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Abstract—Complex-valued convolutional neural networks (CV-
CNN) have recently gained recognition in feature representation
learning. It implements the repeated application of the operations
in convolution, local average pooling, and the absolute value of
the resulting vectors. However, it is only conducted in the complex
spatial domain, and lacks effective representation of directionality,
singularity, and regularity in the complex spectral domain for
anomaly detection of images. This is the key to feature learning
representation of high-order singularity. To solve this problem,
a complex-valued contourlet neural network (C2N2) is proposed
in this article. It is novel in this sense that, different from the
CV-CNN in the spatial domain, the spectral stream of C2N2 can
enhance the multiresolution sparse representation of nonsubsam-
pled contourlet (NSCT) with multiscales and multidirections for
images. Furthermore, the spectral feature integration module is
proposed to capture the statistical properties of the NSCT coef-
ficients. It is shown that the proposed network can improve the
distinguishability of feature learning and classification ability in
theoretical analysis and experiments on three benchmark datasets
(Flevoland, Xi’an, and Germany) compared with developed meth-
ods. Polarimetric synthetic aperture radar image classification is
widely used in the fields of agriculture, forestry, and military. It
must be emphasized that there is potential in effective feature
learning representation and the generalization capability of C2N2

in deep learning, recognition, and interpretation.

Index Terms—Classification, complex-valued contourlet neural
network (C2N2), nonsubsampled contourlet (NSCT) transform,
polarimetric synthetic aperture radar (PolSAR).
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I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs), one of the
representative methods in deep learning, are widely used

in the image processing field of classification [1], [2], [3], [4],
segmentation [5], [6], [7], [8], [9], and detection [10], [11],
[12], [13]. By optimizing spatial filters in the neural network,
models are provided with effective feature expression and good
performance on conventional natural images. Although CNNs
have been commonly studied in most fields, the CNN-based
research on remote sensing, such as the polarimetric synthetic
aperture radar (PolSAR) image interpretation, is relatively few.

As an active microwave imaging system, PolSAR can work
under all-time and all-weather conditions. Various polarization
combination modes make it enjoy a richer ability for land feature
acquisition [14]. PolSAR image classification, one of the most
fundamental issues in interpretation, is a pixel-level classifica-
tion task that predicts the class a given sample belongs to. It
is widely used in terrain classification [15], environment moni-
toring [16], and agriculture assessment [17]. The unsupervised
terrain and land-use classification algorithm is proposed [15]
using the PolSAR data, which combines the scattering model-
based decomposition and the maximum-likelihood classifier.
The pixel-level classification model MB-U2-ACNet [16] was
proposed by dual-PolSAR images integrated with environmental
information for dynamic intertidal zone land cover classification.
The detection of grass-cutting practices is achieved by analyzing
the parameters calculated from TerraSAR-X dual-polarimetric
HH/VV and RADARSAT-2 fully PolSAR data [17].

The following is a brief review of several common methods
for PolSAR image classification, which can be divided into the
following three types.

Models based on polarimetric scattering characteristics: The
paradigms of physics-based feature extraction and classifier
selection are generally applied [18], [19], [20], [21], [22]. The
polarimetric target decomposition is commonly considered for
feature extraction, such as Pauli decomposition [18], Freeman–
Durden decomposition [19], and the combination of different
features [23], [24], [25]. The polarimetric scattering coding way
[22] is designed for the feature representation of the polarimetric
scattering matrix. The obtained features are then sent to the
classifiers for classification, such as fuzzy cluster [26], Wishart
classifier [15], and support vector machine (SVM) [27].

Models based on the statistical property: The statistical anal-
ysis was reported by Goodman [28] according to a multivariate
Gaussian distribution in the complex-valued domain. Based on
the Wishart distribution, Lee et al. [29] introduced a maximum
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likelihood classifier for PolSAR imagery segmentation in line
with the terrain types. They also introduced the target decompo-
sition theory for unsupervised classification [30]. Specifically,
Cloude and Pottier’s method [31] was used to initially classify
the PolSAR image with the Wishart method [29]. In [32], three
sources of statistical information (context, dimensionality, and
model adequacy) were considered to compensate for a relatively
poor classification model.

Models based on polarimetric scattering characteristics: It
mainly covers deep belief networks (DBN) [33], multilayer
autoencoders [34], generative adversarial networks [35], fully
convolutional networks (FCN) [36], U-Net [37], and transformer
with contrastive learning [5], [38]. The SF-CNN [39] devel-
oped a dual-branch CNN for the PolSAR image classification
with sample expansion, which alleviates the problem of insuf-
ficient labeled training set. The PolMPCNN with a multipath
structure [40] is built for adaptive learning of the polarization
rotation angles, which are related to different types of land
covers.

However, real-valued neural networks only focus on the am-
plitude information of PolSAR images and ignore phase one.
In order to make full use of the phase information, complex-
valued contourlet network (C2N2) is proposed in this article.
The spectral stream of C2N2 can enhance the multiresolution
sparse representation of nonsubsampled contourlet (NSCT), and
the spectral feature integration module (SFIM) is proposed to
capture the statistical properties of the NSCT coefficients.

It is important to mention that the proposed method is consis-
tent with the biological characteristics of the brain: sparsity [41],
learnability [42], selectivity [43], directionality [44], knowledge
[45], and diversity [46]. Besides, the model also reflects physical
interpretability. The “data-driven multiscale windowed spectra”
is calculated by the complex-valued convolutional networks.
It characterizes certain stochastic processes (including patterns
and textures) common in the modeling of natural images [47].
We motivate the construction of such multiscale spectra via the
nonsubsampled directional filter bank (NSDFB) of contourlet,
which compacts the energy into a few coefficients with sparsity.

The following three aspects are mainly considered in this
article.

1) Weight Self-learning of Features in the Spectral Domain:
The multiresolution analysis (MRA) of NSCT is inte-
grated into the CV-CNNs, thus the weights of the spectral
features are learned adaptively in the forward propagation.
Prior knowledge is beneficial to the feature perception
ability of the network. Integrating spectral features into
the spatial domain can improve the capability of approxi-
mation and optimization in the model.

2) Enhancing Features Representation: Affected by speckle,
poor gray resolution but the rich texture information is
preserved in the PolSAR image. In this article, the SFIM
is proposed, which calculates the mean vector of a series
of contourlet coefficient maps and integrates the feature
vector into the network. In addition, the spectral features
and spatial features are combined to enhance the distin-
guishability of features. Thus, the impact of speckles on
the PolSAR image can be alleviated.

3) Light Weight Structure: Due to the overcomplete trans-
form and tight frame of NSCT with sparsity, C2N2

achieves shallow network structure with few trainable
parameters. In addition, the weights in the NSCT kernel
increase the interpretability of the network.

C2N2 integrates the MRA of NSCT to CNNs in the complex
domain. The main contributions of this article can be summa-
rized as follows.

1) A novel complex-valued contourlet network C2N2 is pro-
posed with a two-stream structure, which combines the
information both in the spectral domain and the spatial
domain, and improves the distinguishability of feature
learning and classification ability.

2) To enhance the feature learning representation of high-
order singularity in the spectral domain, the NSCT is inte-
grated into complex-valued CNNs to enhance the feature
perception ability of the network.

3) The SFIM is designed to capture the statistical properties
of the NSCT coefficients, which aims to enhance the dis-
tinguishability of feature learning and alleviate the impact
of speckle.

4) The comparative experiments with previously developed
methods on three PolSAR databases are conducted quanti-
tatively and qualitatively to verify the effectiveness of our
model. Furthermore, the ablation study provided a deeper
insight into the proposed method.

The rest of this article is organized as follows. Section II
presents a brief review of related work. The proposed C2N2

is described in Section III. Section IV provides empirical stud-
ies and discussions on three public PolSAR datasets. Finally,
Section V concludes this article.

II. RELATED WORK

The literature on PolSAR image classification with complex-
valued models and MRA-based models are referenced in our
work. For brevity, only the relevant works are discussed.

A. Complex-Valued Models

As reported by Hirose [48], the phase information of the
PolSAR image is beneficial for scatterer identification with
different types. Therefore, some works attempted to leverage
the phase information for PolSAR image classification, such
as complex-valued convolutional neural networks (CV-CNNs)
[49], where all mathematical operations (data, parameters, and
training algorithm) are designed under complex analysis theory.
L-CV-DeepLabv3+ [50] is proposed, which consists of CV-
Xception, CV-ASPP, and decoder in a lightweight complex-
valued network. The complex-valued PDAS [51] first applied
the neural architecture search on PolSAR image classification
and customized for the data of PolSAR, thus the performance
is improved. The triplet complex-valued network [52] classifies
PolSAR images by learning and comparing the complex-valued
distance, which is computed by the K nearest neighbor. The
CV-EPLS [53] extracts nonredundant sparse features of the
amplitude and phase information in different polarimetric chan-
nels, which is conducive to the subsequent classification. The
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CV-SDFCN [54] is a multiscale FCN network based on the
U-Net structure, which is defined in the complex-valued domain
with stacked dilated convolutions. Qin et al. [55] introduced
superpixel oriented into CV-CNN to reduce the computational
cost, thus the image details are preserved.

Nevertheless, the mathematical properties of CNNs still re-
main mysterious due to their accumulated nonlinearities, and the
relationship between the network performance and the optimal
configuration is not yet clear.

B. MRA-Based Models

With the recent studies on MRA, multiscale filter banks have
been integrated into CNNs to explore a wider interpretable
network [56], [57], [58], [59], [60]. By exploiting the spatial fea-
tures and the corresponding spectral features of contourlet, the
multiscale joint spatial–spectral feature maps are used for clas-
sification [56]. MSCCN uses the multiscale curvelet-scattering
module to extract deep features of different scales for remote
sensing scene classification [57]. In [58], 3D-DWT features and
MRF priors were simultaneously utilized to integrate contex-
tual information for accurate segmentation. Besides, the low-
frequency subband and contour subband (LC subbands) were
used to feature mining and selection with channel modeling,
which strengthens the LC-PSENet [59] with efficiency and
flexibility. DSTFN [60] employed the geometric ridgelet filters,
which developed from the least squares SVM for feature repre-
sentation, and then, the sparse features are cascaded to CNNs for
SAR image classification. However, the extracted multiscale fea-
tures are directly cascaded with the corresponding CNN features
[56] or scattering features [57], thus the spectral information is
not fully mined. In terms of the input in real-valued CNNs, the
elements’ intensities and combination of complex coherency
polarimetric matrix T are used in [58], and the imaginary part
and the real part in the T matrix are cascaded in [59], thus the
phase information of the PolSAR image is ignored.

III. COMPLEX-VALUED CONTOURLET NEURAL NETWORK

In the following, Section III-A shows the motivation of the
proposed method. Section III-B introduces the NSCT sparse rep-
resentation and explains the advantages of NSCT over contourlet
and wavelet. Section III-C presents the details of the components
in our model.

A. Motivation

PolSAR image classification is a pixel-level classification task
and usually the CNN-based classifiers are adopted. Given a
complex-valued signal x ∈ C

2 for the sample patch of complex
coherency polarimetric matrix T in PolSAR image. The complex
convolution operation in layer i can be described asWi ∗ x+ bi.
It can be seen that the Wi is covariant to translations. The
geometric transformations could alleviate this problem by data
augmentation and deep architecture. In addition, the pooling op-
eration is robust to a small translation by local average operation,
but CNNs still lack the capability of geometric transformation.

Moreover, although neural networks have the ability to ap-
proximate any deterministic nonlinear process with little knowl-
edge and no assumptions, sigmoid neural networks have several
drawbacks. Typically, the transfer function is of sigmoidal type
always accompanied by the local minimums of the loss function
in the training procedure. In addition, the values of the weights
will vary each time, although minimization of the loss function
can be replicated with random initialization [61].

In contrast to classical “sigmoid neural networks,” contourlet
has compact support as the basis and approximates the “contour-
like” components, which significantly outperforms the wavelet
and sigmoid function of CNNs by its higher degree of direc-
tional selectivity. Contourlet can represent edges effectively and
sparsely, which is the key to PolSAR image classification. The
introduction of contourlet into neural networks can enhance the
ability of geometric transformation, and avoid the local mini-
mums of the loss function in the early training stage. Through the
feature extraction by the multiscale and multidirectional filters
of contourlet, the initial values of the network parameters can
be constructed efficiently. Since it is approximate to the same
weight vector to minimize the loss function each time, efficient
initialization can reduce the number of iterations of the network
in the training phase.

Therefore, the C2N2 is proposed with the inspiration of
CV-CNNs [49]. Since the PolSAR image is represented by
the coherency matrix T with complex form. To make full use
of the phase information, C2N2 utilizes both amplitude and
phase information and integrates the MRA of NSCT in the
complex domain. NSCT can construct a shift-invariant image
decomposition with flexible multiscales and multidirections. It
uses an overcomplete transform through the nonseparable two-
channel nonsubsampled filter bank (NSFB) [62]. Unlike wavelet
basis with point singularities, the NSCT enjoys singularities
distributed along curves and curve surfaces in high-dimensional
space. Therefore, the combination of NSCT characteristics and
CNNs not only greatly improve the ability of feature repre-
sentation and geometric transformations, but also increase the
mathematical interpretability of the network.

B. Sparsity of NSCT

Research on the human visual system (HVS) shows that
the “optimal” image representation method should have the
properties of multiresolution, locality, and directionality [63].
Sparse representation of signals can be realized by MRA, such
as Fourier [64], wavelet [65], curvelet [66], and contourlet [67].
An effective transform characterizes a given signal f with few
sets of basis φi

f =

∞∑
i=1

αiφi (1)

for the M-largest |αi|, the approximation order of Fourier is
O(M−1/2) and wavelet is O(M−1). Since the contourlet is a
new extension of the curvelet, they have the same approximation
errors of O(M−2). The contourlet expansion is considered the
optimal approximation rate M−2 [64] for sparse representation
with few coefficients.
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Fig. 1. Overview of the C2N2. It is a two-stream architecture, one is the spatial feature learning branch, and the other is the spectral feature learning branch, where
all operations (convolution, activation function, pooling, and BP algorithm) are carried out in the complex domain C. SFIM is the statistical feature integration
module. P and C denote pooling and convolution operations, respectively. The format below feature maps denotes [channels number @ width × height] of the
corresponding feature maps.

Contourlet overcomes the defects of the wavelet with its
flexible directional filter bank. However, due to the existence
of the downsampling process, both wavelet and contourlet lack
shift invariance and result in pseudo-Gibbs phenomena.

Thanks to the NSCT [65], the distortion can be suppressed
to a certain extent with its overcomplete transform. Compared
with contourlet, NSCT has the advantages of shift-invariant, easy
implementation, and better frequency selectivity.

Most notably, the shift-invariant of NSCT makes the trans-
formed subbands consistent with the size of the original image,
and the corresponding pixel position is unchanged. Therefore,
NSCT is suitable for pixel-based classification with the geomet-
rical information pixel by pixel from the coefficient maps.

C. Complex-Valued Contourlet Neural Network

As an efficient image representation of the geometrical struc-
ture, the NSCT can efficiently describe images with a flexi-
ble multiscale, multidirectional, and shift-invariant basis in the
spectral domain. Compared with contourlet, NSCT has better
frequency selectivity and regularity. Therefore, we integrated
the NSCT into CV-CNNs named C2N2 [see Fig. 1], which can
utilize amplitude and phase information for complex imagery
and enhance feature representation in both spatial and spectral
domains. Thus, it is beneficial to the approximation ability and
further optimization of the network.

1) Complex-Valued Contourlet Feature Learning: The
essence of NSCT is that the signal is convoluted iteratively
with the filter banks of the nonsubsampled pyramid (NSP) and
NSDFB. For input X, the corresponding NSCT coefficients

C(x, y) = {Xl,i, Xh,i}0≤i≤I , where I is the decomposition
level. The Xl,i and Xh,i are the low-pass component and
high-pass component in level i, respectively, and Xl,0 = X .
The decomposition of NSCT in level i is defined as

Xl,i+1, Xh,i+1 = (Xl,i ∗ FNSP)

Xh_bds,i+1 = (Xh,i+1 ∗ FNSDFB) (2)

where FNSP denotes the NSP and FNSDFB is the NSDFB. The
subscript h_bds represents the bandpass directional subbands in
the spectral domain, which is exactly ignored by CV-CNNs [see
(7)]. Thus, the spectral branch is integrated into CV-CNNs, as
shown in Fig. 1, and the spectral features flow generated by the
NSCT is highlighted with a red arrow.

Fig. 2(a) shows the NSCT transform with two shift-invariant
filters of NSP and NSDFB, the multiscale is ensured by an NSP
structure of NSP, and the directionality is given by an NSDFB
structure of NSDFB. As shown in Fig. 2(b), the combination
of these two filters splits the 2-D frequency plane into the
subbands. In terms of space decomposition of features, given
an input image in V0, the NSP is first applied to generate a
low-pass subband in V1 and high-pass subbands in W1, then
the NSDFB is employed to decompose the high-pass subbands
into 2i directional subspaces. The relationship between these
subspaces satisfies

Vj = Vj+1 ⊕Wj+1 s.t. Vj ⊃ Vj+1 (3)

then the multiscale and multidirection features are obtained with
space decomposition.

The details of NSP and NSDFB are as follows.
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Fig. 2. NSCT transform. (a) NSCT achieved by the NSFB structure. (b) Idealized frequency partitioning obtained with the structure of (a).

NSP: The NSP is an improved version of the Laplace pyramid,
where the low-pass subband is not downsampled, but upsampled
for the filter accordingly. Therefore, there is no need to design
additional filters, and the same size features as the original image
can be obtained. Similar to the 1-D nonsubsampled wavelet
transform (NSWT), NSP can be achieved by the à trous algo-
rithm efficiently [68]. In terms of redundancy for one bandpass
image at each decomposition level J , NSWT has redundancy of
J + 3 and NSCT only has J + 1.

The ideal passband support of the low-pass filter is
[−π/2j , π/2j ]2 at jth level. Similarly, the support region of the
high-pass filter is [−π/2j−1, π/2j−1]2 \ [−π/2j , π/2j ]2, which
is the complement of the low pass.

NSDFB: An oriented 2-D filter bank [69] is introduced with
the l-level binary tree in the 2-D frequency domain, thus the
2l wedge-shaped subbands are obtained. To increase the shift-
invariant of the transformation, NSDFB is introduced by elimi-
nating the downsampled and upsampled operations in DFB. The
number of directions is flexible on different scales of NSDFB.
As shown in Fig. 2, the number of directions are 23 = 8 and
24 = 16 from coarse to fine scales, respectively.

The relationship between the low-pass decomposition filter
H0(z) and the high-pass decomposition filter H1(z) satisfies:
H0(z) +H1(z) = 1. Essentially, convolution is the basic unit
of the filtering process in NSP and NSDFB.

Theorem 1: Given a discrete signalx[n] ∈ C
2 and the discrete

filter h[n] ∈ R
2 of NSCT, the convolution operation is distribu-

tive on the addition term. Specifically, the result is the sum of the
convolutions corresponding to the real part and the imaginary
part, respectively. Therefore, the processing unit of the filterh[n]
in NSCT can be expressed as

x[n] ∗ h[n] = �(x[n]) ∗ h[n] + j	(x[n]) ∗ h[n]. (4)

Proof:

x[n] ∗ h[n] =
∑
k

x[k] ∗ h[n− k]

=
∑
k

(�(x[k]) + j	(x[k])) ∗ h[n− k]

=
∑
k

�(x[k]) ∗ h[n− k]

+ j
∑
k

	(x[k]) ∗ h[n− k]

= �(x[n]) ∗ h[n] + j	(x[n]) ∗ h[n]. (5)

Besides, Cunha et al. [62] proved that NSCT is a frame
operator. If the NSP constitutes a frame with frame bounds Ap

and Bp, and the NSDFB is Aq and Bq. Therefore, the NSCT
with bounds A and B satisfies

AJ
pA

min{lj}
q ≤ A ≤ B ≤ BJ

pB
max{lj}
q (6)

whenAp = Bp = Aq = Bq = 1, the NSCT is a tight frame with
bound 1 (A = B = 1).

2) Complex-Valued Spatial Feature Learning: As shown in
Fig. 1, the C2N2 is a two-stream architecture trained in an end-to-
end supervised way, one is the spatial feature learning branch,
and the other is the spectral domain feature learning branch.
It consists of the input layer, the NSCT transform layer, the
convolutional and pooling layers, the fully connected (FC) layer,
and the classified output layer. Significantly, the operations of
all layers are carried out in the complex domain C. In terms of
the complex convolution operation, any one of the output feature
maps in layer i can be described as

xi = ρ(Wixi−1 + bi)

= ρ
∑
k

wi,ki
(n) ∗ xi−1(n) + bi

= ρ

[∑
k

�(wi,ki
(n)) + j	(wi,ki

(n))

]

∗ [�(xi−1(n)) + j	(xi−1(n))] + bi
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= ρ

[∑
k

�(wi,ki
(n))�(xi−1(n)−	(wi,ki

(n))	(xi−1(n))

]

+jρ

[∑
k

	(wi,ki
(n))�(xi−1(n)+�(wi,ki

(n))	(xi−1(n))

]
+bi

(7)

where i (0 < i ≤ I) is the total number of layers in the network,
andWi and bi are the weights and bias respectively. ρ denotes the
activation function with nonlinearity transforms. ki represents a
channel index in layer i. xi−1(n) is the unit of the nth input fea-
ture map of layer i-1. The symbol ∗ is the convolution operator.
�(·) and	(·) are the real and imaginary parts of complex-valued
x = a+ jb, then a = �(x), b = 	(x).

A complex average pooling operation in the specific layer xi

is calculated by

xi = AVE(xi−1(m× s+ u, n× s+ v))u,v=0,1,...,p−1∈Z
(8)

where (m,n) is the location of the input feature map, p is the
pooling size, and s denotes the pooling stride. AVE is defined as
the average pooling.

The filtering operation of the NSCT transform layer is given
in (4). The details of the FC layer and classified output layer are
described as follows.

The FC layer is considered a special convolution, including
two situations. 1) The connection between the feature map
and the FC layer: Given the feature maps of size w*h*c
(width*height*channel number), and connected to n neurons in
the FC layer. This process is equivalent to the n kernels of size
w*h*c convolved with the feature maps of size w*h*c. 2) The
connection between the FC layer and the FC layer: Suppose the
number of neurons in the previous layer and the current layer is
m and n, respectively. This process can be seen as the m kernels
of size 1*1*n convolved with the feature maps of size 1*1*n.
Therefore, the FC operation can be expressed as

xi = ρ(Wixi−1 + bi)

= ρ
∑
k

�(wi,ki
(n) · xi−1(n) + bi)

+ j	(wi,ki
(n) · xi−1(n) + bi) (9)

where i (0 < i ≤ I) is the network depth, and ki represents a
channel index in layer i.

Different from the Softmax adopted in the output layer of the
real-valued CNNs, the least-squares loss function is applied in
CV-CNNs, since the output is not a probability when Softmax
is used for the complex-valued input. The loss can be written as

L =
1

2

1

M

M∑
m=1

C∑
c=1

[ŷc(m)− yc(m)]2

=
1

2

1

M

M∑
m=1

C∑
c=1

[�(ŷc(m))−�(yc(m))]2

+ [	(ŷc(m))−	(yc(m))]2 (10)

Fig. 3. Statistical feature integration module.

where M and C are the numbers of samples and categories,
respectively. ŷc(m) and yc(m) are the labels and the prediction
in the complex domain, respectively. The label is a one-hot
vector, where the value of the correct position is 1+1*j, and
the others are 0.

The proposed model is trained by the SGD to minimize the
loss function, and then, the weights and biases are iteratively
updated in the complex backpropagation stage. Similar to the
backpropagation stage in the real-valued domain, the error prop-
agation is calculated according to the complex chain rule in the
complex-valued domain. For more details, refer to [49].

3) Statistical Feature Integration Module: As shown in
Fig. 3, given a patch of the PolSAR image T (x, y) = [T11, T12,
T13, T22, T23, T33] in the complex domain, the correspond-
ing contourlet coefficients C(x, y) = [C11, C12, C13, C22, C23,
C33] are obtained after the multiresolution sparse representation
T NSCT(·) of NSCT, and each element in C(x, y) consists of
one low-pass subband and eight high-pass subbands. Therefore,
there are 6*(1+8)= 54 subband coefficients. Calculate the mean
μn of each coefficient and form the statistical vector fsfim, which
can be expressed as

fsfim = (μ1, μ2, . . . , μ54)

μn =
1

WH

W∑
x=1

H∑
y=1

|Cn(x, y)| (11)

where W and H are the width and height of the Cn, respectively.

IV. VALIDATION AND GENERALIZATION

In this section, our model is evaluated on three PolSAR
datasets, including images of Flevoland, Germany, and Xi’an.
Section III-A and III-B provide the datasets description and
implementation details of the proposed method, respectively.
Section III-C introduces the evaluation metrics of overall accu-
racy (OA) and the kappa coefficient. Section III-D presents the
experimental results on different datasets. Finally, the detailed
ablation studies are conducted in Section III-E.

A. Datasets Description

Three benchmark PolSAR datasets are used in our experi-
ments, and 1% of labeled samples per class are randomly chosen
for training. Details of these datasets are described as follows.

The Flevoland : The PolSAR image of Flevoland is captured
by NASA/Jet Propulsion Laboratory AIRSAR platform in 1989
[70]. The azimuth resolution is 12.1 m and the slant angle
resolution is 6.6 m. Flevoland is an agricultural area in the



4484 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 4. PauliRGB image and ground truth of Flevoland. (a) PauliRGB image.
(b) Ground truth.

TABLE I
NUMBER AND RATIO OF SAMPLES OF FLEVOLAND

Fig. 5. PauliRGB image and ground truth of Germany. (a) PauliRGB image.
(b) Ground truth.

Netherlands, including stem beans, rapeseed, bare soil, forest,
buildings, and so on. Fig. 4 shows the Pauli RGB image and the
corresponding ground truth of Flevoland with a size of 1024 ×
750, and the details number and ratio of samples are given in
Table I.

The Germany : The L-band PolSAR image of Germany is
obtained by DLR’s experimental SAR in Oberpfaffenhofen. The
size of the image is 1300 × 1200 pixels with a resolution of 3
× 2.2. There are three land cover classes including wood land,
built-up areas, and open areas. Fig. 5 shows the Pauli RGB image
and the corresponding ground truth of Germany with a size of

TABLE II
NUMBER AND RATIO OF SAMPLES OF GERMANY

Fig. 6. Pauli RGB image and ground truth of Xi’an. (a) Pauli RGB image.
(b) Ground truth.

TABLE III
NUMBER AND RATIO OF SAMPLES OF XI’AN

1300 × 1200, and the details number and ratio of samples are
given in Table II.

The Xi’an : The C-band PolSAR image of Xi’an is pro-
duced by a RADARSAT-2 sensor, which covers western Xi’an,
Shaanxi, China. The size of the image is 512 × 512 pixels with a
resolution of 8 × 8. There are three land cover classes including
grass, city, and water. Fig. 6 shows the Pauli RGB image and the
corresponding ground truth of Xi’an. The details number and
ratio of samples are shown in Table III.

B. Implementation Strategy

The proposed C2N2 is implemented in MATLAB. It consists
of two branches, as shown in Fig. 1. Both the spatial and spectral
branches are composed of one convolution layer and one pooling
layer. Then, two branches are combined into one branch where
the feature maps are cascaded accordingly, followed by one
convolution layer and one FC layer. Complex-valued patches of
12 × 12 × 6 are used as input, and the output format is one-hot
encoding. Kernels of 3 × 3 and 2 × 2 are used in convolution
and pooling layers, respectively. More details of the network
structure are listed in Table IV.

The training procedure is described in Algorithm 1, where
C and M are the numbers of categories and samples, respec-
tively. f spa

d and f spe
d , f spa

c1 and f spe
c1 , and f spa

p and f spe
p are data

layers, convolution layers, and pooling layers of the spatial
branch and spectral branch in the complex domain, respectively.
fstack, fc2, and fc are the stacking layer, convolution layer, and
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TABLE IV
LAYERS OF C2N2

Algorithm 1: Training Procedure.

Input: Training dataset: X = {xm|m = 1, 2, . . . ,M}, the
patch xm ∈ C

6×12×12, and their corresponding labels
Gi = {gim|m = 1, 2, . . . ,M}, and i = 1, . . . , C.

Output: The learned C2N2.
1: Preparation: The model can be expressed as two

branches: [fspa
d , fspa

c1 , fspa
p ] and [fspe

d , fspe
c1 , fspe

p ], then
followed by [fstack, fc2, fc]. FNSP = ‘maxflat’,
FNSDFB =‘dmaxflat7’.

2: Begin
3: for n = 1 to M do
4: Using Eq. (2) to calculate spectral coefficients fspe

d of
the input xm.

5: Resize the fspe
d to the size of N2, where N =

max(height(fspe
d ),width(fspe

d )).
6: Using Eq. (11) to calculate statistical features fsfim of

NSCT coefficients in statistical feature integration
module, and then cascade fsfim to the fully connected
layer fc.

7: Stacking outputs of two branches as
fstack = fspa

p ⊕ fspe
p and fed fstack to fc2 and fc,

sequentially;
8: Minimize Eq. (10) and trained by the SGD until

convergence.
9: end for

10: End

full connection layer in the complex domain, respectively. The
decomposition level of the contourlet is 1, and the number of
directional subbands is 23 = 8.

C. Evaluation Metrics

In order to evaluate our model in a general view, accuracy is
applied as the basic metric for any classification task.

Accuracy is the proportion of correctly classified samples in
the total samples in the test dataset. The value of accuracy ranges
from 0 to 1. The higher the value, the better the classification,
and vice versa. It can be formulated as

Accuracy=

∑K
k=1 TP(k) + TN(k)∑K

k=1 TP(k) + TN(k) + FP(k) + FN(k)
(12)

where TP(k) and TN(k) are the numbers of true positive and
true negative, respectively, and the FN(k) and FP(k) is the

number of false negative and false positive associated with label
k, respectively.

The Kappa coefficient is a multivariate statistical metric,
which describes the unbalanced confusion matrix

Kappa =
N

∑K
k=1 xkk −∑K

k=1(xk:x:k)

N2 −∑K
k=1(xk:x:k)

(13)

where N denotes the total number of test samples, and xk: and
x:k are the sum of row k and column k of the confusion matrix,
respectively.

D. Results Comparison on Datasets

1) Result on the Flevoland Dataset: Table V and Fig. 7
provide the quantitative and qualitative results on the Flevoland
dataset. As can be seen obviously in Table V, the proposed
C2N2 integrated statistical feature (C2N2-sf) outperforms the
other seven comparison methods. The improvements of C2N2-sf
are 16.57% (SVM), 59.49% (SAE), 55.37% (DBN), 31.27%
(SF-CNN), 33.43% (C-CNN), 19.93% (complex contourlet-
CNN), and 29.4% (CV-CNN) in terms of OA, respectively,
and 0.1883 (SVM), 0.6390 (SAE), 0.6374 (DBN), 0.3357 (SF-
CNN), 0.3563 (C-CNN), 0.2095 (complex contourlet-CNN),
and 0.3165 (CV-CNN) in terms of the Kappa coefficient, re-
spectively. Specifically, our method not only achieves the high-
est classification accuracy in large categories, such as forest,
wheat, and potatoes, but also performs well in small cate-
gories, such as stem beans, bare soil, and barley. It verifies
the contribution of phase information of the complexity the-
ory and the edge information of MRA for classification. In
addition, C2N2-sf is further improved than the C2N2 that not
integrated statistical feature (C2N2-nsf) by 7.85% in terms
of OA, which demonstrates the effectiveness of the statistical
features.

As can be seen from Fig. 7(a)–(g), the methods involved in
the comparison cannot distinguish well between wheat, wheat2,
and wheat3. SAE misclassified most pixels into rapeseed and
beet. DBN mistook a large number of pixels for wheat3. In
addition, SVM, SF-CNN, C-CNN, complex contourlet-CNN,
and CV-CNN are not well classified in most land cover types.
This is may be due to insufficient training samples (1%),
which affect the classification performance of the compared
method. However, our model achieves good classification results
and local consistency. As the regions marked with numbers
1–5 in white ellipses or rectangles in Fig. 7, the number of
isolated pixels is reduced in our methods with better visual
continuity. There are two reasons for this encouraging result.
First, due to the C2N2 with the multiscale and multidirec-
tion representations, the abundant details of the land cover
can be captured and represented. Second, the separability be-
tween classes is increased with the help of the integration of
the statistical features, which is beneficial to the classification
task.

2) Result on the Xi’an Dataset: Table VI and Fig. 8 re-
ported the quantitative and qualitative results of the Xi’an
dataset. It can be observed [see Table VI] that the result
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TABLE V
CLASSIFICATION RESULTS (ACCURACY %) FOR NETWORKS ON THE FLEVOLAND DATASET

Fig. 7. Classification results of Flevoland with different methods. (a) SVM. (b) SAE. (c) DBN. (d) SF-CNN. (e) C-CNN. (f) Complex contourlet-CNN.
(g) CV-CNN. (h) C2N2-nsf. (i) C2N2-sf.

TABLE VI
CLASSIFICATION RESULTS (ACCURACY %) FOR NETWORKS ON THE XI’AN DATASET

of our model is superior to other methods on the evalua-
tion criteria of OA and Kappa coefficient. The improvements
of our C2N2-sf are 21.76% (SVM), 21.33% (SAE), 65.77%
(DBN), 12.74% (SF-CNN), 16.85% (C-CNN), 7.17% (com-
plex contourlet-CNN), and 7.92% (CV-CNN) in terms of
OA, respectively, and 0.4337 (SVM), 0.4061 (SAE), 0.8193

(DBN), 0.2107 (SF-CNN), 0.2504 (C-CNN), 0.0955 (complex
contourlet-CNN), and 0.1432 (CV-CNN) in terms of the Kappa
coefficient, respectively. Although the sampling rate of our
training set is only 1%, the effectiveness of our model has
been verified by the remarkable performance on the Xi’an
dataset.
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TABLE VII
CLASSIFICATION RESULTS (ACCURACY %) FOR NETWORKS ON THE GERMANY DATASET

Fig. 8. Classification results of Xi’an with different methods. (a) SVM.
(b) SAE. (c) DBN. (d) SF-CNN. (e) CV-CNN. (f) C-CNN. (g) Complex
contourlet-CNN. (h) C2N2-nsf. (i) C2N2-sf.

Fig. 8(a)–(i) shows the classification results on different
type of land cover. The performance of CV-CNN and complex
contourlet-CNN is acceptable, followed by SF-CNN, C-CNN,
SVM, and SAE, and DBN is the worst. Specifically, SVM and
SAE have a low recognition rate of water and wrongly classified
water as grass, which is shown as the white ellipses with the
number 2 in Fig. 8(a) and (b). DBN is not doing well in the
categories of the city and grass, which wrongly classified grass as
water and city as grass. Compared with other methods, our model
has a better classification result with clearer boundaries and
regional consistency, where the outstanding areas are marked
with white ellipses.

3) Result on the Germany Dataset: Table VII and Fig. 9
reported the quantitative and qualitative results of the Ger-
many dataset. As is given in Table VII, the proposed C2N2-sf
performs best among the compared models. The OA of the
C2N2-sf is 52.11%, 56.14%, 60.27%, 4.75%, 7.38%, 0.87%,
and 1.8% higher than SVM, SAE, DBN, SF-CNN, C-CNN,
complex contourlet-CNN, and CV-CNN, respectively. In terms
of the Kappa coefficient, C2N2-sf is 0.7744 (SVM), 0.8856
(SAE), 0.7821(DBN), 0.1047(SF-CNN), 0.1222 (C-CNN),

Fig. 9. Classification results of Germany with different methods. (a) SVM.
(b) SAE. (c) DBN. (d) SF-CNN. (e) CV-CNN. (f) C-CNN. (g) Complex
contourlet-CNN. (h) C2N2-nsf. (i) C2N2-sf.

0.0818 (complex contourlet-CNN), and 0.027 (CV-CNN) higher
than the compared methods. For the accuracy of each category,
C2N2-sf has certain advantages in the classification results of
built-up areas, which has increased by 6.67% on the basis of
CV-CNN. This remarkable improvement comes from the fact
that the high-frequency components of the contourlet have the
potential to describe edge and texture information, and the built-
up area has a snowflake-like texture with abundant details [see
Fig. 5(a)], thus the representation and classification capabilities
of our model are improved.

Fig. 9 presents the classification result of different methods
for the Germany dataset. By comparing Fig. 9(a)–(c), the num-
ber of isolated pixels is reduced in Fig. 9(d)–(i). Our model
performs better than the baseline CV-CNN in the wood land
and built-up areas, which are indicated by the blue rectangles in
Fig. 9. Although the classification result on wood land is slightly
inferior to that of SVM. Overall, the experimental results prove
the effectiveness of our method.

E. Ablation Study

To gain a deeper insight into the proposed method, the ablation
experiment is given in Table VIII, where the “CV-CNN” denotes
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TABLE VIII
ABLATION EXPERIMENTAL RESULTS (ACCURACY %)

Fig. 10. OA curves of our methods on the Flevoland dataset, the Germany dataset, and the Xi’an dataset, respectively.

TABLE IX
CLASSIFICATION RESULTS (ACCURACY %) OF C2N2-SF WITH DIFFERENT

NUMBERS OF NSDFB

the basic complex-valued convolutional network without the
branch of the spectral domain. “C2N2-sf” and “C2N2-nsf” are
the C2N2 with the SFIM and without SFIM, respectively.

The improvement in Table VIII and Fig. 10 shows the effec-
tiveness of the spectral branch of contourlet and SFIM on the
Flevoland dataset, the Germany dataset, and the Xi’an dataset.
Besides, columns 7–9 of Tables V–VII and subfigures (e)– (i)
of Figs. 7 to 9 present the effectiveness of each module of the
proposed method quantitatively and qualitatively.

As shown in Fig. 10, the result of “CV-CNN” is the weakest
since only the spatial features are employed in CNNs. After
adding the spectral branch and SFIM to the model, the proposed
method converges to higher precisions than the basic CV-CNN
after several iterations. The reason can be attributed to the inte-
gration of the contourlet and its statistical characteristics, which
is consistent with the HVS [73] with biological interpretation.
In addition, the geometrical and textural features of the PolSAR
image are more suitable for MRA. Therefore, the approximation
performance is enhanced by the contourlet with the efficient tight
frame, and good classification results are further achieved.

Furthermore, our model parameters are analyzed from two
aspects. On the one hand, the study on different direction
numbers of NSDFB is provided in Table IX. We can see that

TABLE X
CLASSIFICATION RESULTS (ACCURACY %) OF DIFFERENT RELATIVE WEIGHTS

ON THE XI’AN DATASET

direction number 8 of NSDFB shows the largest improvement
among other direction numbers and achieves the best perfor-
mance. Although direction number 16 has the most spectral
feature representation, we find that it achieves lower accuracy
compared with direction number 8. The reason may be that as the
feature dimension increases, the difficulty of classification also
increases. On the other hand, in order to explore the sensitivity of
relative weights on two feature learning branches, we roughly
divided them into five groups: [0, 1], [0.25, 0.75], [0.5, 0.5],
[0.75, 0.25], and [1, 0]. The results of our model under different
relative weights are provided in Table X. It can be seen that the
result of [1, 0] is the weakest since only the spatial features are
employed. After gradually increasing spectral information, the
result of [0.75, 0.25] and [0.25, 0.75] achieved higher classifica-
tion performance. The reason can be attributed to the integration
of the NSCT with the high-frequency feature representation.
However, the result of [0, 1] is slightly worse than that of [0.75,
0.25] and [0.25, 0.75], which indicates that the classification
results of feature representations in both domains are better than
those of a single domain. The best classification performance
is achieved when the weight is [0.5, 0.5]. Note that the weight
used in other experiments is [1, 1] in this article.
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Fig. 11. Variation of OA with sampling rate for different methods on the Xi’an
dataset.

TABLE XI
COMPARISON OF MODEL PARAMETERS AND FLOPS

In order to study the performance of compared methods on
different numbers of training samples, the experiments were
conducted with sampling rates ranging from 0.1% to 1% and
intervals of 0.1%. Fig. 11 shows the variation of OA with sam-
pling rate for different methods. It can be seen that our method
achieves the best results at low sampling rates (0.1%–1%), and
the OAs of our method are robust to changes in the sampling
rate. The results show that our method can obtain ideal and
stable classification results at a low sampling rate.

In Table XI, we report two different indices of the model
efficiency, i.e., the model parameters and the floating point
operations (FLOPs), and the Germany dataset is used to compute
FLOPs. The structure of C-CNN and complex contourlet-CNN
is slightly adjusted without affecting the core idea, so as to ensure
the input size is consistent with the proposed method. Compared
with CV-CNN, the parameters of the proposed model are slightly
larger due to the existence of the spectral feature learning branch.
In terms of the FLOPs, C2N2 and CV-CNN are comparable since
the filters of the contourlet are “fixed,” and no need for additional
learning. Thus, the spectral feature learning branch integrated
into the CV-CNN is reasonable with the tradeoff on accuracy.

V. CONCLUSION

In this article, the C2N2 was proposed with the multiresolution
sparse representation of the NSCT and the statistical feature in-
tegration module. The multiscale and multidirection contourlet

features provide effective representation of directionality, sin-
gularity, and regularity in the complex spectral domain, and the
corresponding weights and biases can be adaptively learned in an
end-to-end fashion. In addition, the statistical feature integration
module is designed to further capture the statistical properties
of the NSCT coefficients. Therefore, the amplitude and phase
information of the complex imagery can be fully utilized, and the
feature representation is enhanced in both spatial and spectral
domains.

The extensive experiments on three PolSAR datasets showed
the effectiveness of our model qualitatively and quantitatively,
and verified the doughty capacity of approximate and robust
with the combination of time–frequency localization and self-
studying by the neural network. Furthermore, the interpretability
of our model was increased with the NSCT kernel. Future
work will build a complete multiscale contourlet network to
explore the more effective feature representation and increase
the perception capability of the network.
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