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SVSDet: A Fine-Grained Recognition Method
for Ship Target Using Satellite Video
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Abstract—Target recognition from remote sensing images is
commonly challenging because of large-scale variations and small
objects, and these challenges are more prominent in satellite video
images. The current object detection algorithms have some dif-
ficulties in fine-grained feature extraction and classification for
multiscale and small objects. We propose a novel model called
the SVSDet method based on YOLOv5 improvement to address
the above-mentioned issues. In this method, we have introduced
the space-to-depth module into the backbone of the network, which
enhances the network’s ability to extract fine-grained features.
The neck structure is improved by using the bidirectional feature
pyramid network to enhance the network’s ability to extract fea-
tures at multiple scales, thereby improving its overall multiscale
feature extraction ability. Subsequently, we have replaced the C3
module in the original network’s neck with the C2f module to
obtain more abundant gradient flow information. This helps to
improve the network’s performance further. Finally, the coordinate
attention module is introduced into the cross-scale feature connec-
tion path, which effectively enhances the network’s target detec-
tion and recognition performance. We have conducted extensive
comparative experiments and ablation experiments on the publicly
available datasets ShipRSImageNet and SAT-MTB to confirm the
effectiveness of our proposed SVSDet method. The performance of
this approach is then evaluated using Jilin 1 satellite video data, and
it outperforms the main YOLO series algorithms currently used.

Index Terms—Attention mechanism, deep learning, multiscale
feature fusion, satellite video, ship recognition.

I. INTRODUCTION

THE sea is an important area for human activity and plays
a crucial role in national defense, military operations,

economic growth, and transportation connectivity. The most
essential ways of transportation for people to engage in a variety
of activities in the ocean are ships, and it is crucial for coastal
surveillance and defense that ships be rapidly and precisely
detected and recognized [1]. Furthermore, due to the vast and
diverse types and sizes of ships distributed across the sea, it is
necessary and technically challenging to quickly and accurately
detect and identify them [2]. The observation of the Earth from
space using high-resolution satellite remote sensing technology
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has developed into a significant observation approach and is
frequently employed in ship detection and recognition. As a
“staring” observation of a sensitive area, video satellites can
continuously observe the changes in the field of view and obtain
more dynamic information about the target area by means of
“space video recording” than the traditional Earth observation
satellites [3]. The continuous imaging mode of satellite video
makes a strong correlation between the front and back frames
and can provide rich contextual information. The fine-grained
detection and recognition of ship targets in satellite video and
the full use of satellite video context information can more
accurately monitor and track ship dynamics in the target area.

Traditional methods for video object detection include the
frame difference method, background modeling method, optical
flow method, and others. Kopsiaftis and Karantzalos [4] used the
background difference method to calculate the current frame
and background template for the Skysat-1 satellite video to
get the target to be detected. Zhang [5] used the video data of
the “Jilin-1” satellite based on the classical algorithm random
neighborhood and region matching method, combined with the
motion vector assistance of the optical flow method and refined
processing to obtain detection results. To address errors caused
by global scene motion and local pseudomotion, Xu et al. [6]
proposed a method of global motion compensation and local
dynamic updating. Zhang et al. [7] integrated known satellite
attitude motion information and unknown object motion infor-
mation to detect target objects in satellite videos. Yang et al.
[8] introduced a method that combines dynamic scene motion
heat maps to enhance the detection of moving vehicles in video
satellite images using saliency background models. Du et al. [9]
proposed a multiframe optical flow tracker for object tracking.
Although these methods have achieved good results in target
detection in satellite video data, they cannot identify the target
in fine-grained classification.

Convolutional neural networks (CNNs), which have an excel-
lent ability to represent features, have experienced significant
success in the field of computer vision since the deep-learning
approach was proposed. Deep-learning-based object detection
and recognition algorithms are continually being upgraded due
to the rapid development of computer vision technology, and
they are progressively taking over as the most common method.
Several target detection algorithms have been proposed; you
only look once (YOLO) [10] series and R-CNN series [11],
[12], [13] algorithms have become the representative algorithms
of one-stage detectors and two-stage detectors. Bousetouane
and Morris [14] extracted ship target features based on CNNs
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and realized ship identification by comparing the target features
with the template library. Guo et al. [15] proposed a rotation-
balanced R-CNN method that uses three levels of rotational
angle information to balance neural networks to predict ship
positions. Zhang et al. [16] used the improved faster R-CNN
for ship detection, adding the steps of image preprocessing by
using a support vector machine and effectively improving the
detection accuracy of small target ships. Sun et al. [17] carried
out ship target detection based on the YOLO algorithm and
marked the target position with a rectangular box corresponding
to the ship target to realize multitarget detection, which sig-
nificantly improved the detection performance. Among them,
YOLO is favored in target detection and recognition because of
its faster detection speed and accuracy no less than the two-stage
networks. These algorithms have been introduced to the appli-
cation of remote sensing images and have performed well as
a result of the effective implementation of these algorithms on
natural images among researchers in the field of remote sensing.
Currently, CNN-based target detection methods can be classified
into anchor-based and anchor-free (AF) methods according to
whether the anchor-frame mechanism is used [18]. The anchor-
based method reduces the training difficulty by incorporating
prior knowledge in the form of preset anchor boxes for different
feature maps. However, the size of the anchor box needs to be
set manually and fixed, which limits its applicability for remote
sensing images with large-scale changes. In addition, the use
of a large number of preset anchor boxes can lead to an imbal-
ance between positive and negative samples, further affecting
the performance of the network. Compared with anchor-based
methods, the AF approach does not require the production of
anchors, which reduces the complexity of manual intervention
and design and offers greater flexibility for multiscale target
processing.

While CNN-based target detection algorithms have been suc-
cessful in natural images and have also been developed for
remote sensing images, current research in the field of remote
sensing is primarily based on static high-resolution optical re-
mote sensing images and synthetic aperture radar (SAR) images.
In remote sensing images, ship targets have the characteristics
of large aspect ratio and large-scale variation. At the same time,
ship targets in remote sensing images are often small targets that
occupy only a few pixels. Neural networks based on CNNS are
challenging to deal with these problems [19]. Compared with
the traditional static image, the video satellite image has the
characteristics of real-time dynamic and high-time resolution,
but the spatial resolution is less than that of a high-resolution
optical image. For target detection in satellite video, multiscale
and small target problems are more challenging. The authors in
[20] and [21] employed CNN methodologies for the detection
of vehicle targets in satellite videos. Meanwhile, Yan et al.
[22] proposed a CNN object detection approach based on deep
regression and incorporating transfer learning, facilitating the
detection and categorization of moving objects. Zhang et al. [1]
improved the SSD algorithm and applied it to the ship target
detection of Jilin-1 satellite video. However, as far as we know,
there are few applied researches on fine-grained ship recognition
and classification of satellite video.

Based on the characteristics of video satellite data, a fine-
grained ship target detection method SVSDet applied to video
satellite data is proposed in this article. This method is improved
by using AF YOLOv5 implemented under the YOLOv8 frame-
work as the baseline network. The space-to-depth (SPD) module
has been introduced into the backbone of the network to enhance
its ability to extract fine-grained features. Bidirectional feature
pyramid network (BiFPN) is used to improve the neck structure
and enhance the multiscale feature extraction capability of the
network. The coordinate attention (CA) module is introduced
into the cross-scale connection, which enhances the feature ex-
pression ability of the network effectively. According to the test
results and a substantial number of experiments, our proposed
method has demonstrated excellent performance.

The main contributions of this work are as follows.
1) Adding the SPD module to the backbone structure of

the network to enhance the ability of fine-grained feature
extraction and the difficulty of small target detection.

2) The neck structure is enhanced by using the idea of BiFPN,
and multiscale feature information is fused to enhance the
multiscale feature extraction ability of the network. At the
same time, introduced CA in the neck to make the model
more accurately locate and identify the target area and
enhance the detection and recognition performance of the
network.

3) Replaced the C3 module in the original neck structure
with the C2f module to obtain more abundant gradient
flow information.

The rest of this article is organized as follows. Section II
reviews a series of existing related works. Section III explains
the proposed method in detail. Section IV designs the relevant
experiments and analyzes the experimental results. Section V
discusses the proposed method. Finally, Section VI concludes
this article.

II. RELATED WORK

A. You Only Look Once

Among various object detection algorithms, the YOLO frame-
work stands out for its excellent balance of speed and accuracy,
which enables fast and dependable identification of objects
in images [10]. Since it was proposed, YOLO has been up-
dated and developed many times, and has become one of the
most advanced object detection frameworks. In 2015, Redmon
et al. [23] first proposed a real-time end-to-end object detection
method, YOLO, and published it in CVPR 2016. Compared to
extracting the interested area and then running the classifier of
the two-phase detection method, YOLO can pass a network to
complete the detection task. Subsequently, Redmon and Farhadi
made a series of improvements on the basis of YOLO, releasing
YOLOv2 [24] and YOLOv3 [25]. The success of YOLO has led
more researchers to participate in the research of YOLO series
algorithms. Although different authors have published some
versions of YOLO, they have largely maintained the same YOLO
philosophy. So far, the mainstream YOLO series algorithm has
been updated to YOLOv8 [26], [27], [28]. At the same time, the
author of YOLOv8 implemented the AF version of YOLOv5 in
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this framework, which has better performance than the original
anchor base (AB). Of course, there are many other derivative
versions of YOLO, such as Scald-YOLOv4 [29], YOLOX [30],
YOLOR [31], DAMO-YOLO [32], and PP-YOLO [33] The
continuous iteration of these algorithms has made the YOLO
series more powerful time after time.

B. Remote Sensing Image Ship Detection

Feature descriptors and other techniques to extract ship can-
didate areas were also frequently used in the early stages of
ship target detection and classification recognition, as were
threshold segmentation based on statistical models, background
separation based on significance, and feature classifiers, such as
SVM and other feature classifiers [34]. Later, the development
of CNNs provides a more efficient and effective way for ship
target detection. Qu et al. [35] improved YOLOv3 and achieved
satisfactory improvement in speed and accuracy. Hu et al. [36]
improved YOLOv4 to reduce missed detection and false posi-
tives in complex scenarios and improve network performance.
The method of deep learning relies on the establishment of
datasets. Many scholars have carried out corresponding research
and published their established datasets for the detection and
fine-grained classification of ships in remote sensing images.
Zhang et al. [2] published ShipRSImageNet, a ship dataset with
multiple levels of mission types, and conducted a large number
of experiments using popular target detection algorithms, such as
faster R-CNN, FCOS [37], and SSD [38], to verify the feasibility
of the dataset. Li et al. [39] proposed a dynamic soft label
assignment strategy, which uses the dynamic anchor quality
score threshold to replace the fixed IOU threshold, effectively
improving the detection ability of ship targets in any direction.
X. Zhang and Zhang [40] introduced the ASPP module and
CBAM attention mechanism in YOLOv5 to strengthen spatial
and semantic features of different scales, and used focal loss as
a loss function to improve data imbalance. Aiming at ship target
detection in SAR images, Kong et al. [41] proposed a multiscale
ship feature extraction module and an overall detection strat-
egy based on adaptive threshold, which suppressed background
interference and improved detection accuracy. Yasir et al. [42]
used C3 and FPN+PAN structures and attention mechanisms
to enhance the backbone and neck of the YOLOv5 model to
achieve a high recognition rate of the SAR ship.

C. Satellite Video Object Detection

In comparison to the image-based detection method, the
video-based object detection method incorporates the integra-
tion of space–time features among frames and includes contex-
tual information to enhance the algorithm’s detection capability
[43]. The application of deep learning has made great achieve-
ments in image target detection and has also been developed
in video target detection tasks. T-CNN [44] combines time
information in dynamic object tracking and spatial information
in image object detection to improve the performance of video
object detection. FGFA [45] fuses the features of adjacent video
frames into the optical flow information extracted by FlowNet
to improve the algorithm’s ability to distinguish target features.
DFF [46] only runs convolutional subnetworks on sparse key

frames and propagates feature maps to other frames through
streamlight information, which effectively improves the speed
of the network. SELSA [47] uses semantic similarity to guide
global feature fusion at the full sequence level, instead of relying
on optical flow information, and improves the robustness of
detection through feature fusion of completely random sampling
frames.

Compared with general video, satellite videos have the char-
acteristics of poor data continuity, global motion due to platform
movement, large redundancy between video frames, etc. [48].
These greatly increase the difficulty of satellite video processing.
The traditional methods for objects detection in satellite video
mainly use background modeling method [49], frame difference
method [50], and saliency-based method [51]. These methods
capture the changing regions in satellite video sequence images,
extract moving objects, and complete object detection tasks
[48]. Lei et al. [49] proposed a background modeling method
combining vital interframe temporal information to optimize
detection results to detect vehicle targets in satellite video. Li
et al. [50] propose a method for detecting and tracking moving
ships of multiple sizes based on interframe differences. Li and
Man [51] proposed a method based on visual attention saliency
combined with optical flow information to effectively extract
moving ship targets. Zhang et al. [52], [53], [54] established
a series of methods for moving vehicle detection based on
low-rank structured sparse decomposition. Traditional methods
for detecting targets in satellite videos can only detect objects
with motion states in the video. For stationary targets, such as
ships docked at the shore, targets tend to be ignored. In addition,
the traditional method is based on the detection of the difference
between different frames, which cannot distinguish the target
in categories. At present, the research on object detection in
satellite video based on deep learning is still in its infancy [43].
At the same time, some existing research object for satellite
video target detection datasets mainly focus on moving vehicles
[55], [56], [57], [58]. Li et al. [55] proposed a motion-driven
RGB image differential fusion network to detect moving objects
in optical remote sensing satellite videos by combining time
information from adjacent frames and spatial features from
image pixels. Xiao et al. [56] proposed a network DSFNet, which
combines static features obtained from single-frame images
and motion features obtained from continuous frames, to detect
moving targets in satellite videos. Feng et al. [57] combined the
cross-frame key point detection network with the space motion
information guidance and tracking network to detect and track
moving vehicle targets in satellite video. Li et al. [43] released
the dataset SAT-MTB, which not only contained ship targets but
also classified ship targets in a fine-grained manner, making a
great contribution to solving the difficulty of the lack of public
data in fine-grained ship detection of satellite video.

D. Attention Mechanism

The attention mechanism can be considered a dynamic weight
adjustment process for input image features that can effectively
find significant areas in complex scenes by imitating human
vision [59]. Currently, the attention mechanism is an essential
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Fig. 1. Overall SVSDet network structure.

component of deep learning. In object detection tasks, com-
mon attention mechanisms include channel attention, spatial
attention, and channel and spatial attention. Channel attention
can capture different channels of information flow and enhance
the channel, and the information transmission can adaptively
adjust the importance of each channel, capturing useful features,
such as SENet [60], FcaNet [61], and ECANet [62]. A spatial
attention mechanism is an adaptive spatial region selection
mechanism that relies on spatial relations to select regions of
interest, such as RAM [63] and DCN [64]. CBAM [65], CA [66],
and other integrated attention mechanisms that consider both
channel and spatial relations of features have been proposed,
which can give full play to the advantages of the two attention
mechanisms and adaptively select the features and regions of
interest.

III. PROPOSED METHOD

The complete network structure of SVSDet proposed in this
article is shown in Fig. 1. In this network, an SPD convolution

designed for extracting small target features is added to the
backbone, a redesigned neck structure is used instead of the
original path aggregation network (PANet) to aggregate the fea-
ture maps of different feature layers extracted by the backbone
network, and a C2f module is used to obtain more abundant
gradient flow information. Finally, the CA mechanism is used
in the cross-scale connection of the neck to select important
features and regions and then converge to improve network
performance

A. SPD Model Into Backbone

How to effectively improve the detection ability of small
targets has always been a concern in the field of target detection.
Due to the unique imaging method and the resolution limitation,
the difficulty caused by small targets has always been an impor-
tant research topic in remote sensing image target detection. Lin
et al. [67] propose that the poor performance of the existing CNN
network in low-resolution or small objects is due to the loss of
fine-grained features caused by the use of stride convolution
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Fig. 2. SPD downsampling.

and/or pooling layers. To solve this problem, the authors of
this article propose a new CNN building block called SPD.
Considering the difficulty of detecting small- and medium-sized
targets in remote sensing images and the limitation of resolution,
this article introduces the SPD module into the backbone of
YOLOv5 to improve the network’s ability to extract fine-grained
information.

SPD module subsamples the feature mapping of CNN. For any
feature mapping X with size S×S×C, the subfeature mapping
series is sliced, as given in, (1) shown at the bottom of the this
page.

In general, given any feature map X, a submap fx,y is formed
by all the entries X(i, j) that i+ x and i+ y are divisible by
scale. Therefore, each subgraph downsamples X by a scale factor.
Downsampling X according to the scaling factor yields feature
subgraphs f0,0, f0,1, …, f0,scale−1, fscale−1,scale−1. The shape of
each feature subgraph is ( S

scale ,
S

scale , C), then connecting these
subfeature maps along the channel dimension to obtain a new
feature map X′. Thus, the original feature map X (S×S×C) is
converted to X ′( S

scale ,
S

scale , scale2C), which reduces the spatial
dimension by a factor of scale and increases the channel dimen-
sion by a factor of scale2. The SPD downsampling process is
shown in Fig. 2.

B. Improved Feature Fusion Neck Network

The large-scale difference of the detected object is another
feature of remote sensing image target detection. Due to the large
size difference of different ships, the scale change of ship targets
is more prominent under the influence of different imaging
angles and other factors in remote sensing images. In order
to solve the multiscale problem of the detected target, feature
pyramid networks (FPN) are integrated into the target detection

Fig. 3. Different feature fusion network structures.

network. By adopting up and down and connecting horizon-
tally, FPN fuses feature maps of different levels to improve
the detection capability of targets of different scales. PANet
[68] adopts a top-down path to propagate features, fuse feature
maps of upper and lower adjacent layers, and sum the fusion
results. This method can retain more detailed information and
be more efficient. Tan et al. [69] believe that different features
are of different importance and propose an efficient BiFPN. We
adopted the idea of bidirectional cross connection in BiFPN
to improve PANet and added two cross-scale connection paths
for feature map fusion to obtain more feature information of
different scales. Different feature fusion network structures are
shown in Fig. 3.

C. C2f Module

The C2f module, introduced in YOLOv8, serves as a novel
feature extraction module, replacing the original C3 module in
YOLOv5. The C2f module retains the core concept of the C3
module and is designed with reference to the layer aggregation
architecture for effective gradient propagation, as proposed in
ELAN [70]. C2f employs a split operation to divide feature
maps, sending one-half of the feature maps into the BottleNeck
module and merging the other half with the output feature
maps and residuals of each BottleNeck module. This process
enhances the network’s ability to capture richer gradient flow
information. After extracting features comprehensively from
the backbone network, feature fusion takes place in the neck
network. Replacing the C3 module with the C2f module in the
neck structure allows for the preservation of finer textures and
other features, ultimately improving the network’s classification
capabilities for recognizing targets. The bottleneck in C3 and
C2f is a residual network structure block, which effectively
reduces network parameters and promotes network optimization

f0,0 = X [0 : S : scale, 0 : S : scale] , f1,0 = X [1 : S : scale, 0 : S : scale] ,

. . . , fscale−1,0 = X [scale − 1 : S : scale, 0 : S : scale] ;

f0,1 = X [0 : S : scale, 1 : S : scale] , f1,1, . . . , fscale−1,1 = X [scale − 1 : S : scale, 1 : S : scale] ;

...

f0,scale−1 = X [0 : S : scale, scale − 1 : S : scale] , f1,scale−1,

fscale−1,scale−1 = X [scale − 1 : S : scale, scale − 1 : S : scale] . (1)
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Fig. 4. Bottleneck module structure diagram of C3 and C2f modules, where
n indicates the number of bottleneck modules. C3 show as (a) and C2f show as
(b).

Fig. 5. CA module network structure.

in deep neural networks. The structures of C3 and C2f show in
Fig. 4.

D. Coordinate Attention

An attention mechanism has been proposed, which greatly
improves the feature extraction capability of deep-learning net-
works and is widely used in object detection, semantic segmen-
tation, natural language processing, and other tasks. Channel
attention focuses on important features, spatial attention focuses
on the areas of interest, and mixed channel and space attention
have both features. Hou et al. [66] proposed that CA is em-
bedded with position information in channel attention to solve
the problem that mixed attention, such as CBAM, is difficult to
capture long-distance dependence. This mechanism can obtain
information on a larger area at a lower computational cost so as
to infer the location and attribute of the target more accurately.
The CA structure is shown in Fig. 5.

CA is coded for each channel using a pooling check of
size (H,1) or (1,W) in the horizontal and vertical directions,
respectively, embedding coordinate information and connecting
the output of the two pooling layers using a shared 1×1 convo-
lution transform function for CA generation. It is described by
formulae (2)–(8)

zh = GAPh (X) (2)

zw = GAPw (X) (3)

f = δ
(
BN

(
Conv1×1

1

([
zh; zw

])))
(4)

fh, fw = Split (f) (5)

sh = σ
(
Conv1×1

h

(
fh

))
(6)

sw = σ
(
Conv1×1

w (fw)
)

(7)

Y = Xshsw (8)

where h and w represent the horizontal and vertical direc-
tions, respectively, GAP is the global average pooling function,
and sh ∈ RC×1×W and sh ∈ RC×H×1 are the weights of the
corresponding direction coordinates.

IV. EXPERIMENT AND RESULT

To verify the effectiveness of our proposed method, we con-
ducted comprehensive experiments on the public fine-grained
ship classification dataset ShipRSImageNet and tested the prac-
tical application effect on the video data collected by the Jilin-1
video satellite. In this section, we will explain our experimental
environment, experimental data, and evaluation indicators, con-
duct detailed ablation experiments to verify the effectiveness
of each improvement, and conduct comparative tests with other
popular methods to verify the advanced nature of the proposed
method. Then, the performance of the model was improved
through pretraining on the large aerial remote sensing dataset
DOTA [71]. Finally, the model obtained by the proposed method
is tested in practice to verify its feasibility.

A. Datasets

1) ShipRSImageNet: ShipRSImageNet integrates multiple
existing ship datasets and optical remote sensing images from
different data acquisition platforms and accurately classifies
and labels ships in the images [2]. The dataset contains more
than 3400 images and 17 500 ship instances, enabling multilevel
detection and fine-grained classification tasks. Except for a Dock
category, Level 0 tasks are single-class ship detection tasks.
Level 1 tasks are divided into three ship categories: Other ship,
Warship, and Merchant; Level 2 tasks are divided into 24 ship
categories; Level 3 tasks are divided into 49 ship categories; and
Other ships are ships that cannot be identified as merchant ships.
Because of the large differences in size, resolution, scene, and
other aspects of the image in the dataset, it is challenging to use
the dataset to detect the performance of the method. Different
levels of classification in different scenarios are shown in Fig. 6.



4732 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Classification of ships at different levels of tasks in three scenarios.

Fig. 7. Instance of the Jilin-1 video dataset used in the current research.

2) Satellite Video: The satellite video data used in this article
were obtained by Jilin-1 Video 03 satellite with a spatial reso-
lution of 0.92 m. The video duration was 10 s and a total of 100
frames, each frame size being 6786 × 2528 instance, as shown
in Fig. 7.

3) SAT-MTB: The dataset consists of 249 satellite videos
from Jilin-1, annotating 4 coarse-grained categories of aircraft,
ships, cars, and trains, and 14 corresponding fine-grained target
categories. Among them, there are six fine-grained categories
of ships, including speed boat, yacht, cruise, freighter, naval

vessels, and other ships. The dataset can meet the needs of three
tasks: detection, tracking, and segmentation. To accommodate
the target tracking task, only moving ship targets offshore are
annotated. Some instances are given in Fig. 8.

4) DOTA: The DOTA dataset comprises 2806 aerial im-
ages with dimensions of 4000 × 4000 pixels, each contain-
ing objects with varying proportions, orientations, and shapes.
The images underwent expert tagging and annotation, captur-
ing a total of 188 282 instances spanning 15 common object
categories.
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Fig. 8. Some instances of the SAT-MTB.

TABLE I
CONFIGURATION PARAMETERS RELATED TO THE EXPERIMENTAL

ENVIRONMENT

B. Experimental Environment

All experiments in this article were carried out in the same
environment, and the relevant configuration parameters of the
specific environment are shown in Table I.

C. Evaluation Index

The two evaluation indices that are widely used in target
detection tasks are precision–recall (P-R) curve and average
accuracy (AP). The precision is expressed as (9), and the recall is
expressed as (10). AP is the average accuracy of all unique recall
levels, and only a single category is included in the calculation.
There are usually K classes in multicategory detection tasks,
so the AP average mAP of K classes is introduced as the
evaluation index of multicategory target detection. The precision
is expressed as (11)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

mAP =

∑K
i=1 APi

K
(11)

where TP represents the number of true positives, FP represents
the number of false positives, and FN represents the number
of false negatives.

The intersection ratio (IOU) calculates the ratio of the inter-
section and union between the predicted bounding box (Boxp)
and the real bounding box (Boxgt). Different IOU thresholds
have a great impact on the mAP result. Normally, the default
threshold is ThresholdIOU = 0.5, which is mAP@50, so as to
improve the positioning accuracy of the detector, MS-COCO

adopted [0.50:0.05:0.95] ten mAP values with different IOU
thresholds to evaluate the performance of the detector, i.e.,
mAP@50:95. The IOU calculation formula is given as follows:

IoU =
area (Boxp ∩ Boxgt)
area (Boxp ∪ Boxgt)

. (12)

In addition, F1 is a common index used to measure the accu-
racy of binary classification models, which can take into account
both accuracy rate and recall rate. In multiclass problems, the
generalization method Micro-F1 is often used as an evaluation
metric for multiclassifiers. First, calculate the average precision
and recall for each category, as shown in (13) and (14). Then,
the Micro-F1 is calculated by (15)

Recallm =

∑K
i=1 TPi

∑K
i=1 TPi +

∑K
i=1 FNi

(13)

Precisionm =

∑K
i=1 TPi

∑K
i=1 TPi +

∑K
i=1 FPi

(14)

micro − F1 = 2
Recall m × Precision m

Recall m + Precision m
. (15)

D. Comparison Experiments

1) Comparison Experiments on ShipRSImageNet: In this
part, we compare the proposed SVSDet with several pop-
ular YOLO series target detection methods on all lev-
els of the ShipRSImageNet dataset and verify the detec-
tion performance of SVSDet. Comparison methods include
YOLOv5, YOLOv6, YOLOv7, YOLOv8, and YOLOX, in
which YOLOv6, YOLOv8, and YOLOX are AF methods, and
YOLOv7 is AB method. YOLOv5 includes the original AB
method and the AF method implemented in the YOLOv8 frame-
work. The YOLO series of networks are typically categorized
into several versions, namely n, s, m, l, and X, which represent
different network sizes. In this study, with the exception of
YOLOv7, all other models were evaluated using the s-sized
network version. YOLOv7 does not have a version with size
s and uses Tiny version with a relatively close size to other
models. Tables II –V list the comparative experimental results.

In the three tasks of 0,2,3, our proposed method achieves the
best performance in each index. Specifically, for level 0 tasks,
SVSDet’s precision (P) is 81.2%, which is on par with YOLOv5-
AF but gets the best score compared with other models. The
recall (R), mean average precision (mAP) of SVSDet, and the
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TABLE II
COMPARES THE RESULTS OF EACH MODEL ON THE LEVEL0 TASK

TABLE III
COMPARES THE RESULTS OF EACH MODEL ON THE LEVEL1 TASK

TABLE IV
COMPARES THE RESULTS OF EACH MODEL ON THE LEVEL2 TASK

TABLE V
COMPARES THE RESULTS OF EACH MODEL ON THE LEVEL3 TASK

mean average precision at different thresholds mAP@.50:95 are
significantly improved. Compared with the baseline network
YOLOv5-AF, R increased by 1.9%, mAP increased by 2.4%,
and mAP@.50:95 increased by 2.1%. SVSDet can detect more
targets without the loss of detection precision and has the best
detection capability under different IOU thresholds. In the task
of fine-grained ship target recognition at level 2 and level 3,
each index of SVSDet outperforms other comparison models,
indicating that our method can obtain more fine-grained features
and accurately classify ship targets with more detailed features.

For level 1 tasks, compared with the baseline model YOLOv5-
AF, SVSDet has improved all performance indices, P by 1%,
R by 4.7%, mAP by 3.4%, and mAP@.50:95 by 3.2%. In
the comparison of other comparison models, all of them are
optimal except P. The precision of SVSDet is lower than that
of YOLOv8 and YOLOX models, which may be due to the fact
that the model obtains a large number of fine-grained features
and merges multiscales while bringing some feature redundancy,
resulting in certain interference noise. In addition, the increase
in feature diversity will increase the complexity of the model,
which increases the difficulty of the model to accurately learn
and judge the target. However, in the case of a combination
of multiple indicators, SVSDet is still a more balanced and
excellent method in all aspects.

Figs. 9 and 10 depict the performance of each model in
ShipRSImageNet. The results demonstrate that the proposed
method excels in detecting and accurately identifying targets
in complex backgrounds. Furthermore, it exhibits superior ro-
bustness compared with other methods in detecting and rec-
ognizing densely packed targets, and those with a large aspect
ratio. Misclassified targets are indicated by red triangles, while
missing detections are marked with green triangles. It can be
seen from the results that SVSDet has fewer missed targets
and misclassification cases when detecting the densely arranged
targets in the scene of Fig. 9, and only one repeated detection box
of misclassification appears in the eight targets. Among them,
the YOLOv5-AB method with poor performance only detected
three targets and made classification errors. When detecting the
target in the scenario in Fig. 10, SVSDet misses a target and a
correctly classified but repeated detection box. Other methods
have more cases of missing detection and wrong classification,
among which YOLOv7 and YOLOv8 two methods failed to
detect the targets. At the same time, SVSDet can surpass other
methods in the detection performance of various types of vessels,
although the difference in the target scale of different types
of vessels in these two scenarios is huge. This shows that our
improvements are effective in solving multiscale problems.

The above experimental visualization results demonstrate that
the proposed method performs well in the fine-grained ship clas-
sification task. In the multicategory fine-grained detection task,
each index is the average score of a single category and is the
comprehensive result of the evaluation index scores correspond-
ing to different categories. When the detection performance of
each category is improved, the comprehensive evaluation score
of the model is also improved. Tables II–V list the comprehen-
sive ability of each model to perform fine-grained classification
at different classification levels, indicating the superiority of the
classification recognition performance of our proposed model.
It can also be seen in Figs. 9 and 10.

2) Comparison Experiments on SAT-MTB: In this section,
we conduct detailed comparative experiments on the dataset
SAT-MTB. Li et al. [39] conducted a large number of experi-
ments on this dataset, including image-based object detection
methods and video object detection methods. Therefore, we
will use the optimal method based on image object detection
YOLOv3 and the optimal method based on video object de-
tection DFF provided by the author as the baseline results and
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Fig. 9. (a) Ground truth. (b) Result of YOLOv5-AB. (c) Results of YOLOv5-AF. (d) Results of YOLOv6. (e) Results of YOLOv7. (f) Results of YOLOv8. (g)
Results of YOLOX. (h) Results of SVSDet.

Fig. 10. (a) Ground truth. (b) Result of YOLOv5-AB. (c) Results of YOLOv5-AF. (d) Results of YOLOv6. (e) Results of YOLOv7. (f) Results of YOLOv8. (g)
Results of YOLOX. (h) Results of SVSDet.

make a comprehensive comparison with our proposed method
to verify its effectiveness. We compared mAP(%) with FPS,
and the results of each method are shown in Table VI. As
can be seen from the table, different models have different
learning abilities for different target features. Among them,
YOLOv3 demonstrates outstanding detection capabilities for
the “othership” category but exhibits subpar performance in
other categories. YOLOv7 demonstrates strong performance

in detecting two small target classes, namely speed boat and
yacht, indicating its proficiency in capturing features of diminu-
tive objects. Although our SVSDet method is not optimal in
a single class, it surpasses other methods in comprehensive
performance. SVSDet balances the extraction of small ob-
jects and the multiscale problem between different classes and
achieves good results in the detection of different scale objects.
Therefore, the proposed method is more balanced and robust in
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TABLE VI
COMPARES THE RESULTS OF EACH MODEL ON THE SAT-MTB

TABLE VII
COMPARISON OF THE RESULTS OF IMPROVED ABLATION EXPERIMENTS IN

EACH PART

fine-grained detection tasks. At the same time, compared with
the baseline method YOLOv5-AF, SVSDet’s ability to detect
different objects has been improved almost comprehensively.
Compared with the method DFF for video target detection, it
has obvious advantages in terms of detection ability and running
speed.

E. Ablation Experiment

In this part, we conduct detailed ablation experiments on the
dataset to verify the effectiveness of each part of the improve-
ment. In this part of the experiment, we successively introduced
SPD, improved the neck network, and added CA attention
module to carry out the experiment, and compared it with the
baseline network YOLOv5-AF. Specific experimental results are
shown in Table VII.

For convenience, we provide a detailed description of the
experimental results on the task at the highest level 3, which
also yielded similar results on other level tasks.

Based on the experimental results, after implementing the
SPD module, all metrics show improvement, with the most
significant improvement observed in the mAP and mAP@.95
metrics, with an increase of 1.7% and 2.1%, respectively. This
suggests that the implementation of the SPD module signifi-
cantly enhances the network’s feature extraction capability. Af-
ter improving the neck and integrating multiscale features, there
has been a decrease in the recall rate, which could be attributed
to the interference caused by the inclusion of different scale
features, resulting in the introduction of varying background
information details. After replacing the C3 module with C2f in
the neck network, the presence of abundant gradient flow infor-
mation provides further improvement to P and mAP@.50:95.
By incorporating the CA attention module into the cross-scale
connection path, the feature information from different scales

TABLE VIII
PERFORMANCE OF THE NETWORK AT ALL LEVELS OF TASKS AFTER USING

PRETRAINING WEIGHTS

can be more effectively integrated, allowing for more accurate
capture of the positional information of the target. This, in
turn, enhances both the localization accuracy and overall target
accuracy.

F. Pretraining

Pretraining is a commonly used method in the construction
and use of deep-learning models. By pretraining on large-scale
datasets with the same or similar features to capture common
features, you can effectively improve network performance. In
this part, we pretrain the proposed SVSDet network on the large
aerial remote sensing dataset DOTA and use the pretraining
results as the initial weights for training on the ShipRSImageNet
dataset. Compared with other natural image datasets, the images
in the DOTA dataset are sourced from various satellite remote
sensing platforms. The imaging angles and other characteristics
of the targets make it more suitable for remote sensing tasks,
such as ship detection and recognition. Compared to training the
network from scratch, the performance is significantly improved
after using pretrained weights. Performance at all levels of tasks
is shown in Table VIII.

G. Validation on Satellite Video

We apply the model trained on the level 1 task of the
ShipRSImageNet dataset with the proposed method to the video
data obtained by the JIL-1 video 03 satellite and compare the
application results of each model. In the application, micro-F1
is used as an evaluation index to evaluate the model, and the
micro-F1 results of each model in the video data are shown in
Table IX. The micro-F1 of SVSDet proposed by us in practical
application is 0.76, which is optimal compared with other mod-
els. Through pretraining of the model, the performance of the
model is further improved. Due to the lack of accurate AIS data
for the detailed classification of ships in the videos, we utilized
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Fig. 11. Video data annotation.

TABLE IX
COMPARISON OF MICRO-F1 RESULTS OF EACH MODEL ON VIDEO DATA

TABLE X
EFFECT OF EACH PART IMPROVEMENT ON THE MODEL SPEED

the classification criteria at level 1 from the ShipRSImageNet
dataset to visually interpret and annotate the ships in the videos.
The annotation results are depicted in Fig. 11, encompassing a
total of 16 ship targets, including ten military vessels and six
merchant ships.

The actual application results of each model are shown in
Fig. 12. In the video, there are 16 ship targets, including
10 military ships and 6 merchant ships. It is not difficult to
see from the experimental results that AF methods, such as
YOLOv5-AF, YOLOv6, YOLOv8, and YOLOX, have a higher
recall rate and can detect more targets because they are not
limited by preset prior boxes, but there will be more false
alarm targets. The AB methods of YOLOv5-AB and YOLOv7
are more likely to miss targets. Our proposed SVSDet method
can effectively improve these problems. The addition of the
SPD module effectively improves the model’s ability to extract

fine-grained features, which not only helps to detect small tar-
gets but also helps to improve the model’s classification and
recognition performance of targets with rich detailed features.
The improved neck network fused feature maps from different
levels of backbone to enhance the model’s learning of multiscale
information and improve the detection ability of multiscale
targets.

Fig. 12(g) shows the results of SVSDet’s lack of pretrain-
ing, when two merchant ships were not properly identified,
two were classified as Othership, and one was misidentified
as a warship. In port, one warship target was missed, and
one warship was repeatedly detected and incorrectly identified
as Othership. Fig. 12(h) shows the results of pretraining for
SVSDet, where nine of the ten military ships in port were
detected and correctly classified, and four of the six merchant
ships offshore were detected and correctly classified, but two
were misclassified as military ships. Although SVSDet still
has a small number of missed and misclassified cases in ship
fine-grained identification of video data, our proposed method
obviously has stronger generalization performance than other
models.

V. DISCUSSION

Obviously, the application prospect of fine observation of
Earth’s surface by high-resolution remote sensing image is
broad. High-resolution video satellite provides a high dynamic
and real-time observation method for Earth observation. By
integrating with prevailing deep-learning methods, it becomes
possible to acquire a richer set of deep features, thereby enhanc-
ing the feasibility of remote sensing technology. Most of the
remote sensing satellites are optical and SAR remote sensing
satellites, which acquire static images. So, the available satellite
video data are limited. The current popular image-based deep-
learning object detection method has proven its powerful object
detection capability and has considerable efficiency with the
support of GPU technology. Satellite video and static remote
sensing images are essentially remote sensing data of optical
imaging. It is meaningful to make full use of static remote
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Fig. 12. Application results of each model on the frequency data of Jilin-1 satellite video. (a) Result of YOLOv5-AB. (b) Results of YOLOv5-AF. (c) Result of
YOLOv6.

sensing images from a wider range of sources to build rich
ship sample datasets and deep-learning models for satellite
video.

In this article, we proposed a fine-grained ship target detec-
tion method based on YOLOv5 improvement by enhancing the
network of fine-grained and multiscale feature fusion feature
extraction ability to adapt to the small target and multiscale

problems in satellite video. Through extensive experimental
comparison, it is proved that our proposed method not only
improves the detection capability of small objects but also has
better multiscale target detection capability and is more robust
in fine-grained target detection tasks.

However, we also regret to find that our improvements in-
evitably have some impact on the speed of the model. To examine
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Fig. 12. (Continued..) Application results of each model on the frequency data of Jilin-1 satellite video.(d) YOLOv7 results. (e) Results of YOLOv8. (f) YOLOX
result.

the specific factors, we conducted tests on the speed variations
of the enhanced model across different components, and the
corresponding outcomes are presented in Table X. The table
clearly indicates that the incorporation of SPD modules in the
backbone leads to the most significant decrease in speed. In
order to better retain the detailed information in low-resolution
images and small objects, the SPD module splits a large number

of feature maps and increases the number of feature maps, which
has a great impact on the model speed. The SPD module is
utilized to enhance the preservation of detailed information in
low-resolution images and small objects by partitioning and
increasing the number of feature maps, resulting in a huge impact
on the speed of the model. The neck improvement of the network,
the fusion of multiscale features, and the use of C2f to obtain
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Fig. 12. (Continued..) Application results of each model on the frequency data of Jilin-1 satellite video. (g) Results of SVSDet without pretraining. (h) Results
of pretraining for SVSDet. The red circle is marked as the wrong classification, and the green circle is marked as missing detection.

more abundant gradient flow information also have a certain
impact on the model speed. The addition of CA increases the
computational complexity of the model to a certain extent, which
also results in the reduction of network speed.

The balance between speed and precision is the goal of target
detection. But we think accuracy is the more important factor.
The problems caused by model speed can be improved by
hardware upgrading or key-frame detection. Of course, it is still
worthwhile to explore how to improve the efficiency of the model
while enhancing its detection performance. Therefore, in future
research, we will focus on this aspect to make the model more
efficient and effective.

VI. CONCLUSION

In this article, an improved method SVSDet based on
YOLOv5 is proposed to detect and identify ship targets in video
satellite data. SVSDet incorporates SPD into the backbone net-
work of YOLOv5 to enhance small object detection capabilities.
It further improves the neck network architecture by introducing
cross-layer connections for the fusion of multiscale information,
addressing the challenge of detecting ships with varying sizes
in remote sensing images. The C3 module is replaced by the
C2f module to capture richer gradient flow information while

preserving finer grained features. A CA attention mechanism
is introduced in the cross-layer connections to improve the
model’s precision in locating targets during multiscale feature
extraction and fusion. The experimental results demonstrate
that our proposed method can achieve outstanding performance
not only in single-class detection of ship targets but also in
multiclass fine-grained recognition detection. On the satellite
video dataset SAT-MTB, our approach is more robust across all
categories of detection. The performance of all levels of tasks in
the dataset ShipRSImageNet exceeds the current mainstream
detection methods, and the application of video images also
shows better generalization, with the highest micro-F1 index
comparison of various models, reaching 0.76. The results of this
study will promote the further development of the application
of video satellites for ship detection and recognition. In future
research work, we will study how to further improve the detec-
tion and recognition ability of the model and the light weight
of the model so as to make it more lightweight and realize the
detection and recognition of ship targets more accurately and
efficiently while ensuring the detection ability of the model. In
addition, how to effectively use the rich context information of
satellite video to improve the stability of target recognition and
real-time target tracking is also worth studying.
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