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Abstract—Coded aperture snapshot spectral imaging (CASSI)
compresses tens to hundreds of spectral bands of the hyperspectral
image (HSI) to a 2-D compressive measurement. For spatially or
spectrally rich scenes, the compressive measurement provided by
a single snapshot CASSI may not be sufficient. By taking multiple
snapshots of the same scene, multishot CASSI leads to a less ill-
posed inverse reconstruction problem, making the CASSI system
more suitable for spatially or spectrally rich HSI. Considering
the strong spectral correlation of HSI and the directional char-
acteristics of mask shifting in multishot CASSI, the mode-1 tensor
fibered rank (TFR) minimization is presented for its reconstruction
in this article. Specifically, the mode-1 TFR is derived from the
tensor singular value decomposition (t-SVD) to the mode-1 t-SVD,
and the mode-1 TFR minimization is reduced to a mode-1 tensor
nuclear norm minimization problem, to achieve more accurate HSI
characterization in multishot CASSI reconstruction. The primal-
dual algorithm (PDA) is applied to solve the objective optimization
problem, which is flexible. Experimental results on the CAVE,
Cuperite, and Urban datasets demonstrate the effectiveness of the
proposed method.

Index Terms—Coded aperture snapshot spectral imaging
(CASSI), hyperspectral imaging (HSI), primal-dual algorithm
(PDA), tensor fibered rank (TFR) minimization.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain tens or hun-
dreds of spectral bands per pixel [1], [2], which provide

abundant spectral information and have the potential to help
us identify the different substances appearing in the scenes [3],
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[4], [5], [6]. Based on this, hyperspectral imaging first attracts
interest in remote sensing [7], [8] and medical imaging [9], then
quickly spreads into many other fields. To obtain HSI, traditional
hyperspectral imaging techniques focus on a temporal sequential
scanning manner, that is, scanning in the spatial domain or in
the spectral domain. This approach makes data collection take a
long time. In addition, since a large amount of data is acquired,
this also hinders the widespread application of HSI.

With the rapid development of computational imaging,
CASSI [10], [11], [12], [13], [14] has been introduced as a novel
HSI imaging method, which greatly reduces acquisition time
and storage space. CASSI utilizes a coded aperture and one
or two dispersive elements to modulate the optical field from
a scene [10], [13], [15]. Specifically, in CASSI, each spatial
position of the 3-D HSI is modulated by a coded aperture.
The coded scene is spectrally horizontally shifted (or vertically
shifted) by one or two dispersive prisms [16], then integrated
along the spectral dimension and finally captured by the detector,
to obtain 2-D compressive measurement [10], [17]. We suppose
the coded scene is horizontally shifted in this article. Within
the CASSI paradigm, different classes of CASSI have been
presented, e.g., single dispersive CASSI (SD-CASSI) [10], dual
dispersive CASSI (DD-CASSI) [11], [12], and colored coded
aperture [18], etc. Since the hundreds of spectral bands of HSI are
compressed to 2-D measurements, resulting in a large amount of
information being lost, the compressive measurements provided
by a single shot CASSI is insufficient. To handle it, He et al. [15]
proposed a subspace-based fusion model by combining CASSI
and RGB measurements for HSI reconstruction. However, for
spatially or spectrally rich scene, this fusion reconstruction
performance still needs to be improved. In order to exploit more
information, multishot CASSI [18], [19], [20], [21], [22], [23]
has been proposed. Multishot CASSI takes multiple snapshots
of the same scene, with each snapshot being encoded differently,
which increases the number of the compressive measurements
and greatly easing the reconstruction problem, especially for
spatially or spectrally rich scenes [19], [20], [21]. On the hard-
ware, the multishot CASSI can use digital micromirror device
to change the encoding apertures of each snapshot [21], [23],
[24].

HSI reconstruction plays a vital role in compressive hyper-
spectral imaging by solving the ill-posed inverse problem. In the
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beginning, different priors have been exploited to character the
properties of HSI for CASSI reconstruction, for example, spar-
sity in transform domain [25], [26], sparsity in over-complete
dictionaries [12], [27], [28], the Gaussian mixture model-based
methods [29], [30], and the total variation (TV) [21], [31],
[32]. In terms of objective optimization problem solving, the
most commonly used are the gradient projection for sparse
reconstruction (GPSR) [33] and the two-step iterative shrink-
age/thresholding (TwIST) [34]. However, the reconstruction
results of these methods remain unsatisfactory, such as excessive
smoothing phenomenon. To improve the reconstruction perfor-
mance, more effective priors have been developed, including
nonlocal self-similarity [16] based on weighted nuclear norm
minimization, and spatial nonlocal self-similarity integrated
with global spectral correlation of HSI [35]. To solve these objec-
tive optimization problems, the alternating direction method of
multiplier (ADMM) [35] has become the most popular method.
Nevertheless, those ADMM-based methods [16], [35] have spe-
cial requirements on the sensing matrix and are mainly designed
for the single snapshot CASSI mechanism, which makes them
inflexible.

Deep learning methods [36], [37], [38] have shown promising
results for CASSI reconstruction. In [36], an end-to-end con-
volutional neural network (CNN) is proposed for compressive
hyperspectral imaging by jointly optimizing the two phases,
that is, the measurement phase and the reconstruction phase.
A CNN-based method [38] is proposed for coded HSI recon-
struction by jointly deep external and internal learning. In [39],
the spatial-spectral self-attention-based convolutional network
is proposed for CASSI reconstruction by exploiting nonlocal
spatial similarity and bandwise spectral correlation. By utilizing
UNet to mine the deep image prior and Tucker decomposition
to characterize the low-rank prior of the image, a deep prior
and low-rank tensor representation (DP-LRTR) [17] is proposed
for CASSI reconstruction. However, end-to-end deep learning
methods usually take several days to train, and the pretrained
network is generally designed for the specific CASSI system.
Different CASSI systems have different target scene sizes and
encoding apertures, which pose challenges in applying them to
other imaging systems.

In order to exploit the inherent tensor structure of high-
dimensional data, t-SVD has achieved promising results in HSI
reconstruction [40], [41]. Since t-SVD lacks the flexibility to
handle different correlations in different HSI modes, the lit-
erature [41] generalizes the t-SVD to the mode-k t-SVD to
more accurately characterize the HSI structure in hyperspectral
mixed noise removal, and accordingly, a new rank is proposed,
called TFR. The main steps of the mode-k t-SVD algorithm
(k = 1, 2, 3) are to perform the fast Fourier transformation
(FFT) along the kth dimension of the tensor, and then perform
SVD on the matrix formed by each slice of the transformed
tensor, to obtain the factor matrix. The TFR is a combina-
tion of all mode-k (k = 1, 2, 3) TFR, and mode-k TFR is
obtained by the rank of the slices after the FFT in the kth
dimension of the tensor. Fig. 1 presents the mode-k (k = 1,
2, 3) t-SVD for tensor X . Let n1 represent the spatial height
size (mode-1), n2 denote the spatial width size (mode-2), and

Fig. 1. Description of the mode-k (k = 1, 2, 3) t-SVD for HSI X .

n3 represent the spectral size of HSI (mode-3). According to
the main steps of mode-k t-SVD and the description of Fig. 1,
different modes of t-SVD characterize different correlations of
HSI.

Considering the strong spectral correlation of HSI and the di-
rectional characteristics of mask shifting of CASSI, the mode-1
TFR minimization can obtain a more accurate HSI structure
characterization, compared with the mode-2 TFR minimization
and the mode-3 TFR minimization. First, in CASSI, tens to
hundreds of HSI spectral bands are compressed into 2-D mea-
surements, which results in a large loss of spectral information.
Zheng et al. [41] indicated that the strong spectral correlation
was inadequately shown by the mode-3 TFR, but exactly shown
by the mode-1 TFR and mode-2 TFR. Therefore, to reconstruct
the HSI from the compressive measurements, if using mode-3
t-SVD to perform the mode-3 TFR minimization constraint on
the HSI, the main lost spectral information will not be well
recovered and will result in suboptimal performance. Second,
in this article, the mask is shifted along the spatial horizontal
direction (mode-2), resulting in the appearance of horizon-
tal stripes in the compressive measurements. We found that
the mode-1 t-SVD has better horizontal stripes discrimination
ability than the mode-2 t-SVD. Using the mode-1 t-SVD to
perform the mode-1 TFR minimization has better horizontal
stripes removal ability than the mode-2 TFR minimization. The
explanation is shown in Section III-B and also demonstrated in
experiments.

Bear these in mind, in this article, we propose the mode-1 TFR
minimization for multishot CASSI and solves the optimization
problem by PDA. By setting the coefficients of mode-2 TFR and
mode-3 TFR to be zeros, the mode-1 TFR is a special case of
TFR to obtain a more accurate HSI structure characterization in
multishot CASSI reconstruction. Specifically, the mode-1 TFR
is performed by the mode-1 t-SVD. By using the mode-1 t-SVD,
the mode-1 TFR minimization is converted into the mode-1
tensor nuclear norm minimization (M1TNN) problem. To avoid
matrix inversion of a large matrix, the PDA is utilized to solve
the optimization problem, which makes it flexible (we note the
proposed method as PDA-M1TNN).
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A. Contributions of the Article

The contributions mainly include the following two points.
1) The mode-1 TFR minimization is used to exploit the

spatial-spectral information of HSI in multishot CASSI
reconstruction by considering the strong spectral corre-
lation of HSI and the mask shifting along the horizontal
direction in multishot CASSI.

2) The PDA is used to solve the optimization problem, which
avoids matrix inversion of a large matrix and makes itself
flexible for any single shot or multishot CASSI.

B. Article Organization

The rest of this article is organized as follows. Section II
introduces the tensor algebra framework. The proposed PDA-
M1TNN is presented in Section III. Section IV contains the
experimental results, and Section V concludes this article.

II. TENSOR ALGEBRA FRAMEWORK

The scalars, vectors, matrices, and tensors in the article are
represented by nonbold lowercase letters (such as a), bold low-
ercase letters (such as a), bold uppercase letters (such asA), and
Euler script letters (such as A), respectively. The vectorization
of tensor A is a, represented by a = vec(A), and the inverse
operator of this operator is expressed asten(a). Hence, we have
A = ten(vec(A)). ForA ∈ Rn1×n2×n3 , Āk ∈ Cn1×n2×n3 is
denoted as the FFT of A along the kth dimension, represented
as Āk = fft(A, [ ], k). A(i)

1 ∈ Rn2×n3 , A(i)
2 ∈ Rn1×n3 , and

A
(i)
3 ∈ Rn2×n3 are, respectively, represented as the ith lateral

(mode-1), horizontal (mode-2), and frontal (mode-3) slices of
A. The following are some definitions, please refer to [41] and
[42] for a detailed introduction.

Definition 1: (t-product [42]) The t-product A ∗ B for A ∈
Rn1×n2×n3 and B ∈ Rn2×l×n3 , is a tensor C ∈ Rn1×l×n3 with
tubes

C(i, j, :) =
n2∑
t=1

A(i, t, :) ∗ B(t, j, :) (1)

where ∗ is circular convolution [41].
Definition 2: (t-SVD [42]) LetA ∈ Rn1×n2×n3 , the t-SVD of

A is

A = U ∗ S ∗ VT (2)

where S ∈ Rn1×n2×n3 is a f-diagonal tensor, U ∈ Rn1×n1×n3

and V ∈ Rn2×n2×n3 are orthogonal tensors.
Definition 3: (Tensor tubal rank [42]) For A ∈ Rn1×n2×n3 ,

the tensor tubal rank is represented as rankt(A), which is
computed as

rankt(A) = #{i,S(i, i, :) �= 0} (3)

with A = U ∗ S ∗ VT .
Definition 4: (Mode-k t-SVD [41]) Let A ∈ Rn1×n2×n3 .

Then A is factored as

A = Uk ∗k Sk ∗k V Tk

k , k = 1, 2, 3 (4)

Algorithm 1: Mode-k t-SVD.

Input: A ∈ Rn1×n2×n3 .
Āk ← fft(A, [ ], k).
for i = 1 to nk do

[U, S, V ] = svd((Āk)
(i)
k ).

(Ūk)
(i)
k ← U ; (S̄k)

(i)
k ← S; (V̄k)

(i)
k ← V .

end while
Uk ← ifft(Ūk, [ ], k).
Sk ← ifft(S̄k, [ ], k).
Vk ← ifft(V̄k, [ ], k).
Output: Uk, Sk, Vk.

where ∗k is the mode-k t-product [41]. Algorithm 1 presents this
decomposition. When k = 3, the mode-3 t-SVD is the t-SVD.

Definition 5: (Tensor mode-k permutation [41]) The mode-k
permutation of A ∈ Rn1×n2×n3 denoted as permute(A, k) is
defined as the tensor whose ith mode-3 slice is the ith mode-k
slice of A, and we have

permute(A, k) : Rn1×n2×n3 → Rni×nj×nk (5)

where i, j, k ∈ {1, 2, 3} and i �= j �= k. The inverse operator is
denoted as ipermute(A, k), which is computed as

ipermute(A, k) : Rni×nj×nk → Rn1×n2×n3 (6)

and we have A = ipermute(permute(A, k), k). It should
be known that the mode-k t-SVD ofA is equivalent to the t-SVD
of permute(A, k).

Definition 6: (Mode-k TFR [41]) Let A = Uk ∗k Sk ∗k V Tk

k

be the Mode-k t-SVD of A. The mode-k TFR denoted as
rankfk(A), is computed as the number of nonzero mode-k fibers
of Sk, and the mode-3 TFR becomes tensor tubal rank.

Definition 7: (TNN [42]) Let A = U ∗ S ∗ VT be the t-SVD
of A. The TNN of A is computed as the average of the
nuclear norm of all the frontal slices of Ā, namely, ‖A‖∗ =
1
n3

∑
i,j S̄(i, i, j).

Definition 8: (Mode-k TNN [41]) For A ∈ Rn1×n2×n3 , the
mode-k TNN, denoted as ‖A‖TNNk

, is computed as the sum of
singular values of all the mode-k slices of Āk, and the mode-3
TNN is the TNN.

III. PROPOSED METHOD

In this section, the snapshot hyperspectral imaging model is
first introduced, then the mode-1 TFR minimization introduced
for multishot CASSI and the optimization problem solved by
the PDA is presented. Specifically, the mode-1 TFR is derived
from the t-SVD to the mode-1 t-SVD, and accordingly, the
mode-1 TFR minimization is reduced to a mode-1 tensor nuclear
norm minimization problem. The PDA is introduced to solve the
objective optimization problem.

A. Snapshot Hyperspectral Imaging Model

In snapshot compressive imaging systems, the measurement
b1 of a single snapshot for the HSI X ∈ Rn1×n2×n3 is modeled
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Fig. 2. Sensing matrix H for n3 = 4 and s = 2.

as

b1 = H1x (7)

whereH1 ∈ Rn1n2×n1n2n3 is the sensing matrix and the coding
scheme is the same as [16] with the horizontally shifted random
binary mask,x ∈ Rn1n2n3 is the vectorized of HSIX , expressed
as x = vec(X ), and n1, n2, and n3, respectively, represent the
width, height, and number of spectral bands of HSI. In (9), the
H1 has a special structure and could be formed as

H1 =
[
D11,D12, · · · , D1n3

]
(8)

where D1 l ∈ Rn1n2×n1n2 (1 ≤ l ≤ n3) are diagonal matrices.
This CASSI system is the same as the DD-CASSI system [11],
[12], which encodes spatial and spectral information about a
scene using the dual-disperser architecture. When taking mul-
tiple snapshots, the CASSI system for multishot can be formed
as

b = Hx (9)

where b = [b1, . . . , bs]
T ∈ Rn1n2 s, H = [H1, . . . ,Hs]

T ∈
Rn1n2 s×n1n2n3 , and s represents snapshot times. Correspond-
ingly, (9) can be rewritten as

⎡
⎢⎢⎢⎣

b1
b2
...
bs

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H1

H2

...
Hs

⎤
⎥⎥⎥⎦x, (10)

Fig. 2 shows the sensing matrix H for n3 = 4 and s = 2. In ad-
dition, For all n3 bands at the position (m,n, j), m = 1, · · ·n1,
n = 1, . . . , n2, and j = 1, · · · s, the discrete form of one pixel
in the jth snapshot is expressed as

Ym,n,j =

n3∑
l=1

Mm,n,l,jXm,n,l (11)

whereM∈ Rn1×n2×n3×s denotes the discrete coded apertures
for multishot CASSI.

B. Mode-1 TFR for Multishot CASSI

The mode-1 TFR minimization can obtain a more accurate
HSI structure characterization, compared with the mode-2 TFR
minimization and the mode-3 TFR minimization by considering

Fig. 3. Illustration of the two snapshot measurements for Urban dataset.

the strong spectral correlation of HSI and directional character-
istics of mask shifting of CASSI. Literature [41] has indicated
that the strong spectral correlation is inadequately shown by the
mode-3 TFR, but exactly shown by the mode-1 TFR and mode-2
TFR. Furthermore, in this article, the mask is shifted along the
spatial horizontal direction (mode-2), resulting in the appear-
ance of horizontal stripes in the compressive measurements.
Fig. 3 shows the two snapshots measurements for the Urban
dataset. As observed, there are numerous horizontal bands in
each snapshot measurement. We found that the mode-1 t-SVD
has better horizontal stripes discrimination ability than mode-2
t-SVD. This is because the main step of the mode-2 t-SVD is
to perform FFT along the spatial horizontal direction (mode-2),
while the mode-1 t-SVD is to perform FFT along the spatial
vertical direction (mode-1). By performing FFT along the spatial
vertical direction, horizontal stripes can be adequately detected,
and then performing rank minimization through SVDs of lateral
slices to describe spatial-spectral correlation can make horizon-
tal stripes removed to a certain extent. To further illustrate it,
we applied the Fourier transform of a clean image and a clean
image contaminated by horizontal stripes, as shown in Fig. 4.
As observed, the magnitude spectrums of FFT of mode-2 of the
clean image and the noisy image have almost no difference.
While compared with Fig. 4(b) and (e), i.e., the magnitude
spectrums of FFT of mode-1 of the clean image and the noisy
image, they are different, and the FFT of mode-1 can adequately
detect the horizontal stripes, while for the FFT along the mode-2,
this capability is lacking. Therefore, using the mode-1 t-SVD
to perform the mode-1 TFR minimization has better horizontal
stripes removal ability than the mode-2 TFR minimization.

C. PDA-M1TNN for Multishot CASSI

To recover the HSI from the multishot CASSI compressive
measurements, we consider the mode-1 TFR minimization to
character the spatial-spectral correlation. Since the direct min-
imization of mode-1 TFR is an NP-hard problem, the mode-1
TNN is considered as the convex relaxation of the mode-1 TRF,
and the objective optimization problem for multishot CASSI is
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Fig. 4. Magnitude comparison of the FFT spectrum. (a) Clean image. (b)
Magnitude spectrum of the FFT of each column of image (a). (c) Magnitude
spectrum of FFT of each row of image (a). (d) Noisy image contaminated by
the horizontal stripes to image (a). (e) Magnitude spectrum of FFT of each
column of image (d). (f) Magnitude spectrum of FFT of each row of image (d).
(a) Clean image. (b) fft((a), n, 1). (c) fft((a), n, 2). (d) Noisy image. (e)
fft((d), n, 1). (f) fft((d), n, 2).

modeled as

arg min
X

1

2
‖b−Hx‖22 + λ‖X‖TNN1

(12)

where λ is the balancing factor and mode-1 TNN is denoted as ‖ ·
‖TNN1

. To solve the problem (12), the widely used ADMM [16]
needs to calculate the inverse of matrix HTH + ρI , where ρ is
a constant. However, since the H ∈ Rn1n2 s×n1n2n3 is a large
and fat matrix, (HTH) will be a huge matrix. In addition,
it would not get HHT to be a diagonal matrix for multi-
shot CASSI. Therefore, calculating the matrix inversion, i.e.,
(HTH + ρI)−1 is difficult in ADMM. To solve this problem,
we use the PDA [43] to solve (12), avoiding the matrix inversion
of the large matrixHHT , and the solution process is as follows.

Equation (12) can be written as the following general form:

arg min
X

f(Hx) + g(X ) (13)

where f(Hx) = 1
2‖b−Hx‖22 and g(X ) = λ‖X‖TNN1

are
convex functions and H ∈ Rn1n2 s×n1n2n3 is the measurement
matrix. Also, the concept of proximity operator of index γ of
function R is introduced as follows:

proxγR(υ) : RN→RN : υ 	→arg min
u

R(u)+
1

2γ
‖u− υ‖22.

(14)

By using duality, (13) can be rewritten as the following saddle
point problem:

min
X

max
y
〈Hx,y〉+ g(X )− f ∗(y) (15)

where f ∗ represents the convex conjugate of function f . In
addition, the proximity operator of f ∗ can be computed as

proxγf ∗(υ) = υ − γproxγ−1f (γ
−1υ). (16)

Algorithm 2: Solve (12) by PDA.

Initialize: Set x0, y0, and parameters τ > 0, σ > 0.
while A stopping criterion is not satisfieddo

Update yk+1 via (20);
Update X k+1 via (21);
xk+1 = vec(X k+1 + (X k+1 −X k)).

end while

By solving dual procedure and primal procedure with fixed steps
alternating, the PDA solves (13) as

yk+1 = proxσf ∗
(
yk + σHxk

)
(17)

X k+1 = proxτg

(
ten

(
xk − τHTyk+1

))
(18)

xk+1 = vec
(X k+1 +

(X k+1 −X k
))

(19)

where yk+1 denotes the value of y in the (k + 1)th iteration,
and σ and τ denote fixed steps. The PDA achieves convergence
with assumptions τ, σ > 0 and τσ(σ1(H))2 ≤ 1. Here, σ1(H)
is the largest singular value of H . Next, we show how to solve
(17) and (18).

1) Solve the subproblem y in (17): Based on (16), (17) is
updated as

yk+1 = proxσf ∗
(
yk + σHxk

)

= yk + σHxk − σproxσ−1f
(
σ−1

(
yk + σHxk

))

=
yk + σHxk − σb

1 + σ
. (20)

2) Solve the subproblem X in (18): Let Zk = ten(xk −
τHTyk+1), then (18) becomes

X k+1 = arg min
X

1

2
‖X − Zk‖22 + λτ‖X‖TNN1

= U ∗1 Sλτ
tnn ∗1 VT1 (21)

where Zk = U ∗1 S ∗1 VT1 , S1 = fft(S, [ ], 1), (S1)λτtnn =
max(S1 − λτ, 0), and Sλτ

tnn = ifft((S1)λτtnn, [ ], 1). The whole
algorithm procedure is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS

Several experiments are conducted to evaluate the effective-
ness of the PDA-M1TNN in this section. The PDA-M1TNN
is compared with DeSCI [16], Twist with TV constraint [34]
(called Twist-TV) and DP-LRTR [17] quantitatively and vi-
sually. Since DeSCI has special requirements on the sensing
matrix and is mainly designed for the single snapshot CASSI
in the original paper, we only compare the DeSCI on the single
snapshot CASSI. The mean peak signal-to-noise ratio (MPSNR)
and the mean structure similarity (MSSIM) [44] are used to
evaluate the reconstruction performance. All tests are running
in Intel(R) Core(TM) i9-10900 K CPU @ 3.70 GHz. For each
shot, the coding aperture follows a Bernoulli random distribution
consisting of {0, 1} with equal probability. The CAVE, Cuprite,
and Urban are selected for experiments. Particularly, five images



XIE et al.: MULTISHOT COMPRESSIVE HYPERSPECTRAL IMAGING BASED ON TENSOR FIBERED RANK MINIMIZATION 4471

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT SNAPSHOTS TIMES WITH s = 1, 2, 4, AND 6 ON THE CAVE DATASET

are selected from the CAVE dataset for illustration, including
balloons, toy, face, hairs, and oil-painting.

Before the experiments, the value of the test dataset is con-
verted to the interval [0, 255] in our method. The parameter for
balancing data fidelity and regularization items is set to 0.1 in
Twist-TV. For DeSCI, its parameter settings are consistent with
those described in the original paper. For DP-LRTR, the iteration
number is set to 5000, and the rank factor ρ is set separately, to
obtain good results. When the number of snapshots are 1, 2, and
4, the ρ is set to 0.4. When the number of snapshots is 6, the ρ is
set to 0.4. For the proposed PDA-M1TNN, the λ is set to 5000.
For other parameters of our method are empirically set as σ =
0.01, τ = 0.1, and maximum number of iterations K = 1000.

A. Results on the CAVE Dataset

CAVE dataset1 includes 32 scenes. Each scene is of size of
512× 512× 31. The quantitative results of MPSNR and MSSIM
in different snapshot times with s = 1, 2, 4, and 6 on the CAVE
dataset are shown in Table I. As observed, Twist-TV obtains
the best results on the balloons image when the snapshot times
are 1, 2, 4, and 6. This is because balloons have good image
smoothness. Except for balloon images, the DP-LRTR gets the
best results both on MPSNR and MSSIM in the other four images
when the number of snapshot is 1. But as the snapshot times
increases, the proposed PDA-M1TNN outperforms Twist-TV
and DP-LRTR. Specifically, the PDA-M1TNN obtains the best
results on the toy, face, hairs, and oil-painting when the snapshot
times are 2, 4, and 6. The PDA-M1TNN outperforms the DP-
LRTR by 4.44 dB on MPSNR when the number of snapshot
is 4 by average the results on five images. Besides, when the
number of snapshots is changed from 1 to 2, the MPSNR in our

1[Online]. Available: https://cave.cs.columbia.edu/repository/Multispectral

PDA-M1TNN increases by 10.50 dB by average the results on
five images. As the snapshots times increases, the reconstruction
performance is further improved. These illustrate the advantage
of the proposed method in multishot CASSI.

The visual results of toy image by different methods are shown
in Fig. 5. As observed from Fig. 5(a), the recovery result of
Twist-TV exhibits excessive smoothness, with many details lost.
The recovery result of DP-LRTR exhibits spectral distortion as
shown in the zoom in result of Fig. 5(b). Apparently, the recon-
struction result of the PDA-M1TNN has a better visual effect.
Fig. 6 shows a comparison of the reconstruction of the different
methods in spectral dimensions along different spatial pixel posi-
tions, which is represented by the center of the circle in Fig. 6(a).
The reconstruction results are recovered from four snapshots
compressive measurements and the selected three spatial pixels
represent three different substances. The spectral signatures of
the three different spatial pixel locations are, respectively, shown
in Fig. 6(b)–(d). In addition, the correlation coefficients between
the results of reconstructed methods and original data are also
included. As observed, the PDA-M1TNN recovers the spectrum
with high fidelity. These further demonstrate the effectiveness
of the PDA-M1TNN.

B. Results on the Cuperite Dataset

The original data of Cuperite have 224 bands, which range
from 370 to 2480 nm. The size of Cuperite in the experiments
is 250 × 191 × 188 by removing the contaminated bands.

The quantitative results of the competing methods at different
snapshot times with s = 1, 2, 4, and 6 on the Cuperite dataset are
shown in Table II. As observed, the PDA-M1TNN outperforms
Twist-TV and DP-LRTR in all evaluation metrics when the snap-
shot times are 2, 4, and 6. DP-LRTR gets the best results when

https://cave.cs.columbia.edu/repository/Multispectral
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Fig. 5. Reconstruction results in the toy. The red, green, and blue in color image are, respectively, composed of bands 31, 14, 5. (a) Twist-TV. (b) DP-LRTR. (c)
PDA-M1TNN. (d) Original.

Fig. 6. Spectral signatures comparisons of different methods. (a) Three spatial pixel positions. (b) Point a (x = 302, y = 127). (c) Point b (x = 282, y = 208).
(d) Point c (x = 88, y = 362).

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT SNAPSHOTS TIMES WITH s = 1, 2, 4,

AND 6 ON THE CUPERITE DATASET

the number of snapshots is 1. Specifically, when the number of
snapshots is 2, PDA-M1TNN is 1.74 dB higher than DP-LRTR
in MPSNR and 10.44 dB higher than Twist-TV in MPSNR.
Furthermore, when the number of snapshots changes from 1
to 2, the MPSNR in our PDA-M1TNN increases by 10.36 dB.
This is a rapid increase, and as the snapshot time increases, the
reconstruction performance is further improved.

The visual results by different methods on Cuperite are shown
in Fig. 7. As observed from Fig. 7, the recovery results of Twist-
TV show excessive smoothness, while DP-LRTR shows spectral
distortion. The reconstruction result of the PDA-M1TNN has

better visual effects. Fig. 8 shows a comparison of the reconstruc-
tion of different methods in spectral dimensions along different
spatial pixel positions represented by the center of the circle
in Fig. 8(a). The reconstruction results are recovered from four
snapshots and the selected three spatial pixels represent three dif-
ferent substances. The spectral signatures of the three different
spatial pixel locations are, respectively, shown in Fig. 8(b)–(d).
In addition, the correlation coefficients are also included. As
observed, the PDA-M1TNN recovers the spectral information
with high fidelity. Furthermore, the correlation coefficients of
the PDA-M1TNN are as high as 0.99. These further demonstrate
the effectiveness of the PDA-M1TNN.

C. Experimental Results on the Urban Dataset

This dataset is obtained by the HYDICE sensor. The spatial
size of the Urban dataset is 307×307. The original data have
210 bands. 162 bands are left after removing noise and water
absorption bands, and only a subimage of size 256× 256× 162
is used for the experiments.

The quantitative results of the competing methods at differ-
ent snapshot times with s = 1, 2, 4, and 6 on the Urban are
listed in Table III. As observed, the PDA-M1TNN outperforms
the Twist-TV in all evaluation metrics in all the cases. When
the number of snapshot is 1, the DP-LRTR achieves the best
results. When the snapshot times are 2 and 4, the PDA-M1TNN
obtains the best results. As the snapshot times increases, the
reconstruction performance is further improved. Besides, when
the number of snapshots is changed from 1 to 2, the MPSNR in
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Fig. 7. Reconstruction results on the Cuperite. The red, green, and blue in color image are, respectively, composed of bands 140, 56, 31. (a) Twist-TV. (b)
DP-LRTR. (c) PDA-M1TNN. (d) Original.

Fig. 8. Spectral signatures comparisons of different methods. (a) Three spatial pixel positions. (b) Point a (x = 54, y = 80). (c) Point b (x = 117, y = 106).
(d) Point c (x = 15, y = 149).

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT SNAPSHOTS TIMES WITH s = 1, 2, 4,

AND 6 ON THE URBAN DATASET

our PDA-M1TNN increases by 4.59 dB, which also illustrates
the advantage of multishot CASSI over a single snapshot CASSI.

Fig. 9 shows the reconstruction results for the pseudocolor
image, which consisted of bands 150, 90, and 30. As can be
observed, Twist-TV produces a serious over-smoothing phe-
nomenon and loses a lot of detail information, while the pro-
posed PDA-M1TNN can reconstruct the detail information well.
Fig. 10 shows a comparison of the reconstruction of different
methods in spectral dimensions along three different spatial
pixel represented. The results are recovered from four snapshots
compressive measurements and the selected three spatial pixels

represent different classes. The spectral signatures of the three
different spatial pixel are presented in Fig. 10(b)–(d). In addition,
the correlation coefficients between the results of reconstructed
methods and original data are also included. As observed, the
PDA-M1TNN recovers the spectral information with high fi-
delity, which verifies the effectiveness of the proposed method.

D. Computational Efficiency

The time complexity of the proposed PDA-M1TNN is the
same as that of the mode-1 TNN, whose costs at each iteration
is O(n1n2n3logn1 + n1n2n3 N), where N = min(n2, n3).
Hence, the time complexity of the proposed PDA-M1TNN at
each iteration is O(n1n2n3logn1 + n1n2n3 N).

Table IV shows the CPU running time (in hours) of the
methods on CAVE, Cuperite, and Urban with different snapshot
times. For the running time on the CAVE dataset, it is the
average time of the five images selected on this dataset. From
a comprehensive view of Table IV, the proposed PDA-M1TNN
runs faster than DeSCI and DP-LRTR in each case. Furthermore,
compared with Twist-TV, the proposed PDA-M1TNN also has
competitive performance. These also verify the effectiveness of
the PDA-M1TNN in multishot CASSI reconstruction.

E. Discussion

1) Parameter discussion of λ: For the proposed method, the
parameter λ is discussed by varying the value of λ in the range
of {1000, 3000, 5000, 7000, 9000, 11 000}. When the number
of snapshots is 4 in Cuperite dataset, the quantitative results of
the PDA-M1TNN in different values of λ are shown in Table V.



4474 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 9. Reconstruction results on the Urban. The red, green, and blue in color image are, respectively, composed of bands 150, 90, 30. (a) Twist-TV. (b) DP-LRTR.
(c) PDA-M1TNN. (d) Original.

Fig. 10. Spectral signatures comparisons of different methods. (a) Three spatial pixel positions. (b) Point a (x = 223, y = 123). (c) Point b (x = 244, y = 179).
(d) Point c (x = 46, y = 209).

TABLE IV
RUNNING TIME OF THE METHODS ON THE DIFFERENT DATASETS IN DIFFERENT

SNAPSHOTS TIMES WITH s = 1, 2, 4, AND 6

TABLE V
QUANTITATIVE RESULTS WITH DIFFERENT VALUES OF λ WHEN THE NUMBER

OF SNAPSHOTS IS 4

As observed, the quantitative results reach their best when the λ

is 5000. Hence, the λ is set to 5000 in the experiments.
2) Discussion of mode-k TNN: It is assumed that the coded

scene is spectrally horizontally shifted in this article and the
mode-1 TFR is applied to utilize the spatial-spectral correlation
of HSI in multishot CASSI reconstruction. In order to illustrate
the superiority of mode-1 TFR, we compare it with the mode-2
TFR and mode-3 TFR. Correspondingly, the mode-2 TNN and
the mode-3 TNN are, respectively, used as the convex relaxations
of mode-2 TRF and mode-3 TRF and the corresponding methods
are named as PDA-M2TNN and PDA-TNN. The experiments
are conducted on the Cuperite dataset. Fig. 11 shows the re-
construction results of Cuperite by different mode-k TNN by
recovering from four snapshots compressive measurements. As
observed, there are still a lot of horizontal stripes in the result
of PDA-M2TNN. In the result of PDA-TNN, there is not only
horizontal stripes, but also other noise, while the proposed
PDA-M1TNN has better visual effects. Table VI shows the
quantitative results on MPSNR and MSSIM. As observed, the
PDA-M1TNN achieves the best performance in all the cases.
These further demonstrate that the mode-2 t-SVD and mode-3
t-SVD characterization result in suboptimal CASSI reconstruc-
tion performance, while the mode-1 t-SVD can obtain a more
accurate HSI structure characterization in multishot CASSI
reconstruction.

3) Discussion of mask shifting in a vertical direction: If the
mask shifts in a vertical direction, the mode-2 t-SVD performing
the mode-2 TFR minimization should be used for better multi-
shot CASSI performance.

First, the performance of mode-k (k = 1,2 3) TNN is com-
pared when the mask shifts in a vertical direction in multishot
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Fig. 11. Reconstruction results of Cuperite by different mode-k TNN. (a) PDA-M1TNN. (b) PDA-M2TNN. (c) PDA-TNN. (d) Original.

TABLE VI
QUANTITATIVE RESULTS OF DIFFERENT MODE-k TNN ON MPSNR AND

MSSIM WITH DIFFERENT SNAPSHOT TIMES ON THE CUPERITE DATASET

WHEN THE MASK SHIFTS IN A HORIZONTAL DIRECTION

TABLE VII
QUANTITATIVE RESULTS OF DIFFERENT MODE-k TNN ON MPSNR AND

MSSIM WITH DIFFERENT SNAPSHOT TIMES ON THE CUPERITE DATASET

WHEN THE MASK SHIFTS IN A VERTICAL DIRECTION

CASSI. Table VII shows the quantitative results on MPSNR and
MSSIM on the Cuperite dataset when the mask shifts in a vertical
direction. As observed, the PDA-M2TNN achieves the best
performance in all the cases. These demonstrate that the mode-2
TFR minimization obtains the optimal results when the mask
shifts in a vertical direction. Second, the quantitative results of
the competing methods at different snapshot times with s = 1, 2,

TABLE VIII
QUANTITATIVE RESULTS OF DIFFERENT SNAPSHOTS TIMES WITH s = 1, 2, 4,
AND 6 ON THE CUPERITE DATASET WHEN THE MASK SHIFTS IN A VERTICAL

DIRECTION

4, and 6 on the Cuperite dataset are shown in Table VIII. As ob-
served, the PDA-M2TNN outperforms Twist-TV and DP-LRTR
when the snapshot times are 2, 4, and 6. DP-LRTR gets the best
results when the number of snapshots is 1. Specifically, when
the number of snapshots is 2, PDA-M2TNN is 2.34 dB higher
than DP-LRTR in MPSNR and 11.02 dB higher than Twist-TV
in MPSNR. These further demonstrate the effectiveness of the
PDA-M2TNN when the mask shifts in a vertical direction in
multishot CASSI.

V. CONCLUSION

In this article, we consider the TFR minimization problem
for multishot CASSI and solve it using the PDA. The TFR is
generalized from the mode-k t-SVD. Since the mask is shifted
along the horizontal direction, we use mode-1 t-SVD to exploit
the joint spatial-spectral correlation. The TFR minimization is
reduced to a mode-1 TNN minimization problem to achieve a
more accurate HSI characterization in multishot CASSI recon-
struction. The proposed method is solved by the PDA. Note that
if the mask shifts in a vertical direction, the mode-2 t-SVD per-
forming the mode-2 TFR minimization should be used for better
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multishot CASSI performance. The proposed PDA-M1TNN is
mainly aimed at DD-CASSI. Therefore, the reconstruction of
SD-CASSI is worth studying. In addition, the mode-1 TNN in
this article can be replaced with better regularization/prior terms
or powerful representation learning models [45], [46] for better
CASSI performance.
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