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Abstract—High-resolution bioclimatic data are crucial to pro-
viding fine-scaled insights into biodiversity assessment, forestry,
and agricultural management. Existing global bioclimatic datasets
often exhibit kilometer-level coarse resolution or have miss the data
in recent decades, potentially resulting in the issues of lower spatial
accuracy, limited information, and restricted applicability in fine-
scaled studies. Hubei Province in Yangtze River Middle Reaches
has sparse meteorological stations in high-altitude mountainous
areas to map the high-resolution bioclimatic variables directly.
This study developed a 30-year averaged bioclimatic dataset for
Hubei Province during 1991-2020 at a 30-m spatial resolution,
utilizing monthly temperatures and precipitation derived from
a downscaling-calibration framework. The downscaling of 1-km
resolution climate variables was achieved by using a random forest
model with 30-m resolution terrain and spatial covariates. Then,
the geographical differential analysis was applied to improve the
accuracy of downscaled products by including additional ground
data. The mean absolute errors of calibrated monthly maximum,
mean, minimum temperatures, and precipitation based on ordi-
nary kriging decreased from 0.74 °C, 0.47 °C, 0.47 °C, and 28.27
mm to 0.43 °C, 0.28 °C, 0.36 °C, and 21.43 mm, respectively. Finally,
calibrated climate variables were employed to calculate 19 annual
bioclimatic variables, which were subsequently averaged over the
30-year period. The constructed bioclimatic dataset exhibits high
overall consistency with the WorldClim dataset according to pixel-
based comparison (Spearman correlation coefficients >0.6), with
differences mainly attributed to the superior local accuracy of our
dataset and climate changes. The dataset will provide fine-scaled,
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updated, and reliable data supports for local-related studies and
decision making.

Index Terms—Bioclimate, geographical differential analysis
(GDA), Hubei Province, machine learning (ML), statistical
downscaling.

I. INTRODUCTION

URRENTLY, there is a growing demand for digital spatial
C climate data on a monthly time step such as monthly mean
temperature and monthly total precipitation, as well as their
averages over a nominal 30-year period to support agricultural
decision making and ecological conservation [1]. Bioclimatic
variables, such as mean daily mean air temperatures of the
wettest quarter and precipitation amount of the warmest quarter,
are specifically designed from these monthly climate variables to
capture seasonal trends relevant to the physiological constraints
of various species [2], [3], making them more effective in these
tasks [4]. Bioclimatic data have been widely applied in species
distribution models [5] for invasive species management [6],
[7], [8] and assessment of biodiversity [9], [10]. In addition,
it provides insights into the impacts of climate on agriculture
[11], [12] and forestry [13], [14]. Modern soil digital mapping
tasks have also started incorporating bioclimatic data [15], [16],
[17], [18] that is more informative than only traditional climate
variables in revealing soil formation.

However, the bioclimatic variables used in the aforemen-
tioned studies were primarily sourced from the global datasets
such as WorldClim [19] and CHELSA [20], which have a
resolution of only 30 arc seconds (roughly 1-km spatial res-
olution). This limitation poses a challenge to local ecological
mapping tasks due to the growing importance of fine-gridded
climate data (< 1 km?) for indicating detailed environmental
variability, especially in regions with complex terrains [21], [22],
[23].

Recent studies have attempted to address this limitation by
developing the very fine regional bioclimatic dataset. The preva-
lent approach involves constructing regression models using
ground observation climate data along with topographic and
spatial covariates, followed by geostatistical methods to correct
the differences between predicted and observed values. For
instance, the regression kriging was used in constructing a 40-m
bioclimatic dataset for Sardinia Island in Mediterranean [23],
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and linear regression with thin plate spline (TPS) interpolation
was employed to construct a 30-m bioclimatic dataset for Hong
Kong [24]. However, applying this method poses challenges
in mountainous areas with sparse and low-elevation distributed
weather stations, where the lack of high-elevation data requires
the model to perform extrapolation for these areas, introducing
potential errors and uncertainties [25], [26]. In such cases, down-
scaling national climate images is a preferred approach, as it aids
in filling data gaps by incorporating broader-scale information.

Among the downscaling methods, statistical downscaling
has been proved effective to obtain higher resolution climate
data [27], [28], [29]. This method involves using regression
algorithms to generate high-resolution regional climate data by
establishing a statistical correlation between coarser global or
national climate products and high-resolution auxiliary data. The
30-m bioclimatic dataset for southern California constructed by
California Natural Resources Agency is based on this method
(https://data.cnra.ca.gov/dataset/downscaled-climate- grids-
at-30m-for-a- variety-of-bioclimatic- variables-over-the-san-
j-2001-2099). However, there is often a mismatch between
the estimated products and the ground measurements [30],
[31]. Errors in estimated climate products, caused by limited
availability of ground data or poor satellite performance, can
propagate to downscaled data. To address this issue, previous
studies included the calibration step by fusing the downscaled
products and observation data to minimize the difference [31],
[32], [33]. In light of this, the cascade procedure by integrating
the statistical downscaling and ground-based calibration may
allow the high-resolution products with higher accuracy, but
the extent of improvement depends on the availability of
observation data.

Hubei Province, situated in the core part of the Yangtze
River Middle Reaches, boasts abundant biological resources and
contains a global-level biodiversity hotspot and a key area for
China’s biodiversity [34], [35]. Although the province has estab-
lished 82 nature reserves for biodiversity preservation, habitat
loss due to climate change remains a concern [36], [37]. Due to
the absence of high-resolution bioclimatic data in this region,
several studies related to species distribution and agricultural
planning [36], [37], [38], [39], [40] were conducted by using
coarse global bioclimatic datasets like WorldClim, forcing the
other high-resolution environmental covariates to be aggregated
to this resolution and resulting in the coarse outputs. Moreover,
the employed bioclimatic datasets lack data from the latest
decades and using the outdated bioclimate data may lead to
inaccurate assessments.

Therefore, this study aims to construct a 30-m bioclimatic
dataset for Hubei Province, including 19 basic bioclimatic vari-
ables from the BIOCLIM package [41] (see Table I) for the
latest 1991-2020 climate normals. As Hubei Province faces the
challenge of extremely lacking high-elevation weather stations
in its mountainous regions, with virtually no available stations
in the altitude range of 1000-3000 m, this study utilizes a
downscaling-based procedure to provide more reliable climate
data for the calculation of bioclimatic variables. The new dataset
enhances the spatial resolution of bioclimatic data available
in Hubei Province to 30 m, fills the data gaps in the latest
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climate normal, and improves the data credibility. It will provide
fine-scaled, updated, and reliable data supports for the ecological
explorations as well as agricultural and forestry managements
in the core region of Yangtze River Middle Reaches.

II. STUDY SITE AND AVAILABLE DATA
A. Basic Climate Situation and Ground Data

Hubei Province (see Fig. 1) is located in the typical monsoon
area of subtropical zone. Except for alpine regions, most regions
have a subtropical monsoon humid climate. The average annual
temperature here is 15—17 °C. The average annual precipitation
in Hubei is between 800 and 1600 mm, showing a decreasing
trend from south to north. The precipitation distribution has
obvious seasonal changes; it generally achieves the most in
summer with rainfall between 300 and 700 mm, and the least in
winter with rainfall between 30 and 190 mm.

The ground observation data including monthly maximum
temperature, monthly mean temperature, monthly minimum
temperature, and monthly total precipitation from 1991 to
2020 were obtained from 82 meteorological stations in Hubei
Province. These stations include 5 datum stations, 27 base sta-
tions, and 50 ordinary stations. Considering that the construction
of the Climatic Research Unit (CRU) and WorldClim datasets
included parts of the data from datum and base stations, which
are responsible for providing data to international climate or-
ganizations [19], [42], the validation stations were all selected
from local ordinary stations. In this study, nearly 90% of stations
(74 stations in total, five stations lack data on a large number of
months) were used for the calibration and nearly 10% of stations
(eight stations) were used for the validation.

B. Climate Data

The 1-km monthly minimum temperature, monthly mini-
mum temperature, monthly minimum temperature, and monthly
precipitation images from 1991 to 2020 [43], [44], [45], [46]
(https://data.tpdc.ac.cn/) were obtained from the downscaled
CRU climate data for China mainland by the Delta method [42].
CRU climate data were generated with a spatial resolution of 30
arc seconds based on data from thousands of global weather sta-
tions and a function considering altitude, longitude, and latitude
[47]. In total, 1440 images (three temperature variables and one
precipitation variable in 360 months) were extracted and subset
by the extent boundary of Hubei Province.

C. Auxiliary Data

Terrain and spatial variables were usually used in climate
downscaling [28], [48], [49]. It has been observed that the
inclusion of detailed terrain variables such as slope and aspect
makes limited contribution to the accuracy of climate downscal-
ing if they were not considered in original dataset [22]. As the
1-km climate data only considered elevation and spatial position
[42], the topographical variable used in this study was only
the 30-m resolution elevation obtained from the Shuttle Radar
Topography Mission product that can be accessed from the
Google Earth Engine platform. The 30-m resolution elevation
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TABLE I
DESCRIPTIONS OF 19 BIOCLIMATIC VARIABLES

Symbol Description Formula
3 : 0O . Zl:%z Tmean
biol Mean annual air temperature (°C) biol = ‘T
i=12 T
bio2 Mean diurnal air temperature range (°C) bio2 = L1 (Tm"”é Tinin )
. . bio2
bio3 Isothermality (%) bio3 = %
io
bio4 Temperature seasonality (°C) bio4 = std({Tmean1> Tmeanz» -+ » Tmean12})
. Mean daily maximum air temperature of the —— ] ) )
bio5 warmest month (oc) bio5 = max ({Tmmlv Tmanl R Tmle})
. Mean daily minimum air temperature of the . .
bio6 coldest mg/nth (°C) P bio6 = min ({TminermmZ' ""Tminlz})
bio7 Annual range of air temperature (°C) bio7 = bio5 — bio6
bio8 = ZE‘+3 Tmeam’*
. Mean daily mean air temperatures of the loe = 3 ’
bio8 o 3 i 2
wettest quarter (°C)
e =max (S pen Y g el
i=1 iz i=12
bio9 = ;*+ Tineani*
bio9 Mean daily mean air temperatures of the driest v = 3 ’
quarter (°C) . 3 4 2
Qpre = min {z prei,z prei,...,z prei})
—i=1 di=2 i=12
biol0 Mean daily mean cfi.il‘ temperatures of the bio10 = max ( Yi=1 Tmeani ) Yi=2 Tmeani . Yi=12 Tmeani )
warmest quarter (°C) 3 3 3
bioll Mean daily meazl air temperatures of the bio11 = min ( Y1 Tncani 'ZLZ Tineani . Y12 Tmeani )
coldest quarter (°C) 3 3 3
12
biol2 Annual precipitation amount (mm) biol2 = Z pre;
i=1
biol3 zlr’ifll)pltatlon amount of the wettest month bio13 = max ({prey, prey, -, pre1,})
biol4 Precipitation amount of the driest month (mm) biol4 = min ({pre,, pre,, ..., pre,,})
std({pre {, pre,, ..., pre
biol5 Precipitation seasonality (%) biol5 = ({prey, pre; pre123) X 100
mear;({prel, pref, s Pregz}) )
biol6 Efﬁ:)pltanon amount of the wettest quarter biol6 = max ({z pre ; Z preg, ..., Z pre i})
. Precipitation amount of the driest quarter s i 2
biol7 (mm) biol7 = min ({Z'_lpre i ,Z'_zprei, ...,Z__lzpre i})
i -
biol8 = Z € ;*,
biol8 Precipitation amount of the warmest quarter i prei
(mm) Z?zl Tmeani Z?:Z Tmeani Zizzlz Tmeani
Qrmean = mMax ( 3 , 3 y s 3 )
i"+3
biol9 = Z e ;*,
biol9 Precipitation amount of the coldest quarter . P

(mm)

Qrmean = Min ({

13
3 4 2
Zi:l Tmeani Zi:z Tmeani Zi:lz Tmeani
3 ’ 3 3

b

Timeans Tmaxs Tmin and pre means the monthly mean, maximum, minimum temperature and monthly precipitation, respectively. i
means the month and i*means the first month of an annual quarter (Q) with 3-month interval.

map was resampled to 1 km for model training by using bilinear
interpolation, which can preserve the gradients and continuity
of pixel values in the image and avoid introducing artifacts.
The coordinates (longitude and latitude) at both 30-m and 1-km
resolutions were derived from elevation images at respective
resolutions.

III. METHODOLOGY

The cascade procedure comprises three main steps: Initially,
the 1-km climate variables encompassing monthly mean, max-
imum, minimum temperatures, as well as precipitation, under-
went statistical downscaling using a machine learning (ML)
model that utilized altitude, longitude, and latitude derived

from 30-m resolution digital elevation model (DEM) data.
Subsequently, the geographical differential analysis (GDA)
method was employed to calibrate the downscaled climate data
with ground measurements. Finally, the calibrated 30-m climate
data were aggregated to derive 19 annual bioclimatic variables
and the average values of the variables from 1991 to 2020 were
calculated. A visual representation of the workflow can be found
in Fig. 2.

A. ML-Based Downscaling

ML has been widely used in downscaling tasks of air tem-
perature [28], [50] and precipitation [51]. Given the extensive
modeling and predicting demands for this long time-series study,
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Fig. 1.

Fig. 2.
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Location of the meteorological stations used in this study in Hubei Province (with blue edge), the Yangtze River Middle Reaches (with blue areas). The
validation stations were randomly selected to validate the performance of interpolation-based calibration with observation data.
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Flowchart of the bioclimate dataset construction procedure.
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the choice of models should consider the balance between
accuracy and efficiency, with the benefits of shorter runtimes,
ease of operation, and fewer artifacts besides high accuracy.
Consequently, the random forest (RF) method was ultimately
chosen for this task, which can leverage parallel computing
and bootstrap sampling to attain high efficiency and satisfac-
tory accuracy, while also offering favorable transparency and
interpretability [52]. The 1-km elevation, longitude, and latitude
of extent Hubei Province were used as the predictors. In total,
1440 1-km climate images (four target variables in 360 months)
as the target variables with the predictors were combined to
construct 1440 RF regression models. Each image contains
930x508 pixels. Then, the well-trained models were used to
make prediction of the climate variables at 30-m resolution

n

1
- > (Boi + Bri X Elesom + B2i X Lonzom

=1

+03; x Latsom ) (D

/.\
CthOm =

where 6ir\n30m is the 30-m climate variables, n is the total
number of decision trees in the RF, and 3;s are the parameters
learned by the ith decision tree.

A residual correction was then performed to refine the accu-
racy of downscaled climate data by addressing biases to some
extent. First, the prediction of the climate variables at 1-km
resolution was performed by using the corresponding trained
RF models with 1-km elevation, longitude and latitude maps

/\predlct

Chmlkm = f (Elelkn“ Lonlk,m Latlkm). (2)

Then, 1440 residual maps at 1-km resolution were obtained
by the computation of difference between the 1-km original
variables and corresponding predicted variables, which indicates
the unpredictable part of the variables. The bivariate spline inter-
polation (in scipy.interpolate library, Python 3.9) was utilized to
interpolate the 1-km residuals to obtain the 30-m residuals. The
spline method is suitable for interpolation of regularly spaced
data [32], [53], as the regularity in the spacing of data points can
provide implicit constraints that contribute to the smoothness
of the interpolated surface. The process can be represented by
following equations:

_———origin _——predict

Resiim = Climyy,, — Climy,, 3)
Ressom = Spline (R/e\slkm) . 4)

Afterwards, the predicted 30-m target variables were cor-
rected by the addition of the corresponding 30-m residual values
as

——correct

C11m30m = C11m3()m —+ RCS&()m (5)

The downscaled 30-m climate variables were evaluated by
using the observation data from 82 ground meteorological
stations. Coefficient of determination (R”), root mean square
error (RMSE), mean absolute error (MAE), and bias were also
included for a more comprehensive evaluation.

In addition, the semivariograms of temperatures and precipi-
tation were generated in order to check if the downscaled maps
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preserved the similar spatial variability of the original maps. The
equation of semi-variogram [54] is

N(h)

X > (Z(x:) = Z(xign))?  (6)

=1

1

gl (h)=2N(h)

where y(h) is the semivariogram of lag distance h, N (h) is the
number of pairwise pixels, and Z(z;) is the value of the target
variable at location z;. The calculations were performed with
gstat package [55] in R.

B. GDA Calibration of Downscaled Data

The GDA calibration procedure was developed by Cheema
and Bastiaanssen [56] for fusing ground measurements and es-
timated products by interpolating the difference between them to
unmeasured areas, which reduces the impact of geostatistics and
has been proven to indicate good performance in many studies
[31], [32], [57]. The difference between the 30-m downscaled
climate variables and corresponding measurements for the 74
calibration meteorological stations was first calculated by using

AClim Clim?™ Chm(m ) 7

(zy) — (z,y)

where AClim(, . is the climate variable difference between
the 30-m downscaled data and meteorological station data at the
location with coordinate of (z,y), and Clim" and Clim(}*,

are the 30-m downscaled climate value and meteorologlcal
station measured value at the location. If a station measurement
is unavailable for a specific month, it will not be included in the
procedure for the month.

Then, the differences at calibration stations for a specific
month were used to generate the difference map. Following
interpolation methods used in prior researches [31], [56], [58]
that have reported desirable performance, we employed the
IDW and OK interpolation techniques separately to generate the
spatially interpolated difference map for all target variables and
subsequently conducted a comparison. The IDW interpolation
is the spatially weighted average sample values in the searching
neighborhood [59] that is robust in estimation and has no string
and screening effect [60]. IDW was applied with the exponent
power of 2. OK is based on Gaussian process governed by prior
covariances that can give the best linear unbiased prediction at
target locations [61]. Gaussian model was used as the variogram
model in this study. The AClim™? in the following equation is the
spatially interpolated difference map generated by interpolation:

IDW (AClim, )

8

AClim® = {

After the difference maps were prepared, the values of the

difference maps were subtracted from the 30-m downscaled
climate variable maps to get the calibrated maps by using

——correct

1 4
Chm;z)m = Climgy,, — AClim® )

_———cal . . .
where Climg,, is the calibrated climate variable map and
———CO

Climg,, is the 30-m downscaled climate variable map. The
benefit of GDA calibration is that it works on the differences
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of ground truth and image rather than the measured values,
which can reduce the impact of geostatistic methods on the final
calibrated products [56].

C. Calculation of Bioclimatic Variables

The better calibrated datasets in previous step will be used
for the calculation of bioclimatic variables. The 19 bioclimatic
variables were aggregated according to the definition of a series
studies [3], [62] and by using the provided formulas (see Table I).
Detailed description of the bioclimatic variables can be found
in [3]. The Python library chelsa_cmip6 developed by Karger
et al. [62] was used as the basis for constructing the bioclimatic
variable calculation program, but due to the huge image dataset
with 30-m spatial resolution, the original xarray.Dataset based
calculation in Bioclim.py file was modified by using array calcu-
lation on the dimension of time to achieve a higher computational
speed.

To obtain the annual quarter with a 3-month interval, in total
12 consecutive sets were constructed by using the previous and
following month with the focal month. The first and last sets
were by using December, January, February, and November,
December, January, respectively. Annual quarter calculation
was achieved by quarter_class class in chelsa_cmip6.Bioclim
Python library.

Finally, the grid bioclimatic variables were postprocessed by
the smoothing filter designed by Daly et al. [1] to reduce noise
and artifacts. The filter performs a distance-weighted average of
all surrounding grid cells within the filtering window and en-
sures a smoother bioclimatic field in low-gradient areas without
affecting the high-gradient areas, and the filter can be expressed
as

ZT-L_ IEZ% Amax; AT > Apax
=1 di
no 1 A
2z s Gmax ( Miax) S AL < A

where Z is the averaged value of center pixel, x; is the value at
pixel ¢, d; is the distance between the centre pixel and grid cell
1, a is the distance weighting exponent, @y, is the maximum
exponent, A is the mean absolute difference between the centre
pixel and all surrounding pixels within the filtering window, and
Az, is the specified maximum average difference.

To cross validate the constructed dataset and study the vari-
ation in different climate normals, the comparison with World-
Clim global bioclimate products [19] was also implemented.
The final calibrated bioclimatic dataset was further resampled
back to 1-km spatial resolution by using bilinear interpolation to
calculate the difference maps of two datasets [24]. Spearman cor-
relation coefficients, RMSE, and normalized RMSE (nRMSE)
were used for comparison evaluation.

7= (10)

y =

IV. RESULTS

A. Evaluation of the Downscaling Procedure

In total, 1440 RF models were constructed for downscaling
the four monthly climate variables in the 30-year period. The
downscaled products were validated by ground observation data
from 82 meteorological stations, and the 1-km climate variables
were also included as the reference. A better performance can be
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Fig. 3. Semi-variograms for original and downscaled monthly maximum,

mean, minimum temperatures, and precipitation (June 2020 as an example).

observed in Table II that three temperature variables downscaled
by our procedure show slightly higher R?s, as well as lower
RMSEs and MAEs. The downscaled monthly mean temper-
atures exhibit a higher bias compared to the original values,
leaning toward underestimation. The downscaled precipitation
shows a slightly higher RMSE, while a lower R?>, MAE, and
bias. But overall, according to the station-based validation,
variations of the accuracy caused by the downscaling procedure
are negligible. Semivariograms and spatial patterns were also
analyzed to ensure the downscaled images maintained the spatial
structure of original images. Figs. 3 and 4 were conducted by
using original 1-km variables and downscaled 30-m variables
in a specific month as an example. The results indicate that the
spatial structure of all downscaled variables closely aligns with
those of the original variables.

Fig. 5 illustrates the MAEs of downscaled temperatures and
precipitation at each meteorological station, providing insights
into the local performance of the products. In the current
stage, the temperature variables exhibit relatively larger errors
in western regions of Hubei Province, which is corroborated
by corresponding maps for R” and RMSE (see Figs. S1 and
S2 in the Supplementary Material), possibly due to the sparser
availability of observation data in high-elevation regions during
the development of original dataset. In terms of precipitation, the
southeastern region exhibits very high MAE values, primarily
attributed to the local high precipitation intensity [63]. For the
similar reason, the low precipitation intensity in the northwestern
arid areas results in a favorable MAE value but a low R? (see Fig.
S1 in the Supplementary Material). Furthermore, southwestern
region also exhibits relatively larger errors. This mirrors the
case of temperatures where insufficient ground precipitation data
during the construction of the original dataset may be the primary
factor responsible for this outcome.

B. Evaluation of GDA-Calibrated Variables

As the original gridded climate data were constructed with
limited observation data and the downscaling procedure has
a very limited impact on the data accuracy, the downscaled



4652 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

= =
Tmax (°C) o S
w350 3 S
z z
o o
(=) =
& &
oy o
o o
o =]
2 , 2

0 50100 200 300 (a 0 50100 200 300 (b
110°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E 110°0'0"E 112°00"E 114°00"E 116°0'0"E
£ z
=3 o
$ | Tmean (°C) =
s 35.0 3
o o
[= (=
2 2
z z
o o
5 o
. g
o ™~

0 50100 200 300 (c 0 50100 200 309 (d)
110°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E 110°0'0"E 112°00"E 114°00"E 116°0'0"E
= " <3
Tmin (°C) £ | Tmin (°C) A, X
.35' & | W22 4 &

s, s .
z z
o B o
2 . 2
8P A = 2
i el

. kagar T ,
£ Ao W f F ok ¢
PeeW . :
g % g
o > , L ]

0 50100 200 300 (e 0 50100 200 300 ®
110°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E 110°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E
Z z
=) o
S | Pre gmm) =
& .4 0 &
= o
(=) (=]
2 &
z Z
o =3
= (=1
g g
;) o

0 50100 200 309 (2 0 50100 200 309 (h
110°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E 110°b'0"E 112°0'0"E 114°0'0"E 116°b'0“E

Fig. 4. Comparison of 1-km original (left images) and downscaled 30-m (right images) (a) and (b) monthly maximum, (c) and (d) mean, (e) and (f) minimum
temperatures, and (g) and (h) monthly precipitation with data in June 2020 as an example.
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TABLE II
EVALUATION OF 1-KM CLIMATE VARIABLES AND DOWNSCALED 30-M CLIMATE VARIABLES BASED ON OBSERVATION DATA FROM 82 METEOROLOGICAL STATIONS
IN HUBEI PROVINCE

1-km climate variables

30-m downscaled corrected climate variables

Variables R2 RMSE MAE Bias R2 RMSE MAE Bias

Tunax (°C) 0.9844 1.06 0.78 0.35 0.9859 1.01 0.75 032

Tmean (°C) 0.9920 0.75 0.58 027 0.9923 0.73 0.57 -0.30

Tmin (°C) 0.9867 0.95 0.74 0.41 0.9873 0.93 0.72 0.39

Pre (mm) 0.7197 49.01 29.26 1.50 0.7195 49.02 29.25 1.49
0 50100 200

300
y Km

e <0.60 ® 090-120 @® 1.50-1.80 @ 2.10-2.40 e <0.60 ® 090-120 ® 1.50-1.80 @ 2.10-2.40
e 060090 ® 120150 @ 1.80-2.10 @ >2.40 °C) ® 06009 ® 120150 @ 180210 @ >2.40(°C)
(b)

¢ <0.60
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1.20-1.50 @
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1.50-1.80 @ 2.10-2.40
1.80-2.10 @ >2.40(°C)

Fig. 5.
stations in Hubei Province from 1991 to 2020.

products still have significant errors. Two geostatistical methods,
IDW and OK, were separately used as the interpolators for
the GDA calibration to correct the errors with additional local
observation data. Table III illustrates the evaluation metrics
of GDA-calibrated downscaled 30-m climate variables using
the observation data from eight validation stations. Significant
improvements have been achieved for all variables by using both
GDA calibration approaches. The IDW calibration allows the
R?s of temperature variables to increase and surpass 0.995, and
the calibrated precipitation also exhibits a notable increase of
R? 10 0.8819 (by 21.3%). While the OK-calibrated temperatures
demonstrate slightly higher performance than IDW, a contrast-
ing observation is noted in precipitation calibration, where the
performance is less favorable. Both calibration methods result

® 3437 @ 4043
3134 @ 37-40 @ >43 (mm)

(d)

28-31

MAE maps for the downscaled (a)—(c) monthly maximum, mean, and minimum temperatures, and (d) monthly precipitation at the 82 meteorological

in notable reductions in RMSEs and MAEs across monthly
maximum, mean, and minimum temperatures. Similarly, sub-
stantial improvements can be also observed in the calibration
of monthly precipitation, with consistent decreases in the two
metrics. Biases of monthly maximum, mean, and minimum
temperature are all improved significantly in both methods, but
get a bit worse for monthly precipitation. This arises from the
high positive bias of a single station (refer to Tables S2—S5 in
the Supplementary Material), which, in the original dataset, neu-
tralizes the negative biases of some other stations. Calibrations
result in a significant reduction of this bias, leading to an overall
increase in negative bias. And OK-calibration causes a lower
bias for temperature variables and a higher bias for precipitation
compared to IDW-calibration. Overall, according to the metrics,
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TABLE III

EVALUATION OF UNCALIBRATED DOWNSCALED CLIMATE VARIABLES AND GDA-

CALIBRATED CLIMATE VARIABLES BASED ON 2877 OBSERVATION DATA FROM 8§

VALIDATION METEOROLOGICAL STATIONS IN HUBEI PROVINCE

Uncalibrated 30-m downscaled IDW-

calibrated 30-m OK-calibrated 30-m

Variables climate variables downscaled climate variables downscaled climate variables
R? RMSE MAE Bias R? RMSE MAE Bias R? RMSE MAE Bias
Tmax °C)  0.9871 0.97 0.74 0.37 0.9956 0.57 043 0.12  0.9958 0.55 043 0.07
Tmean °C)  0.9947 0.61 047 -0.25 0.9980 0.38 0.29 0.10  0.9981 0.36 0.28 0.05
Tmin (°C) 0.9887 0.87 0.47 0.69 0.9967 0.47 0.36 0.12  0.9967 0.47 0.36 0.10
Pre (mm) 0.7270 4599 28.27 -0.40 0.8819 30.25 18.58 -1.75 0.8376 3548 2143 -1.82
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Fig. 6. (a)-(d) R2s, (e)-(h) RMSEs, and (i)—(1) MAEs of original 1-km climate variables and GDA-calibrated downscaled climate variables for each month based
on 2877 observation data from eight validation meteorological stations in Hubei Province for 1991-2020 climate normals.

OK performs better on the calibration of temperatures, while
IDW performs better on the calibration of precipitation.

Fig. 6 is provided to ensure the applicability of calibra-
tion methods across various months and to facilitate a perfor-
mance comparison. Both the IDW and OK calibration methods
lead to improvements in monthly temperatures and precipita-
tion for each month. R’s exhibit consistent increases across
the variables, while RMSEs and MAEs for these variables
show notable decreases. While the performance of OK cali-
bration does not consistently surpass that of IDW calibration

for temperature, the IDW calibration always outperforms for
precipitation.

Fig. 6 also illustrates that the large errors in maximum tem-
perature are concentrated in late spring and summer (April to
September), while errors in minimum temperature are concen-
trated in winter (December to February). This phenomenon may
be attributed to the inherent biases or limitations of interpolation
algorithms used during the development of the original dataset
that might not accurately represent the extreme temperatures
in these seasons. Notably, the data for these months have been
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Fig. 7.
difference with station observation data in June 2020.

significantly improved with both calibration methods. OK gen-
erally performed better on these months when calibrating the
temperature variables. In addition, large errors of precipitation
mainly occur in summer (May to August). The performances of
IDW and OK are very similar in the dry season, but IDW tended
to perform much better in wet season. Evaluation metrics for
data of eight validation stations can be found in Table S1 in the
Supplementary Material. And arandomly selected partial period
(2006-2010) is visualized in Figs. S3—S6 in the Supplementary
Material. In most cases, the calibrated values indicated higher
consistency with the observed values compared to the original
data.

To assess the spatial distribution of calibrated differences and
compare the final spatial patterns of climate variables calibrated
by two methods, we visualized the data of June 2020 as an
example and generated Fig. 7. The impacts of calibrations
on temperatures are generally insignificant, with most pixels
showing low absolute difference values, which can mainly be
attributed to the high consistency between the original image
pixel values and ground measurements at calibration stations. In
contrast, precipitation calibration exhibits more pronounced ef-
fects, particularly in the southwest region. Given that the original
precipitation data failed to capture the small-scale precipitation
extreme in this region due to the incorporation of limited weather
stations during its production, the differences are substantial.

According to the figure, the primary difference between the
two calibration methods is that the IDW interpolated difference
maps reveal a few higher absolute difference values, creating
distinct “high-value circles,” while the OK interpolated differ-
ence maps present a smoother variation without these “circles.”
Despite not being immune to the extreme values in precipitation
calibration, the OK interpolated difference map appears consid-
erably smoother comparing to the IDW interpolated differences.

IDW-based and OK-based calibrations of the downscaled monthly maximum, mean, minimum temperature, and monthly precipitation by subtracting the

C. Bioclimatic Dataset Construction

Both of the IDW-calibrated and OK-calibrated monthly cli-
mate variables were then aggregated into annual bioclimate
variables by using 48 climate variables (four variables in 12
months) for each year. The average values of 19 bioclimatic vari-
ables in 1991-2020 Climate Normals generated on the basis of
IDW-calibrated and OK-calibrated data are shown in Figs. 8 and
9, respectively. From the maps, the overall spatial distribution of
the bioclimatic variables does not indicate distinct difference be-
tween two calibration approaches. The main difference between
the two dataset is that the effect of extreme values caused by IDW
interpolation leads to obvious circles with deeper color even
though these are 30-year average value maps, especially in bio9,
biol3, and biol5, making the maps lose the spatial continuity.
In light of this, on the basis of the comprehensive consideration
of station-based validation accuracy and spatial pattern in this
study, the bioclimatic data calculated by using OK-calibrated
climate variables are more recommended to be further pro-
cessed, evaluated, and used, which can simultaneously indicate
the enough accuracy and reasonable spatial distribution.

D. Comparison With WorldClim Bioclimatic Dataset

To cross validate the generated bioclimatic dataset and in-
dicate the general variation happened between the two climate
normals, the bioclimatic variables for 1971-2000 climate nor-
mals were downloaded from WorldClim [19] dataset. The OK-
calibrated bioclimatic variables were finally processed through
Daly’s smoothing filter [1] to further reduce the influence of
noise and artifacts. They were then used in this comparison by
being resampled to 1-km resolution that is same to WorldClim
data, calculating the Spearman correlation coefficients, RMSE,
and nRMSE that are show in Table IV. According to Spearman
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Fig. 9. OK-calibrated 30-m resolution bioclimatic variables biol-bio19 in Hubei Province for 1991-2020 climate normals.

correlation coefficient and P-value, there are significant linear
correlations for all the variables between two datasets. Most vari-
ables indicate very high correlation coefficient (> 0.80), while
the seasonality trend of precipitation (biol5) was most poorly
correlated, which is followed by diurnal air temperature range
(bio2, 0.72). The nRMSE of precipitation (bio12-19) variables
shows an overall higher discrepancy than that of temperature
variables (biol-11).

The spatial distribution of differences between the two
datasets was calculated by using our dataset values to sub-
tract WorldClim values (see Fig. 10). First, the differences for

the annual mean temperature (bioO1) of two datasets mainly
distribute in the high-altitude mountainous areas, with differ-
ence values higher than 1 °C. The high differences of bio2-7,
biol0-11 can be observed in western mountainous areas, with
the peak value of 4.2 °C for the maximum temperature of the
warmest month (bio5). Mean temperature of wettest quarter
(bio8) indicates high difference in western high-altitude areas.
Abrupt changes can be found in southeast regions in bio8 and
bio9, leading to the peak value of 8.3 °C for the difference of
mean air temperatures of the driest quarter (bio9). Regarding
precipitation bioclimatic variables, the difference of annual
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TABLE IV
COMPARISON OF THE GENERATED AND WORLDCLIM BIOCLIMATIC VARIABLES
IN TERMS OF SPEARMAN’S CORRELATION COEFFICIENT, RMSE, AND NRMSE

Symbol ~ SPEAMAN  pyigE (RMSE  P-value
correlation
biol 0.99 0.49 0.03 <0.001
bio2 0.72 0.64 0.12 <0.001
bio3 0.80 1.77 0.12 <0.001
bio4 0.96 0.53 0.22 <0.001
bio5 0.94 1.57 0.10 <0.001
bio6 0.97 1.15 0.09 <0.001
bio7 0.91 0.65 0.08 <0.001
bio8 0.84 1.23 0.08 <0.001
bio9 0.91 3.17 0.16 <0.001
biol0 0.99 0.52 0.03 <0.001
bioll 0.98 0.52 0.04 <0.001
biol2 0.98 61.69 0.05 <0.001
biol3 0.83 62.66 0.28 <0.001
biol4 0.95 12.36 0.51 <0.001
biol5 0.62 15.71 0.79 <0.001
biol6 0.96 64.58 0.13 <0.001
biol7 0.99 8.17 0.05 <0.001
biol8 0.95 32.41 0.07 <0.001
biol9 1.00 17.60 0.08 <0.001

precipitation (biol2) shows an obvious gradient: WorldClim
data are higher in the northwest areas and lower in the southeast
areas, with the highest differences of 210 mm. Difference of
precipitation of wettest month (biol3) is totally positive, while
that of precipitation of driest month (bio14) is opposite, but they

bio9
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nearly follow the gradient of biol2. The difference of precipi-
tation seasonality (biol5) is much higher in central and eastern
flatten low-altitude areas. Differences of precipitation of wettest
quarter (bio16) and wettest and coldest quarter (bio18—-19) share
a similar spatial pattern, with higher values in southeast areas,
while the precipitation of the driest quarter (biol7) also shows
a higher difference in southeast, but it is negative.

V. DISCUSSION

A. Performance of the Bioclimate Dataset Construction
Framework

The framework used for bioclimatic dataset construction in
this study is based on the downscaling-calibration procedure
[32], of which the customized steps were achieved by using the
RF model with a residual correction and GDA, respectively. The
outstanding comprehensive performance makes RF suitable for
this task. It is noticed that the downscaling procedure hardly
affected the accuracy of its products, with only a very slight
accuracy improvement for temperature variables and decrease
for precipitation observed, similar to [64] but being different
from others [32], [33], [53]. This may first attribute to the quality
of original data [65], which has already considered the auxiliary
data used by us, allowing the high consistency of the spatial vari-
ability between original and downscaled data. In addition, for the
pixels of original data at or around the weather stations, when
corresponding fine pixels of auxiliary data exhibit low spatial
heterogeneity, downscaling may not cause substantial variations.
Thus, the downscaled products still contain certain errors against
ground observations due to the error propagation from coarse
resolution products [31]. As the coarse data were constructed
with limited ground measurements in the study sites [42], the
calibration by including data from additional local stations can
provide more information related to local climate pattern. Data
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tion of ground measurements and their differences with downscaled data.

from tens of local new stations were incorporated for the GDA
calibration, significantly improving accuracy according to the
enhanced evaluation metrics.

B. Comparison of IDW and OK Methods for the Calibration

This study considered IDW and OK calibration methods to
fuse the downscaled data and ground measurements. While over-
all evaluation metrics favor OK calibration for three temperature
variables (see Table III), a closer look at monthly assessments
(see Fig. 6) reveals nuances, aligning with previous findings
[66]. The seasonal difference of the comparison performance
can be linked to principles of the two methods. OK assumes spa-
tial continuity and correlation between neighboring locations,
making it suitable for direct temperature spatial interpolation
[67], [68]. When OK is used for calibration, the differences
between temperature image and ground measurements also
show spatial autocorrelation, although usually much weaker
(see Fig. 11). In this case, the superiority of the OK method
may vary across months as its performance highly relies on the
significance of variable’s spatial variability and the ability of
the variogram to capture it for a specific month. In contrast,
the IDW method disregards the spatial variability [69], [70] and
only focuses on distances between the interpolation points and
the surrounding data points, performing stable calibration across
months. Hence, this indicates that the higher accuracy method
may vary in different seasons. Differently, IDW outperforms
OK in precipitation calibration throughout all months, which
might be mainly attributed to the quality of source data. Given
the limited quality of sourced precipitation data, the differences
with ground measurements will exhibit extreme values in ar-
eas where the small-scale precipitations are not well captured.
IDW assumes that the near values are more related than distant
values [71] and the precipitation usually has obvious proximity
in its spatial distribution, thus the interpolation results can be
influenced strongly by these extreme values [72], allowing the

station-surrounded regions to be well calibrated. While the OK
interpolation focuses more on large-extent trend, leading to a
narrower range of values in the interpolated map compared to
the IDW-interpolated map. Thus, the surrounding pixels of the
stations with extreme values cannot be well calibrated.
Regarding the spatial pattern of calibrated maps, OK demon-
strates more favorable outcomes than IDW. As IDW handles
extreme values by giving higher weights to nearby data points,
it tends to pull the interpolated surface toward those extreme
values of the difference, resulting in enhanced local signals
and less smooth maps (see Fig. 7) [73]. Although the good
quality of sourced temperature images (see Table II) cause fewer
extreme values of differences with the ground measurements,
allowing IDW-calibrated temperature maps to be smoother than
precipitation map, these “circle” signals can still be observed
and are undesired in generation of bioclimatic maps (see Fig. 8).
Furthermore, IDW calibration fails to integrate the neighboring
stations well. This is evident in subfigure “IDW precipitation
difference” in Fig. 7 where the same deeper color circles around
meteorological stations become shallower in their intermediate
areas. These intermediate areas should ideally have deeper color
than the pixels around surrounding stations, reflecting the central
precipitation. This phenomenon can be attributed to the sparse
distribution of adjacent stations and the power of the distance
weight. Although reducing the power value can increase the
influence of more distant data points on the interpolation re-
sults that may lead to a better spatial connection [60], as this
study worked with the power of 2, there is not much room for
adjustment anymore to improve the calibration pattern.

C. Potential Reasons of the Differences Between WorldClim
and Our Bioclimatic Datasets

Differences of bioclimatic variables can be observed between
the new dataset and WorldClim dataset (see Table IV and
Fig. 10). As there is a temporal discrepancy between WorldClim
dataset (1970-2000) and our study (1991-2020), inherent errors
and climate change can both contribute to these differences.
Previous studies [22], [23], [24] have reported that the regional
bioclimatic data are critical for local applications, which are
restricted by the coarse resolution and lower accuracy of global
dataset. The WorldClim dataset was developed by regression
modeling and TPS interpolation, utilizing data from a part of
global weather stations [22]. However, the limited incorporation
of data from local weather stations within Hubei Province during
its development [74] may result in lower accuracy in some
specific areas, which underscores the greater importance of
improving the dataset accuracy through the addition of ground
data than focusing on refining the methodology.

The differences caused by climate change are noteworthy.
For example, the large differences in bio2-6 concentrate in the
western mountainous areas. The positive differences in bio2,
bio3, bio5, and bio6 typically suggests an increasing trend
of overall temperatures, with greater variations in temperature
between day and night. This can result in more uniform climate
throughout the year. This can also be proved by negative large
differences in bio4 and biol0 and positive difference in bioll
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and ground observation data, in Hubei Province in June 2020.

in western Hubei, which overall follows the statement that
mountainous environments experience more rapid temperature
changes than plain areas [75]. The differences in bio8 and bio9
between the two datasets are significant, as the eastern Hubei
is divided into three distinct different parts (see Fig. 10). This
may mainly attribute to the changes in precipitation patterns,
leading to different months for the wettest or driest seasons.
Difference of precipitation mainly concentrates in eastern areas
where more precipitation in the latest climate normal leads
to the large positive difference in biol2 and biol6, as well
as small negative difference in biol7. There is a positive dif-
ference in the biol3 and a negative difference in biol4 that
might be caused by the changes in rainfall seasonal distribution.
These changes can also be indicated in the biol5, biol8, and
bio19.

D. Limitations and Further Perspectives

This study aligns with previous research by using climate
variables from the same source [28], [76], but the quality of
precipitation is comparatively lower. The comparison of pre-
cipitation from our sourced data and ERAS5-Land dataset (see
Fig. 12) indicates that the ERAS-Land precipitation product has
a generally better performance. Especially, it captures more of
the small-scale rainfall extremes. Thus, further improvements
may involve the selection of better data sources for a specific
climate variable, and integration of multisource data to compre-
hensively improve the data quality.

In term of methodology, RF was chosen for the down-
scaling process to strike a balance between accuracy and ef-
ficiency. Using deep learning models such as convolutional
neural network could be a better way to preserve more in-
formation of original images as they can capture the latent
associations between climate variables and predictors [78], de-
spite the black-box models will make it difficult to explain
their inner workings. In addition, OK-calibrated outputs have
finally remained as they achieve acceptable evaluation metrics
and smoother maps, but the lower accuracy of precipitation
calibration should be improved in further studies. The possible
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Absolute error of monthly total precipitation (a) between sourced data in this study [42] and ground observation data, and (b) between ERAS-Land [77]

solutions include using alternative variogram models or inter-
polation methods. Designing specific calibration methods for
the different seasons could also be useful in achieving a more
accurate representation of the climate conditions during that
time.

Finally, this study only used DEM and coordinates as the
auxiliary data. And the absence of additional ground details
poses a limitation. For the fusion of estimated and observed data,
integrating more ground surface information into the ML models
that account for spatial autocorrelation and nonstationary [78]
could be a more accurate solution.

V. CONCLUSION

This study aims to construct a 30-m bioclimatic dataset for
Hubei Province during the latest 1991-2020 climate normals. To
achieve this, it demonstrates a bioclimatic mapping procedure on
the basis of statistical machine learning downscaling of coarse
national-scale climate maps and interpolation-based calibration
with observation data from local meteorological stations. It
was found the downscaling procedure can generate reason-
able downscaling products that can almost capture the spatial
pattern of original maps. From the evaluation metrics, GDA
calibration with the OK method achieved an overall slightly
higher accuracy on three temperature variables while that with
the IDW method indicated higher accuracy on precipitation.
But from the spatial evaluation, OK-based calibration allowed
the generated maps to be smoother and have more reasonable
spatial distribution. The constructed bioclimatic dataset shows
high consistency with global bioclimatic dataset according to
the pixel-based comparison, but is of higher local accuracy.
The latest high-resolution bioclimatic dataset is available to
support the new generation of studies on ecology, as well as
agricultural and forestry ordinations in Hubei Province. Stake-
holders, researchers, and policymakers can utilize the dataset
to gain a deeper understanding of Hubei’s climate patterns and
their implications on their concerned realms. The constructed
bioclimatic dataset for Hubei Province during 1991-2020 can
be accessed on https://doi.org/10.5281/zenodo.10057926.
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