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Abstract—In this article, a new self-supervised strategy for learn-
ing meaningful representations of complex optical satellite image
time series (SITS) is presented. The methodology proposed, named
Unet-BERT spAtio-temporal Representation eNcoder (U-BARN),
exploits irregularly sampled SITS. The designed architecture al-
lows learning rich and discriminative features from unlabeled data,
enhancing the synergy between the spatio-spectral and the tempo-
ral dimensions. To train on unlabeled data, a time-series recon-
struction pretext task inspired by the BERT strategy but adapted
to SITS is proposed. A Sentinel-2 large-scale unlabeled dataset
is used to pretrain U-BARN. During the pretraining, U-BARN
processes annual time series composed of a maximum of 100 dates.
To demonstrate its feature learning capability, representations of
SITS encoded by U-BARN are then fed into a shallow classifier
to generate semantic segmentation maps. Experimental results are
conducted on a labeled crop dataset (PASTIS) as well as a dense
land cover dataset (MultiSenGE). Two ways of exploiting U-BARN
pretraining are considered: either U-BARN weights are frozen or
fine-tuned. The obtained results demonstrate that representations
of SITS given by the frozen U-BARN are more efficient for land
cover and crop classification than those of a supervised-trained
linear layer. Then, we observe that fine-tuning boosts U-BARN
performances on MultiSenGE dataset. In addition, we observe
on PASTIS, in scenarios with scarce reference data that the fine-
tuning brings a significative performance gain compared to fully
supervised approaches. We also investigate the influence of the
percentage of elements masked during pretraining on the qual-
ity of the SITS representation. Eventually, semantic segmentation
performances show that the fully supervised U-BARN architecture
reaches better performances than the spatio-temporal baseline
(U-TAE) on both downstream tasks: crop and dense land cover
segmentation.

Index Terms—Representation learning, satellite image time
series (SITS), self-supervised learning (SSL), spatio-temporal
network, transformer, Unet.

I. INTRODUCTION

OVER the last decade, the satellite image time series (SITS)
acquired by the Sentinel-2 (S2) mission has produced

a large amount of multispectral land surface imagery with a
high 5-day revisit rate. The high spectral, spatial, and temporal
resolutions of SITS capture physical measurements of temporal
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and spatial variations of the surface, making them crucial data
for Earth monitoring [1], [2], [3]. Deep learning (DL) holds a
great potential for automatically extracting features from spatio-
temporal remote sensing data [4], [5]. Nonetheless, there are
still significant challenges that DL architectures face in dealing
with the particularities of SITS, which are nonstationary, mul-
tivariate, and irregularly sampled. Data gaps induced by cloud
contamination and data quality issues lead to a significant lack
of information between optical valid acquisitions. In addition,
undetected clouds can produce misleading results in land sur-
face analysis. Besides the challenges associated with complex
satellite data, DL methodologies in large-scale remote sensing
applications face a major bottleneck. The limited availability and
quality of the labeled data restrain the training of deep complex
models. Over the past few years, self-supervised learning (SSL)
has emerged as a potential solution to mitigate or even eliminate
the need for costly collection of labeled datasets [6]. This strat-
egy enables the pretraining of deep models on large unlabeled
datasets for later fine-tuning a shallow network on a downstream
task. Therefore, self-supervised pretraining methods can be a
solution for applications collecting small labeled datasets, where
deep models cannot be trained from scratch.

Recent reviews [6], [7] have highlighted the great opportu-
nities of SSL for remote sensing applications. Despite propos-
ing different taxonomies, these studies agree that most of the
proposed methods are based on discriminative models. In con-
trast, generative models, such as GAN [8] and variational au-
toencoders [9] that learn the latent distribution generating the
input data have been less studied. This can be explained by
the fact that latent variables capturing the distribution of ob-
served variables cannot guarantee generalization capabilities for
downstream tasks [10]. Among discriminative SSL studies, two
main categories have been identified: contrastive approaches and
methodologies using pretext tasks. Contrastive learning meth-
ods rely on data augmentation techniques that apply multiple
transformations to the data without affecting their semantics.
Although augmentation techniques have been defined for single
satellite images as [11], [12], the augmentation of multispectral
time series is not trivial. For this reason, existing contrastive
methods exploiting sentinel data mainly focus on optical and
radar data, treating each modality as a distinct augmentation of
the same object. For example, Liu et al. [13] processed pairs of
single S1 and S2 images, while Yuan et al. [14] handled pairs
of S1, S2 SITS. However, it should be noted that this latter
contrastive approach on SITS to pretrain deep architectures is
not unsupervised, as classification labels are utilized to generate
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positive and negative samples required for the contrastive loss.
Consequently, self-supervised training strategies based on pre-
text tasks are preferred on temporal data. This approach involves
defining a task that can be solved using the input data alone,
without the need for explicit labels. By generating a supervised
learning strategy through pretext tasks, meaningful features can
be extracted from the data. As an example, generative-based
pretext tasks attempt to learn the structure of the data by posing
a reconstruction task to recover the features and information of
the data itself. For instance, BERT [15] aims to recover masked
words, and masked autoencoders (MAE) [16] recovers masked
pixels of images. Despite generative-based pretext tasks being
one of the most promising strategies to exploit complex SITS,
only two recent works are proposed in the literature [17], [18].
This can be explained by the strong challenges associated with:
(i) the design of network architectures exploiting the complex
SITS, and (ii) the pretext-task definition, ensuring that the
learned representations are useful for downstream applications.

Considering all the above, this article presents a novel SSL
method for capturing meaningful representations of complex
optical SITS. The proposed methodology, named U-BARN,
proposes an SSL strategy to learn a Unet-BERT spAtio-temporal
Representation eNcoder. The first important contribution is the
design of a new DL architecture that captures the spatio-temporal
information contained in irregularly sampled multivariate SITS.
The spatial, spectral, and temporal dimensions of the data are
handled by the combination of Unet and transformer architec-
tures. Instead of using a traditional convolutional neural network
(CNN) as in the SITS-Former [18], a Unet architecture is pro-
posed to embed the spatio-spectral information by exploiting
different spatial resolutions. By preserving the spatial input data
dimensions, the Unet leads to highly efficient inference times.
Compared with the most recent supervised end-to-end architec-
ture [19], U-BARN proposes to apply temporal attention mech-
anisms at high spatial resolution, to capture more precise spatio-
temporal information. The second significant contribution of this
study is the self-supervised training of U-BARN, which allows
learning high-quality latent representations without requiring
annotated data. Based on BERT [15], a generative pretext-task
masking strategy is proposed. Our pretraining approach differs
from SOTA SSL strategy on SITS [18], on significative points.
First, the masking strategy is different, and the effect of the
masking rate is studied. Then, in opposition to [18], our pretrain-
ing dataset contains cloudy images. Therefore, U-BARN can be
applied on “real-world” downstream tasks where no cloud masks
are available. Eventually, our unlabeled and labeled datasets
have a great geographical variability, which demonstrate the
scalability of our approach. The general framework presented
in this work is summarized in Fig. 1. On the left, we show
the main blocks describing the backbone network of U-BARN,
which is described in Section III-A. On the right, the use of
pretrained U-BARN in the semantic segmentation downstream
task is illustrated. In a nutshell, the main contributions of this
article are as follows:

1) the construction of a novel spatio-temporal architecture
for SITS, named U-BARN;

2) the self-supervised training of U-BARN with a generative
pretext task;

Fig. 1. Left: description of the proposed SSL strategy using BERT. Right:
description of how representations are used for the downstream semantic seg-
mentation task.

3) the assessment of the self-supervised training strategy on
two different downstream tasks.

To evaluate the performance of the proposed U-BARN ar-
chitecture and the self-supervised training strategy, we conduct
several experiments using the semantic segmentation down-
stream tasks defined by the labeled PASTIS dataset [19] and
MultiSengGE [20]. First, the pretrained U-BARN segmenta-
tion performances are compared with two end-to-end trained
architectures (U-TAE and U-BARN). Then, the usefulness of
U-BARN is assessed by conducting several experiments on
real-world scenarios suffering from scarce reference data. In
addition, different experiments are carried out to study the
influence of the complexity of the pretraining task on the quality
of the spatio-temporal representations. Lastly, a study of the
U-BARN computational efficiency is conducted. The rest of this
article is organized as follows.

1) A presentation of current state-of-the-art spatio-temporal
architectures for SITS and existing SSL strategies are
presented in Section II.

2) A detailed description of our methodology is given in
Section III.

3) An explanation of the experimental setup is detailed in
Section IV.

4) The results obtained from the different experiments are
presented in Section V.

5) Finally, Section VI concludes this article.
For reproducibility, the large unlabeled S2 L2A dataset used

to pretrain U-BARN [21] as well as the code1 are available.

II. RELATED WORKS

This section reviews: (i) the existing DL spatio-temporal
architectures proposed to exploit SITS in a supervised way and
(ii) SSL methods using pretext-tasks for temporal data.

A. Deep Spatio-Temporal Architectures for SITS

Spectro-temporal patterns from multitemporal data provide
the most essential information to characterize land cover classes.

1[Online]. Available: https://src.koda.cnrs.fr/iris.dumeur/ssl_ubarn

https://src.koda.cnrs.fr/iris.dumeur/ssl_ubarn
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For this reason, the earlier DL architectures exploiting recent
SITS have not considered the spatial dimension of the data.
For instance, TempCNN [22], which applies convolution on the
temporal dimension, or recurrent neural networks (RNN) [23],
[24], [25], [26], [27], which retain past timestamps information
in memory, have been proposed. Although these architectures
can outperform traditional approaches, such as random for-
est [28], existing literature [29], [30], [31], has corroborated that
better results could be obtained by also considering the spatial
dimension. This is due to the fact that high-level spatio-temporal
features allow the detection and discrimination of closely
resembling spectral signatures. CNN exploiting the spatial do-
main of SITS have been typically combined with temporal
networks. For instance, the combination of CNN and RNN is
proposed in [31], where the ReCNN architecture is introduced.
The proposed network marries CNNs and RNNs as separate
layers and the CNN output is injected as the input to an RNN.
Other CNN and RNN combinations are proposed in [29] and
[30]. Both studies propose an architecture composed of two
parallel branches aiming to independently extract spatial and
temporal features. After the feature extraction step, the results of
both branches are concatenated and injected in a fully connected
(FC) network to predict the final class. In M3-fusion [29], the
architecture proposes the fusion of S2 pixel time series with
Spot 6/7 very high spatial resolution patch images centered
on the pixel of the time series. Features from temporal data
are extracted by applying an RNN architecture whereas spatial
features are learned by a CNN network applied on a high
spatial-resolution 25 × 25 patch image. Although two parallel
branches are also proposed in Duplo [30], this architecture
exploits temporal S2 patches with a spatial dimension of 5 × 5
on both branches. The temporal branch uses a shallow CNN to
reduce the spatial dimension to 1 before applying gated recurrent
units. The independent spatial branch processes the temporal S2
patches by a more complex CNN architecture. This last study
demonstrates that the combination of both network branches
outperforms either CNN or RNN trained individually. However,
the combined CNN-RNN architectures [29], [30], [31] suffer
from significant limitations when applied to SITS: (i) a narrow
spatial neighborhood is considered, with a square patch width
of only 50 meters (ii) inference is costly, since only the class
of the center pixel within the patch is predicted. Alternative
spatio-temporal architectures apply 3-D CNN to learn the local
temporal features along with the spatial ones [32], [33]. These
latter architectures process inputs with wider spatial dimen-
sions, and in particular [32] fully convolutional architecture
is efficient for segmentation map prediction. However, only
short-temporal dynamics of the time series are learned by such
architectures.

In addition, the use of the aforementioned temporal architec-
tures on SITS suffer from important weaknesses. First, Tem-
pCNN do not handle irregularly sampled time series, which
implies that all SITS are first resampled to a common gap-free
temporal grid. Second, with RNN and TempCNN long-term
temporal dependencies are not fully captured, whereas corre-
lation in temporal information between the beginning and the
end of the annual SITS can be important.

To overcome the limitation of TempCNN and RNN archi-
tectures, the work in [34] propose to apply the transformer
network [35] in the spectro-temporal domain to classify S2
time series. This architecture (see Section III-A2) is applied
on individual S2 pixel time series to extract spectro-temporal
features for crop classification. Thanks to its attention layers and
positional encoding, this architecture allows capturing relations
between all the elements of a sequence and process irregular
time series. The transformer architecture also demonstrates
cloud-robustness [34] compared to other architectures, such as
Duplo [30] and TempCNN [22]. The study in [34] shows that
the transformer is capable of identifying cloudy dates as outliers
with low attention score. Recently, several transformer-based
models are proposed for tackling SITS classification captur-
ing temporal [17], [36], [37], [38], and spatio-temporal fea-
tures [18], [19]. First, temporal approaches as [36], [37] propose
different solutions to reduce the high computational complexity
of the classical transformer network [35]. Both spectro-temporal
models simplify the architecture by reducing the number of
operations required to compute the attention score. The modi-
fied transformer, a temporal attention encoder (TAE), described
in [36], proposes to compute a unique master query to squeeze
each individual pixel time series into a single embedding in
the time dimension, which summarizes the global temporal
information. A simplified version of TAE [36] is proposed in the
lightweight temporal attention encoder (L-TAE) [37], where the
master query is set as a network parameter. This last architecture
outperforms TempCNN [22], [34], as well as architectures with
RNN, Conv-LSTM [39], and Conv-GRU [40]. As the altered at-
tention mechanism focuses on global attention, Zhang et al. [38]
proposed a two branch temporal network GL-TAE, where the
LTAE and the lightweight convolution networks (LConv), re-
spectively, compute global and local attention. TAE, LTAE,
and LConv mechanisms squeeze the temporal dimension of the
time series to 1, preventing the succession of multiple temporal
encoder layers. To leverage the spatio-temporal dimensions of
SITS, the SITS-Former [18] combines a three-dimensional CNN
with a traditional transformer. However, similarly to [29], [30],
[31], a narrow spatial-context (i.e., patch size of 5 × 5 pixels)
is considered and only the pixel at the center of the patch is
classified. Alternatively, the U-TAE network [19] combining the
L-TAE with a Unet network [41] has been recently proposed.
The use of a Unet offers some advantages with respect to
classical CNN architectures. By using contracting and expansive
paths with skip connections between them, Unet features enable
more accurate localization. Besides, larger receptive fields can
be obtained by increasing the Unet depth, which allows ex-
tracting more context-rich spatial relationships. The U-TAE net-
work [19] proposes to incorporate the L-TAE network within the
Unet bottleneck. Although this choice considerably reduces the
method’s computational complexity, it implies that the temporal
attention is only computed at the coarsest spatial resolution.
Consequently, the ability to model temporal patterns can be
reduced due to the encoder output resolution, which can lead to
less accurate results. Eventually, recently vision Transformers
(ViT) have also been proposed to process the spatial informa-
tion [42]. In remote sensing, the TSViT [43], a fully attentional
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architecture has been applied to SITS for crop classification.
The TSViT is composed of a temporal transformer followed by
a spatial transformer. Notably, to perform spatial attention, each
image of the SITS is divided into smaller patches. Thus, the
computational cost of the spatial attention mechanism increases
quadratically with the number of patches. Therefore, the spatial
context processed by the TSViT [43] is strongly limited by the
hardware capacity. Consequently, our proposed methodology,
U-BARN, combines a Unet with a transformer to capture rich
and wide spatial and temporal correlations. Importantly, unlike
the ViT, the Unet computational complexity is not quadratically
linked to the input size. Besides, in contrast to the U-TAE [19],
the temporal attention mechanism is computed at a full spatial
resolution. Therefore, our network produces embeddings, which
contain rich temporal information at the spatial resolution of the
original data, which is expected to benefit downstream tasks like
semantic segmentation. Eventually, the temporal information
is processed by a vanilla transformer network [35]. Indeed,
the altered temporal attention mechanisms suggested in recent
temporal model for SITS (TAE [36] and L-TAE [37]) collapse
the temporal dimension to 1. Processing SITS through these
networks prevent the use of SSL tasks aiming the reconstruction
of masked input data.

B. Using Self-Supervised Pretext Tasks for Temporal Data

Self-supervised pretraining for sequence data has become
hugely popular in natural language processing (NLP). Most of
existing techniques have used predictive or generative pretext
tasks to capture temporal patterns from the data itself. Pre-
dictive strategies have proposed temporal shift prediction [10]
or retrieving the order of a shuffled sequence [44]. In con-
trast, methods based on generative pretext tasks have learned
to regenerate the input time series [45] based on some lim-
ited view of the data. Note that generative pretext tasks differ
from generative models, which learn implicit distributions that
allow us to sample new data. The reconstruction of masked
tokens (e.g., embedded words or subwords) was shown to be
an effective generative pretext task in NLP. More precisely,
the BERT strategy proposed in [15] has become a de facto
standard strategy to train a language representation model. In
this strategy, a bidirectional transformer backbone encoder is
trained to reconstruct input data by using information from
tokens located both before and after the missing content. The
excellent performance of BERT has led to the proposal of two
similar generative pretext tasks in remote sensing [17], [18].
To the best of authors’ knowledge, SITS-BERT [17] was the
first self-supervised strategy exploiting SITS. This last study
proposed to learn spectro-temporal features from S2 by training
a transformer architecture. Specifically, a denoising pretext task
goal is presented by simulating abnormal reflectance values
caused by clouds, snow/ice, and shadows. The corruption is
obtained by adding positive or negative noise on a few dates.
Following the same strategy, SITS-Former [18] was proposed by
the same authors to learn more complex spatio-temporal features
from multitemporal data. Compared to [17], a more complex

pretext task was proposed by SITS-Former by masking input
patches with random values drawn from a normal distribution.
The fine-tuned SITS-Former model showed impressive results
for land cover classification tasks outperforming other models,
such as random forest, Duplo [30], SITS-BERT [17], and Conv-
RNN [25]. As mentioned in the previous section, being not fully
convolutional, SITS-Former can be highly inefficient to produce
classification or segmentation maps. Besides its architectural
limitations, the pretext task proposed by SITS-Former suffers
from other limitations. First, SITS-Former uses the original
masking rate proposed by BERT. Retrieving a masked word in
NLP requires a holistic understanding of the sentence. However,
in SITS, the continuity of spectral measurements usually allows
the reconstruction of the missing input by simple interpolation.
While some dates in SITS may be invalid due to the presence
of clouds, shadows, or saturation, the masking rate may need
to be adjusted to ensure that the pretext task is difficult enough.
Second, distribution shift can significantly impact fine-tuning
performance. In this context, distribution shift means that, at
inference time, the data are not masked, and therefore, the
distribution is different from the training data. To mitigate this
effect, the original BERT employed an 80-10-10 strategy among
the 15% of masking rate. Specifically, 80% of the masked words
were replaced by the [MASK] token, 10% were left unchanged,
and 10% were replaced by a random token value. However, as
satellite data cannot be represented in a finite and discrete em-
bedding space like natural language, the choice of mask values
should differ from NLP. While SITS-Former proposed masking
only with random values drawn from a normal distribution, we
suppose that this approach might not adequately address the
distribution shift issue. Third, while Rußwurm and Körner [34]
have demonstrated that transformer attention networks can han-
dle invalid acquisitions, SITS-Former is exclusively trained on
cloud-free SITS. Therefore, the self-supervised strategy em-
ployed by SITS-Former may not perform well on downstream
tasks that involve nonfiltered or imperfectly filtered cloud data.
Eventually, recently, the pretraining of ViT [42], as MAE, have
been applied to SITS through SAT-MAE [46]. In computer
vision, ViT traditionally split images into smaller patches, and
spatial attention is computed between the various embedded
patches. For SITS, the authors suggest splitting SITS along
the spatial and temporal dimension into 3-D cubes. Computing
spatio-temporal attention between all these embedded cubes
drastically increases the number of operations in the attention
mechanism. In addition as SITS contain static objects (no spatial
movement through time), computing spatio-temporal attention
might not be worth the high computational cost. This spatio-
temporal attention mechanism might prevent the processing
long SITS. Indeed, while SAT-MAE shows interesting results
on images, their temporal approach has solely been pretrained
on RGB SITS composed of three dates.

III. PROPOSED METHODOLOGY

This section presents the network architecture of the U-BARN
encoder and the proposed pretraining strategy.
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Fig. 2. Left: Overview of the patch embedding. A spatial-spectral encoder (SSE) embeds each patch into a (h,w, dmodel) feature map. A positional encoding is
added on the resulting feature maps. Right: Detailed description of the SSE architecture.

A. U-BARN Network Architecture

The U-BARN backbone network is mainly divided in two
main blocks: (i) the patch embedding layers providing a spatio-
spectral representation of each independent image patch of the
time series and (ii) the transformer block capturing the temporal
relations between the patch embeddings of the time series.
U-BARN generates spatio-temporal SITS representations, at
the same spatial and temporal resolutions than the input SITS.
Specifically, given a batch of input patch time series (b, t, c, h, w)
with b the batch, t the temporal, c the spectral, and h,w the
spatial dimensions, U-BARN generates a batch of patch time
series representations (b, t, dmodel, h, w) with dmodel the number
of features.

1) Patch Embedding: As shown in Fig. 2, this block embeds
each patch of the time series with its corresponding positional en-
coding. Considering a time series of T dates, the spatial-spectral
encoder (SSE) independently encodes each patch into feature
map. As a result, patches of dimension (c, h, w) are projected
in to feature vectors of size (dmodel, h, w). The proposed SSE
is based on a Unet architecture with four down-sampling and
up-sampling levels, as shown in Fig. 2. This Unet implementa-
tion enables to capture high-level spatial features with a wide
field of view. For each down-sampling and up-sampling level,
the spatial dimension of the feature map is, respectively, di-
vided and multiplied by 2. the Unet architecture is similar to
the U-TAE [19] although the temporal attention mechanism is
removed from Unet bottleneck. As no temporal dimension is
exploited in the SSE, input time series (b, t, c, h, w) are reshaped
to (b× t, c, h, w), before being processed by the Unet. We
expect that during training the SSE learns to generate, for each
pixel, features which contain spectral information as well as rich
and wide spatial context.

To incorporate temporal information (relative and absolute
ordering) of the original time series on the learned SSE feature
maps, the classical positional encoding [35] is added to each
encoded patch of size dmodel. As denoted by (1), the strategy
uses sine functions of varying frequencies for even embedding
indexes (“i”) and cosine functions for odd embedding indexes.
The term i refers to each of the dmodel features. As proposed
by [17], the acquisition day of year (DOY) of each image is

Fig. 3. Overall architecture of the spectro-temporal encoder. The transformer
processes pixel-level time series.

used to indicate the position of the patches in the time series. As
recommended in [36], a scaling constant of a 1000 is considered

PE(DOY, 2i) = sin

(
DOY

10002i/dmodel

)
(1a)

PE(DOY, 2i+ 1) = cos

(
DOY

10002i/dmodel

)
. (1b)

2) Transformer Block: This network architecture aims to
exploit temporal relations of the series of feature maps resulting
from the patch embedding layers (see Fig. 1). Under this goal,
each time series of features describing a single pixel is individu-
ally processed by the transformer architecture. Considering that,
the dimension of the batch of pixel-level time series fed in the
network is equal to (b× h× w, t, dmodel). The backbone net-
work is composed of multihead self-attention and feedforward
layers, as detailed in Fig. 3.

The multihead attention module decomposes the attention in
multiple heads running in parallel as illustrated in Fig. 4. Each
head is composed by an attention mechanism, which computes
similarity scores for all pairs of positions in a pixel-level time
series. These scores are computed by applying a scaled dot
product operation on the Q and K representations of an input
time seriesX , as described by (2). These representations denoted
by “query,” Q = WQX and “key” K = WKX ∈ Rt∗dmodel are
obtained by the learned projection matrices WQ and WK . As
denoted by (2) and illustrated in Fig. 4, the dot product result is
passed through a softmax operation. The resulting scores then
weight another representation of the input time series, called
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Fig. 4. Left: Description of the multiheadself-attention mechanism on a se-
quence of dimension (t, dmodel). Right: Scaled-dot product on time series.

“value” V = WV X . These weights give indication on which
acquisitions are important for the training task

Attention(Q,K, V ) = softmax

(
QKT

√
dmodel

)
V (2)

As demonstrated in [35], the computation of multihead
scaled-attention products leads to better performances and train-
ing stability. Accordingly, instead of computing one scaled-dot
product on a unique set of query Q, key K and value V , the
input X , scaled-dot product is computed in parallel on h set,
of query, key, and value, called “heads,” as depicted in Fig. 4.
The resulting h time series are then concatenated and fed into
feedforward layers that operate only on the feature (spectral)
dimensions.

Feedforward layers are composed of two linear layers inter-
spersed with an ReLu activation layer. Inside this feedforward
block the first FC layer projects the features into dhidden-
dimensional space, while the second FC layer projects the
feature maps into dmodel-dimensional space.

Theoretically, increasing the number of layers and the number
of heads improves the quality of the learned representation.
Therefore, the U-BARN transformer block is composed of 3-
layers (as [17]) with 4 heads each. The dimension of input and
output features of the network are respectively set to dmodel = 64
and dhidden = 128. The architectural hyperparameters are de-
tailed in Annex (see Appendix A).

B. Self-Supervised Strategy

Fig. 5 shows the overall framework of the proposed self-
supervised pretraining strategy inspired by the BERT [15]. As
observed, the proposed pretext task aims to reconstruct some in-
put patches that have been masked from the original time series.
During this pretraining, the input time series are annual time
series composed of a maximum of 100 dates. Specifically, the
masking step is randomly applied on SSE output representations
and a decoder multilayer perceptron (MLP) network is used for
the inpainting task.

1) Masking Strategy: Two parameters are required for the
masking process: the percentage of data to be masked and
the masking values used to substitute original embedding
representations. Given an input time series, Mrate corresponds
to the percentage of masked timestamps to be reconstructed. To

Fig. 5. Description of the proposed self-supervised strategy. A percentage
Mrate of the feature maps encoded by the SEE are masked. U-BARN is
trained to reconstruct the previously corrupted patch. The reconstruction loss
is computed on the valid pixels, given by the binary mask Mvalid associated to
the masked patch.

increase the diversity of training samples, the masked times-
tamps are drawn randomly for each time series and vary at each
training epoch. The masking values used to corrupt the data can
introduce outliers or unrealistic values that do not exist in down-
stream tasks. This phenomenon, known as distribution shift, is
mitigated in U-BARN masking strategy. To avoid disturbing the
data distribution during the masking step, the proposed strategy
consists in randomly permuting the spectro-spatial embedding
values among selected encoded patches within a batch. Per-
muting pixels instead of masking them with a constant value,
as 0, for instance, should have a lesser impact on the data
mean and standard deviation, thus reducing the distribution shift.
Specifically, an embedded pixel can be replaced by an embedded
value from another date, another pixel location within the batch
or another feature along the spectral dimension.

2) Decoder: The decoder, which is only used for pretraining
and discarded afterward, enables to train the U-BARN in a self-
supervised way. As shown in Fig. 1, the decoder reconstructs
the input data using the latent representation.

In order to avoid leakage of meaningful features in the pre-
training decoder, a very simple and shallow decoder composed
of a single linear layer is proposed. The decoder operates
exclusively on the feature (spectral) dimension to transform
the (b, t, dmodel, h, w) latent representations into the S2 recon-
structed patch time series (b, t, c, h, w).

3) Reconstruction Loss: The quality of the reconstructed im-
age patches is evaluated during the training by the classical mean
square error. This reconstruction loss is computed exclusively
on the corrupted patches. Moreover, as input patches can have
invalid measures due to acquisition conditions (e.g., cloudy and
out of swath pixels), the information coming from the valid
acquisition mask M valid is incorporated in the loss function.
Therefore, invalid input pixels belonging to the corrupted input
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patches are not considered in the reconstruction loss. Eventually,
given an input patch time series [Pt1 , . . ., PtLmax

], a set TS of
masked dates, nvalid

tk
the number of valid pixels in the patch Ptk ,

the resulting loss can be expressed as (3). P̃tk is a patch that is
corrupted at the SSE output by the previously described masking
strategy. It is important to emphasize that the valid acquisition
mask is solely utilized for the reconstruction loss in the SSL task.
Consequently, validity masks are not required for downstream
tasks

L =
1

||TS ||
∑

tk∈TS

M valid
tk

nvalid
tk

� ||UBARN(P̃tk)− Ptk ||22. (3)

IV. EXPERIMENTAL SETUP

First, the three S2 L2A datasets used in our different experi-
ments are presented: the unlabeled large scale dataset used for
pretraining U-BARN and the two downstream labeled datasets:
PASTIS and MultiSenGE.

Second, the implementation details of our downstream tasks
are described.

A. Datasets

S2 images processed to surface reflectances (L2A) by Theia
are used in this study. For these datasets, only the four 10 m
and the six 20 m resolution bands of S2 are used. The 20 m
resolution bands are resampled onto the 10 m resolution grid by
bicubic interpolation. A robust data normalization is applied on
S2 L2A reflectances. First, the scaling technique of (4a) using
the 0.05 and 0.95 quantiles is applied to remove data outliers by
clipping the data. Second, the data are centered by subtracting
the median value of xclip to each spectral band and dividing
the result by the dynamic data range [see (4b)].2 Band statistics
used to normalize the two S2 datasets are computed on the large
unlabeled pretraining training dataset. Furthermore, in remote
sensing due to memory limitations, deep neural networks usually
do not process full satellite images. Therefore, smaller images
denoted as “patches” are manipulated by UBARN. Specifically,
our network processes patch time series of spatial dimension
of (64 × 64). As the various datasets used might contain wider
patches, a random crop transformation is operated during train-
ing. For validation and testing, the spatial crop is not random,
and therefore, a center crop transform3 is applied on the patch
time series

xclip = clipq0.95,q0.05(x) (4a)

xnorm =
xclip − median
q0.95 − q0.05

. (4b)

1) Large-Scale Unlabeled Pretraining Dataset: The dataset
is composed of 13 tiles acquired by S2 over France. The cor-
responding validity masks (noncorrupted pixels) are built by

2[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.RobustScaler.html

3[Online]. Available: https://pytorch.org/vision/main/generated/torchvision.
transforms.CenterCrop.html

Fig. 6. Description of the S2 datasets used for pretext and downstream tasks.
The unlabeled dataset for pretraining is composed of two disjoint datasets:
training (tiles in blue) and validation (tiles in red). S2 tiles in the labeled datasets
are shown in green and black, respectively, for PASTIS and MultiSenGE.

TABLE I
PRETRAIN DATASET DESCRIPTION

considering edge, saturation, and cloud information. Specif-
ically, the cloud mask is built with MAJA [47]. As previ-
ously explained, the information contained in validity masks
is incorporated in the reconstruction loss of the pretext task.
Geographical variability between training and downstream task
is enforced by using disjoint tile sets between the PASTIS
dataset and the unlabeled dataset, as shown in Fig. 6. We
have more diverse pretraining dataset, compared to that of the
SITS-Former [18] dataset, which is only composed of SITS
from 3 S2 tiles from 2018 or 2019. The U-BARN pretraining is
performed by considering 9 different S2 tiles acquired from 2018
to 2020. In each of these tiles, 10 smaller regions of interest of
size 1024 × 1024 are randomly selected. The disjoint validation
dataset is composed by the 4 remaining S2 tiles acquired from
2016 to 2019. For each year, 10 patch time series, of spatial
dimension (64 × 64) are extracted from each of the 4 tiles
and used to tune the hyperparameters. The validation dataset
is used to select the best model weights, which are then used for
the PASTIS downstream task. A more exhaustive description
of the unlabeled dataset is given in Table I. Ultimately, the
pretraining dataset is composed of annual SITS with dimen-
sions (t = 100, c = 10, h = 64, w = 64). If the SITS have a
temporal dimension lower than 100 dates, a temporal padding is
applied.

2) PASTIS: This labeled S2 dataset proposed for semantic
segmentation in [19] covers agricultural areas over France, as
shown in Fig. 6. Based on the French Land Parcel Information
System, the agricultural parcels are grouped into 18 different
crop classes. Although PASTIS contains SITS acquired from

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://pytorch.org/vision/main/generated/torchvision.transforms.CenterCrop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.CenterCrop.html
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TABLE II
OFFICIAL 5-FOLD CROSS VALIDATION SCHEME GIVEN BY [19]

TABLE III
DESCRIPTION OF THE LAND COVER CLASSES USED IN MULTISENGE [48]

September 2018 to November 2019, only data from January
2019 to November 2019 is considered in our experiments. This
requirement is imposed by our pretraining dataset, which is com-
posed of annual time series. Furthermore, within this dataset, it
has been estimated that 28% of images exhibit partial cloud
cover according to [19], and no corresponding cloud masks are
provided.

The complete dataset contains 2433 patch time series, and it is
divided into 5 stratified folds to enable k-fold training. Therefore,
to train the model on the PASTIS dataset, 5 trainings will be
performed. In each of these experiments, 3 folds are attributed
to train data, one for validation purpose and the last one for
testing (see Table II).

3) MultiSenGE: MultiSenGE is a multitemporal dataset,
which provides dense land cover labels over the Eastern region
of France. We have used 8115 patches time series from 2020
with a spatial dimension of 256×256 pixels. Based on the LULC
datastable named OCSGE2-GEOGRANDEST4 and BDTOPO-
IGN5, this dataset is composed of 14 classes. As detailed in
Table III, MultiSenGE is composed of 5 urban classes and 9
natural classes. In addition, to build this dataset exclusively
images with a cloud cover less than 10% have been selected [48].
Similarly to PASTIS, no cloud masks are provided. In oppo-
sition to PASTIS dataset, MultiSenGE provides dense labels,
therefore, all the pixels of a patch are classified. A random
split is conducted to split the dataset between train (60%),
validation(16%), and test (24%).

4[Online]. Available: https://www.datagrandest.fr/portail/fr/tags/ocs-ge2
5[Online]. Available: https://geoservices.ign.fr/documentation/donnees/

vecteur/bdtopo

Fig. 7. Architecture of the SC and detailed description of the “mean-query”
attention mechanism described in [36].

B. Details of the Downstream Task Implementation

In the downstream semantic segmentation task, the recon-
struction decoder described in Section III-B2 is replaced by
a shallow classifier (SC), as shown in Fig. 1. The objective
of the classifier is to generate segmentation maps from the
latent representations encoded by U-BARN. The selection of
the architecture of the SC is driven by the two following criteria.
First, the U-BARN encoder produces latent representations pre-
serving the temporal size of the input time series. Therefore, the
classifier should be able to process inputs with different temporal
dimensions. Second, since this is a segmentation task, the output
of the SC should have no temporal dimension.

To meet both requirements, we have designed an SC, as shown
in Fig. 7. To process inputs with different temporal dimension,
the proposed SC uses the mean-query attention mechanism
proposed in the TAE [36]. In this altered attention mechanism,
a master query, which is the temporal average of the queries, is
computed. In addition, in the computation of the “value” repre-
sentation, the time seriesX is not projected by a matrixWv , thus,
v = X in (2). As shown in Fig. 7, the output of this mean-query
attention has a collapsed temporal dimension. The mean-query
attention mechanism followed by an FC layer, to project the
(b, 1, dmodel, H,W ) feature map into the (b, 1, k, h, w) segmen-
tation map, with k the number of classes. As suggested in [19],
the cross-entropy loss is exclusively computed on known crop
classes.

C. Training Scenarios Evaluated on the Downstream Tasks

According to [6], to evaluate self-supervised tasks,
linear-probing and fine-tuning are often operated. Traditionally,
the linear probing strategy evaluates the representations by a
linear classifier, which is trained on top of a learned and frozen
encoder. Unfortunately, a linear classifier cannot be applied on
U-BARN latent spaces since the temporal length of the resulting
U-BARN time series representations varies for each patch time
series. The linear classifier is, thus, replaced by the SC, presented
in Section IV-B, and it is trained to generate maps from represen-
tations obtained by a frozen pretrained U-BARN encoder. This
method, referred as U-BARNFR, enables to drastically reduce
the number of training weights in the downstream task, as solely
the SC is trained. For the fine-tuning approach, the weights of
the U-BARN encoder are not frozen during the training of the

https://www.datagrandest.fr/portail/fr/tags/ocs-ge2
https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo
https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo
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downstream task. However, the weights of the pretrained U-
BARN are used as the starting values for training of the complete
architecture. The fine-tuning strategy is denoted by U-BARNFT.
To assess the quality of pretrained U-BARN models, the previ-
ous self-supervised scenarios are compared with three training
configurations supervised by the PASTIS dataset. The first one is
denoted by U-BARNe2e and corresponds to a trained end-to-end
U-BARN encoder followed by the SC. When assessing with
enough labeled data U-BARNe2e encoder might be considered as
the U-BARNFR higher bound since frozen model performances
may not surpass its fully supervised counterpart. In contrast, it is
expected that U-BARNFT outperforms the U-BARNe2e model,
which is trained from scratch. The quality of representations
obtained by the pretrained U-BARN models are also evaluated
by a lower bound. The idea is to compare the features learned
by U-BARN with representations encoded by a single FC layer.
For this situation, U-BARN is replaced by an FC layer, which
operates exclusively on the feature (spectral) dimension. The
FC layer increases the spectral dimension (10 spectral bands) to
dmodel. Then, the SC processes the SITS encoded by the FC layer.
As the SC operates on the spectral and temporal dimension,
this later configuration, denoted FC-SC, cannot capture spatial
context.

Finally, the supervised spatio-temporal baseline U-TAE [19]
is also considered in our experiments. We also have conducted a
comparison with the TSViT architecture. Despite, the TSViT be-
ing positioned as a new spatio-temporal baseline in the PASTIS
dataset, we have found that the U-TAE surpasses the TSViT in
our experiments. These results are discussed in Appendix C, and
we consider the U-TAE as the fully supervised spatio-temporal
baseline in our experiments.

V. EXPERIMENTS AND ANALYSIS

In this section, the proposed U-BARN network architecture
and the self-supervised training strategy are evaluated by the
PASTIS crop segmentation and MultiSenGE dense land cover
segmentation downstream tasks. First, a qualitative evaluation
of the pretext task training is proposed. Then, the quality of
the representations learned by pretrained U-BARN models are
evaluated by comparing the classification performances on both
downstream tasks obtained by the aforementioned different
training scenarios (see Section IV-C). The interest of using a
pretrained U-BARN self-supervised encoder is corroborated by
studying the robustness of the proposed methodology under ref-
erence data scarcity conditions. Afterward, the influence of the
masking rate on the generalization capabilities of U-BARN rep-
resentations is studied. Eventually, a computational efficiency
study is conducted on U-BARN different configurations and
U-TAE.

Each training (either pretraining or downstream task) involves
training the networks for a minimum of 100 epochs. The learning
rate is set to 0.001, and a learning rate on plateau reduction
scheduler is used with a patience of 10 epochs. The networks
are trained on a single GPU, which could be a Tesla V100, A100,
or A30, with a batch size of 2.

TABLE IV
CLASSIFICATION METRICS AVERAGE AND STANDARD DEVIATION OVER

PASTIS K-FOLDS FOR DIFFERENT SITS ENCODERS

A. Qualitative Assessment of the Pretraining

This section presents an analysis of U-BARN’s performance
on the pretraining task. To evaluate the effectiveness of U-BARN
on this task, we examine some reconstructed patches from
the unlabeled validation set, as shown in Fig. 8. The results
demonstrate that U-BARN is able to reconstruct the temporal
evolution of masked continuous blocks of dates (e.g., DOY 72
to 102 and 142 to 175 in Fig. 8). Therefore, we consider that U-
BARN can successfully learn the temporal dynamic of the SITS
during pretraining. Furthermore, Fig. 8 also shows that U-BARN
reconstructs ground surface reflectances of cloudy patches (see
DOY 102, 115, and 142). This result can be explained by the fact
that the reconstruction of cloudy patches is not forced in the loss
function [see (3)]. Following [34], we assume that the model
learns that cloudy pixel values can be interpreted as outliers in
the temporal profile. Under this situation, the network learns
how to ignore their values for the patch reconstruction. Overall,
our observations of U-BARN’s performance on the pretext-task
provide evidence that pretraining is successful, as U-BARN is
able to effectively solve the pretext-task.

B. Classification Performances on PASTIS and MultiSenGE
Datasets

The classification performances on both labeled datasets ob-
tained by the abovementioned described training scenarios are
compared here. The two downstream tasks differ on two main
points. First, in the MultiSenGE dataset has a dense semantic
labeling, while in PASTIS all pixels, which do not belong to
a known crop are not classified. Therefore, we assume that
the spatial context should be better captured to successfully
achieve the MultiSenGE labeling. However, we assume that to
distinguish the 18 crops classes of PASTIS, compared to the 14
land cover classes, more complex temporal features are required.
The U-BARN model is pretrained on the unlabeled dataset with
the proposed generative pretext task strategy. The pretraining
stage considers a masking rate equal to 60%, which is justified
by the results described in Section V-D. Four different classifi-
cation metrics are used to evaluate the quality of the obtained
results : Cohen Kappa, overall accuracy (OA), F1 score, and
mean Intersection over union (mIoU). The two latter metrics are
averaged per classes and not per pixel as the OA. As we proceed
to 5-fold training with PASTIS, mean and standard deviation of
the classification metrics are given each time. For MultiSenGE
downstream task, models are trained with two different seeds for
each configuration. The overall results comparing the different
training scenarios are reported in Table IV for PASTIS and
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Fig. 8. Example of a patch (from the validation dataset) reconstruction achieved by U-BARN during pretraining. Only a part of the SITS is displayed. DOY
of each patch are indicated. [MASK] indicates that the embedded patch was corrupted (see Section III-B1). The top row is the input SITS, and the bottom row
corresponds to reconstructions produced by U-BARN. During this pretraining the Mrate equals 60%.

TABLE V
F1 SCORE PER CLASS ON PASTIS DATASET FOR DIFFERENT SITS ENCODERS

TABLE VI
CLASSIFICATION METRICS OVER MULTISENGE FOR DIFFERENT SITS ENCODERS

Table VI for MultiSenGE. To bring detailed information on
the classification of each class in the unbalanced datasets, the
F1-score per class is also given in Tables V and VII. Eventually,
on PASTIS dataset, the confusion matrix, from U-BARNFR and
FC-SC, are shown in Fig. 9 and example of the segmentation
maps produced by the different networks is displayed in Fig. 10.
Supplementary results over MultiSenGE dataset are available in
Appendix D.

1) Frozen Encoder U-BARNFR: As observed in Tables IV
and VI, the performance of U-BARNFR is intermediate between
the FC-SC and the U-BARNe2e on both downstream tasks. More
precisely on PASTIS dataset, compared to the FC layer, the

pretrained and frozen U-BARNFR obtain a gain in Kappa of
0.052, 0.039 in OA, 0.109 in F1-score and 0.100 mIou. The
F1-score per class also highlights that the classification gain
differs for each class, with a significant improvement (at least
0.28 in F1-score) for spring barley, potatoes, and orchards.
We also observe a gain of at least 0.1 in F1-score, for winter
durum wheat, winter barley, sunflower, winter triticale, and fruit
vegetables and flowers. The confusion matrices shown in Fig. 9
show that U-BARNFR has fewer confusions than the FC-SC.
For instance, U-BARNFR performs better at distinguishing sun-
flower from potatoes or orchards from meadows. Compared to
the FC layer encoding, U-BARNFR also mitigates confusion
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TABLE VII
F1 SCORE PER CLASS ON MULTISENGE DATASET

Fig. 9. Confusion matrices on the PASTIS segmentation task. On each confusion matrix, rows correspond to true label and columns to predictions. The matrices
are normalized per row. The correspondence between PASTIS classes and the confusion matrix index is the following: {0: Meadow, 1: Soft winter wheat, 2: Corn,
3: Winter barley, 4: Winter rapeseed, 5: Spring barley, 6: Sunflower, 7: Grapevine, 8: Beet, 9: Winter triticale, 10: Winter durum wheat, 11: Fruits, vegetables,
flowers, 12: Potatoes, 13: Leguminous fodder, 14: Soybeans, 15: Orchard, 16: Mixed cereal, 17: Sorghum}

Fig. 10. Top row, some of the S2 RGB images which belong to input time series. Bottom row, different segmentation maps generated by the different networks.
From left to right: target segmentation map, U-BARNe2e, U-BARNFR, U-BARNFT, U-TAE, and the FC-SC predictions. The green boxes frame an area where
U-BARNFR predictions are spatially inconsistent compared to the fully supervised network U-BARNe2e. The red circles highlight an area where U-TAE retrieves
worse edges than U-BARNe2e.
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between spring and winter barley. Therefore, we conclude that
the representations provided by U-BARNFR, compared to SITS
encoded by an FC layer, contain meaningful and discriminative
information for the SCs. In addition, similar conclusions are
found on MultiSenGE dataset, where U-BARNFR outperforms
FC-SC of 0.006 in Kappa, 0.004 in OA, 0.03 in F1 score, and
0.02 in mIoU. Since U-BARNFR outperforms FC-SC on all
classification metrics and on both downstream tasks, our self-
supervised pretraining strategy is shown to be effective. How-
ever, the performance gap between U-BARNFR and U-BARNe2e

suggests that there is still room for improvement. A visual
inspection of the segmentation maps generated by U-BARNFR

(shown in Fig. 10) reveals an issue with spatial consistency. The
appearance of classification noise can be attributed to the fact
that the masking self-supervised strategy is mostly applied on
the temporal domain. Therefore, the proposed pretext task does
not allow us to completely learn the spatial correlations between
pixels. As U-BARNe2e segmentation maps do not exhibit this
same issue, we consider that this weakness is due to the pretext
task and not the architecture itself.

2) Fine-Tuning U-BARNFT: The fine-tuning configuration
has two different behaviors depending on the downstream
task. First, the global classification metrics on PASTIS pre-
sented in Table IV and the F1-score per class in Table V
show that there is little difference between the performances of
U-BARNe2e and U-BARNFT. It appears that fine-tuning does not
lead to any improvement in the classification performance. We
conjecture that the number and diversity of training labels avail-
able in the PASTIS dataset are sufficient to train the U-BARNe2e

model. This assumption is later investigated in Section V-C,
where the classification performances of both U-BARN models
are compared in scenarios with scarce reference data.

However, for the dense land cover segmentation task, fine-
tuning seems to improve the performances. We could first sup-
pose that the pretraining task is more adapted to learn features
suitable for land cover classification. Another possibility is
that MultiSenGE dataset does not have enough data to solve
this complex dense land cover classification task. Therefore,
pretraining the U-BARN on a large and diverse unlabeled dataset
might help to extract meaningful spatio-temporal features.

3) U-BARN Architecture: The U-BARN backbone network
can be evaluated by comparing the metrics obtained by super-
vised U-TAE and U-BARNe2e models. The results on PASTIS
dataset in Tables IV and V reveal close performances for both
models. U-BARNe2e has a significantly higher F1 score and
mIoU. Looking more specifically at the F1 score per class, we
notice that the performances slightly vary depending on the
type of crop, as shown in Table V. We observe that F1 score
are higher for classes, which are the most represented within
the PASTIS dataset, such as Meadow or Corn. Conversely, less
represented classes as Potatoes and Sorghum exhibit lower F1
score. Nevertheless, there is no direct relationship between the
class size and its F1 score. This can be attributed to the fact
that some classes may be more distinguishable than others.
Eventually, as shown by the segmentation maps Fig. 10, U-TAE
retrieve slightly worse edges than U-BARNe2e. Contrary to our
expectations, we did not find that on a crop classification task

U-BARNe2e totally surpass U-TAE. A reasonable explanation is
that attention at full spatial resolution is not an important asset
in the PASTIS crop classification task. In the PASTIS dataset,
small crops labels are discarded and considered as background,
resulting in no assessment of segmentation of small items. In
addition, it must be noted that the metrics found differ from those
found in the original UTAE study [19]. This can be explained
by the fact that we use only a part of the test dataset: a centered
crop of 64 × 64 instead of the whole 128 × 128 pixels. The
results slightly differ on MultiSenGE dense segmentation task.
As shown in Table VI, the U-BARNe2e outperforms U-TAE on
all classification metrics. Thus, for dense segmentation task,
U-BARNe2e attention at full spatial resolution might be more
advantageous. We notice that the F1 score strongly varies be-
tween the MultiSenGE classes (see Table VII). The various
networks struggle to correctly classify the smallest classes:
dense built-up, specialized but vegetative areas, orchards, groces
and hedges, open spaces, and mineral as well as wetlands. As a
conclusion, the overall results show that training the U-BARN
architecture by using an end-to-end supervised task has better
performances than the U-TAE [19] on both downstream tasks.
While the gain of performances is modest for crop classification,
it is more pronounced on dense land cover segmentation.

C. Impact of the Amount of Training Data on Fine-Tuned
U-BARN Models

In spite of satellite data being now available in abundance,
ground truth reference labels remain scarce and costly to obtain.
As demonstrated in [18], the performance gap between pre-
trained SITS-Former and end-to-end trained models increases
as the number of training labels decreases. Therefore, a similar
experiment conducted on the PASTIS dataset is presented here.
The goal is to compare the performances of U-BARNFT, U-
BARNe2e, and U-TAE models by reducing the size of the training
dataset. In this experiment, U-BARNFT is pretrained with a
masking rate of 60%. As previously mentioned, the PASTIS
dataset is divided into five folds. To simulate label scarcity, for
each of the five experiments, we have randomly selected NSITS

patch time series from the three folds assigned to the training set.
However, the PASTIS dataset exhibits a strong classimbalance.
To ensure that all classes are present in the generated reduced
training datasets, the random selection of the patch time series
follows the specific protocol detailed in Appendix B. Due to
the small size of the resulting dataset, we have generated five
smaller training datasets, each composed ofNSITS SITS, for each
training experiment. Finally, in this experiment, due to K-Fold
training, we have conducted 25 trials to assess the performance
of a pretrained model with a training dataset composed ofNSITS.
The different trials are used to compute the means and standard
deviations of the classification metrics for the different models.
Fig. 11 plots the metrics as a function of the number of training
labels. With a training dataset composed of 30 patch time series,
U-BARNFT has a significantly higher mIoU and Kappa than
U-BARNe2e. The fine-tuning is, therefore, effective to boost
performance when training with a reduced number of labels.
Besides, on the 4 classification metrics withNSITS lower or equal
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Fig. 11. Evolution of the Kappa, OA, F1, and mIoU scores as a function of the number of SITS in the training dataset PASTIS for different SITS classifiers:
U-BARNFT-SC, U-BARNe2e-SC, and UTAE.

Fig. 12. Evolution of the classification performances of U-BARNFR-SC on PASTIS dataset for different masking rate in the pretraining task.

to 100, U-BARNFT and U-BARNe2e outperform the U-TAE. We
assume that because the U-TAE computes temporal attention at a
low spatial resolution, the attention mechanism processes fewer
pixel time series than the U-BARN and, therefore, is less com-
petitive. On all the classification score curves, we see a similar
trend: the gap between the U-BARNFT, U-TAE, and U-BARNe2e

performances reduces when NSITS increases. These experi-
ments corroborate previous results from SITS-Former [18]; as
the number of samples increases, the performance gain, obtained
thanks to pretraining, decreases. This experiment highlights
the effectiveness of our approach in real-world scenarios with
limited training labels.

D. Influence of the Masking Rate

Theoretically, the quality of the learned representations tends
to improve when the pretext task becomes harder to solve (see
Section II-B). Therefore, the experiment carried out here aims
to investigate if a higher masking rate creates a harder and
more meaningful pretraining task that can retrieve deeper feature
information. However, if this rate is set too high, the corrupted
time-series become meaningless, making the task unsolvable.
In this regard, we compared the performance of U-BARNFR

pretrained with different Mrate values using the previously de-
scribed classification metrics. The obtained results are shown in
Fig. 12 and exhibit two local maximum forMrate equals to 30 and
60%. This observation could be explained by the double effect
of varying the masking rate in the pretraining. As the masking
rate increases, the number of “valid” dates used to reconstruct the

TABLE VIII
COMPARISON OF U-BARN CONFIGURATIONS AND U-TAE WEIGHTS SIZE

corrupted patches diminishes, and the reconstruction loss during
pretraining is applied to more patches during each optimization
step. Eventually, we consider that best performances are reached
with Mrate 60%. This also suggests that the 15% masking rate
proposed in NLP for BERT [15] may not be optimal for pre-
training our spatio-temporal architecture with SITS. In addition,
results show that a masking ratio greater than 80% causes a
significant drop in classification performances, indicating that
the pretext-task might have become too difficult for training
purposes.

E. Study of Computational Efficiency

The size of the various configurations as well as their train-
ing and inference times are compared in this section. First,
Table VIII indicates, the number of trainable weights, the total
number of weights, and the model size in MB. In addition,
Table IX indicates the time of a training step, and an inference
step. Time measures have been scaled by the FC-SC validation
step time. Specifically, this table presents the median time to
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TABLE IX
COMPARISON OF TRAINING AND VALIDATION TIME BETWEEN U-BARN

CONFIGURATIONS AND U-TAE

process a random input of dimension (b, t, c, h, w), with b = 2,
t = 40, c = 10, h = 64, w = 64 over 100 trials. These training
and validation steps were executed on a single GPU Tesla
V100. U-BARNe2e is slightly bigger, in number of weights,
than the U-TAE, as U-BARN has more transformer layers than
the U-TAE and a different attention mechanism. However, U-
BARN training and validation steps are 2,7 times slower than
the U-TAE. Indeed, by computing attention at a low spatial
resolution in the U-TAE, it drastically reduces the number of
operations in the attention mechanism. Then, as expected, using
the frozen configuration enables to drastically reduce the number
of trainable weights, which decreases training time compared to
U-BARNe2e and U-BARNFT.

VI. CONCLUSION

This article proposes a novel self-supervised methodology
for learning spatio-temporal representations from SITS. The
U-BARN architecture combines the strengths of Unet and trans-
former to extract informative and discriminative features from
unlabeled datasets. We have assessed our network performances
on two different segmentation scenarios: crop (PASTIS) and
dense land cover (MultiSenGE). Compared to U-TAE, which
is the current spatio-temporal baseline, U-BARN computes
temporal attention at a full spatial resolution. In this study,
we demonstrate that the designed spatio-temporal architec-
ture of the U-BARN is relevant as it outperforms the U-TAE
on both downstream tasks. Although our architecture is less
computationally efficient than the U-TAE, we have shown that
this new design is more suitable to extract complex spatio-
temporal features adapted for various tasks.

In addition, we introduce a BERT-inspired pretext task for
pretraining U-BARN to reconstruct masked patches from annual
patch time series, composed of a maximum of 100 dates. We
present here a new way to corrupt the patches as well as inves-
tigate on the suitable masking rate. We then assess the quality
of the learned feature by studying two ways of using the pre-
trained U-BARN weights: either frozen or fine-tuned. First, we
demonstrate that the frozen and pretrained U-BARN represen-
tations contain meaningful information for crop and land cover
classification. In addition, the fine-tuned U-BARNFT signifi-
cantly outperforms both U-TAE andnonpretrained U-BARNe2e

for dense land cover segmentation. On crop segmentation, U-
BARNFT exceeds both U-BARNe2e and U-TAE performances
when the number of labeled samples is low. However, the
gain in classification performance decreases with an increase
in labeled samples. Eventually, our results also indicate that the

percentage of patches masked during the pretraining task has a
significant impact on the classification performance. With our
pretraining task, we suggest using a masking rate of 60% with
U-BARN.

We are aware that compared to U-TAE, U-BARN is less com-
putationally efficient. We assume that further research works
should be pursued to reduce the number of operations of our
architecture, while keeping temporal attention at a high-spatial
resolution. Then, although our results are promising, further
investigations should be conducted on MAE for SITS. Indeed,
although we have stressed the importance of the masking rate
value, we have not explored the influence of the masking value.
Moreover, the use of asymmetric encoder–decoder architecture
as proposed on [49], which avoids the use of [MASK] token
in the encoder, should be explored. However, we believe that to
extract complex spatio-temporal features, other pretraining tasks
should also be studied to perform multitask pretraining. Given
the important gap between our fully supervised configuration
U-BARNe2e and the frozen pretrained U-BARNFR, we believe
that masking solely on the temporal dimension is also not suffi-
cient to extract complex spatio-temporal features. Specifically,
we presume that the current pretraining task does not adequately
incorporate spatial features. Therefore, combining the temporal
masking strategy with a spatial self-supervised strategy, may be
a promising direction to improve classification performances. In
addition, the temporal dimension of the learned representation
is the same as the input time series. In the case of irregularly
sampled time series, the classifier in the downstream task needs
to be able to manage this kind of data. Moreover, the usual
solutions (interpolation, gap-filling, or temporal reduction) may
lead to a loss of information. To address this limitation, we sug-
gest altering the network to achieve a fixed temporal sampling.
Besides, a latent space with fixed-dimension is easier to analyze
and interpret. Finally, we plan to apply this architecture to other
downstream tasks and extend our self-supervised scheme to
multimodal data.

APPENDIX A
DETAILED U-BARN ARCHITECTURE

TABLE X
HYPERPARAMETERS OF THE ARCHITECTURE OF THE UNET ENCODER, WITH B

AND T, RESPECTIVELY, THE BATCH AND TEMPORAL DIMENSIONS

APPENDIX B
GENERATION OF SMALL LABELED DATASET FROM PASTIS

TABLE XI
ARCHITECTURAL HYPERPARAMETERS OF THE TRANSFORMER
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Fig. 13. Down Block description.

Fig. 14. Up block description.

TABLE XII
COMPARISON OF THE TSVIT MODEL SIZE COMPARED TO OTHER FULLY

SUPERVISED ARCHITECTURES

TABLE XIII
COMPARISON OF THE TSVIT TRAINING AND VALIDATION TIME COMPARED TO

THE OTHER FULLY SUPERVISED ARCHITECTURE COMPUTED ON ONE GPU
TESLA V100

A probability pPi
to draw the patch is computed on each patch

[see (5)]. This probability increases with the number of pixels
belonging to scarce classes in the patch. More precisely, the
following protocol is established.

1) A score sk, is computed. sk = α× 1
nk

is inversely propor-
tional to the total number nk of pixels from the class k in
the selected training dataset, α is a normalization constant
so αΣksk = 1.

2) For each patchPi, the sum of the number of elements in the
patch (nPi

k ) from the class k, is weighted by the previously
computed class probability sk. The resulting score is then

normalized by the total number of pixels belonging to the
K classes in the patch. Eventually, the constant Λ is used,
so the sum of pPi

equals to 1

pPi
=

Σkn
Pi

k ∗ sk
Σkn

Pi

k

× Λ. (5)

3) For each patch, we attribute disjoint interval contained in
[0,1), of length equal to the patch probability.

4) We draw NSITS random numbers between [0,1). The
patches that contain these random numbers constitute this
tiny training dataset.

APPENDIX C
TSVIT PERFORMANCES ON PASTIS DATASET

The TSViT implementation, available at https://github.com/
michaeltrs/DeepSatModels/tree/main, has been trained using
the same training protocol as the other networks (U-TAE and
U-BARN) on the PASTIS dataset. Table XIV shows the clas-
sification metrics on the PASTIS dataset while Tables XII and
XIII compare the computational efficiency. First, according to
Tables XII and XIII compared to the UTAE baseline, the TSViT
is 1.6 times larger and its training step time 2.3 times slower. In
Table XIV all networks underwent the same training procedure,
except for TSViTbs=4, which was trained with a batch dimension
of 4. Surprisingly, we have found that the TSViT does not
outperform the U-TAE on the PASTIS crop classification task.
This discrepancy between our finding and [43] may be attributed
to variations in the training protocol. First, unlike [43], we have
pretrained TSViT on SITS with a spatial dimension of 64×64
rather than 24×24. Although, Tarasiou et al. [43] used small
spatial dimensions due to computational constraints, it might
also be a crucial factor, which affects the accuracy. We assume
that a crop segmentation task might require a narrow spatial
context. Therefore, employing a transformer that processes a
long-range spatial correlation could be unnecessary and dimin-
ish the performances. In addition, the training hyperparameters
(batch size, learning rate scheduler) differ between the original
TSViT training and ours. Notably, TSViT seems to be highly
sensitive to the batch dimension. As depicted in Table XIV
TSViTbs=4 significantly outperforms TSViT. In other words,
increasing the batch size from 2 to 4 has a crucial impact on
the classification performances. Furthermore, the two following
points in the TSViT framework [43] are not clearly detailed and
prevent us from fully understanding the TSViT results.

1) Tarasiou et al. [43] explained that their classification loss
and metrics are computed while ignoring the background
class. In opposition, the U-TAE [19] original paper omits
the void class (“unknown crops”) rather than the back-
ground class. However, despite this important label dif-
ference, the performance of the U-TAE presented in [43]
is identical to its original paper [19]. This could potentially
be a typographical error in this article, preventing us from
fully understand the results.

2) The way SITS of different temporal length are processed
remains unclear in [43]. Indeed, to create batch of SITS

https://github.com/michaeltrs/DeepSatModels/tree/main,
https://github.com/michaeltrs/DeepSatModels/tree/main,
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TABLE XIV
CLASSIFICATION METRICS AVERAGE AND STANDARD DEVIATION OVER PASTIS K-FOLDS FOR DIFFERENT FULLY SUPERVISED ARCHITECTURE

Fig. 15. Confusion matrices on the MultiSenGE segmentation task. On each confusion matrix, rows correspond to true label and columns to predictions. The
matrices are normalized per row. The correspondence between MultiSenGE classes and the confusion matrix index is the following: {0: Dense built-up, 1: Sparse
built-up, 2: Specialized built-up areas, 3: Specialized but vegetative areas, 4: Large scale network, 5: Arable lands, 6: Vineyards, 7: Orchards, 8: Grasslands, 9:
Groces, Hedges, 10: Forest, 11: Open spaces, mineral 12: Wetlands, 13: Water surfaces}.

with different temporal length, SITS are padded along the
temporal dimension. In the vanilla attention mechanism a
“padding mask” is provided to the attention mechanism.
Therefore, padded dates do not interfere in the attention
mechanism. In their implementation, we have not found
such masking in the attention mechanism.

APPENDIX D
MULTISENGE SUPPLEMENTARY RESULTS

See Fig. 15.
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