirm these trends based on the results from
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alonger time period. This can be achieved by utilizing the longer
temporal database of Landsat imagery. Furthermore, other ML
and deep learning methods based on neural networks can be
used in conjunction with additional input features based on
environmental data, to potentially improve the accuracy of SDD
estimation. As the ML models are data-driven and do not require
any prior knowledge about the water bodies, the methodological
framework used in this research can also be replicated for
other water bodies with similar characteristics and SDD datasets
and would provide useful information regarding water quality
parameters.
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