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FCLGYOLO: Feature Constraint and Local Guided
Global Feature for Fire Detection in Unmanned
Aerial Vehicle Imagery

Dong Ren"”, Yang Zhang ", Lu Wang

Abstract—Recently, the use of unmanned aerial vehicle (UAV)
imagery for object detection in forest fire detection has gained
significant attention and has shown remarkable performance.
However, most existing object detection models have neglected
the exploration of relationships between positive sample features,
which is crucial for learning more representative and color-robust
features. In addition, small objects in UAV images poses challenges
in capturing sufficient object information and hinders accurate
object detection. To address these issues, we propose FCLGYOLO
that aims to constrain positive sample features and enrich the
object information in the feature maps. Specifically, a feature in-
variance and covariance constraint structure proposed to maintain
feature invariance among positive samples and remove internal
correlations. Furthermore, a local guided global module proposed
to enrich object positioning and semantic information in the feature
map, which leverages local features that focus on spatial infor-
mation to facilitate the learning of global features that focus on
frequency information. It is interesting to show that FCLGYOLO
performs well even in the presence of heavy smoke or tree oc-
clusions. Compared with multiple state-of-the-art object detection
models on a forest fire dataset, experimental results demonstrate
the superiority of FCLGYOLO.

Index Terms—Feature constraint, Fourier transform, global
feature, local feature, object detection.

I. INTRODUCTION

OREST fires pose a significant threat to forest ecosystems,

property and personal safety. In recent years, The com-
bination of unmanned aerial vehicle (UAV) imagery and object
detection algorithms has emerged as a promising approach in this
field, benefiting from the advancements in UAV technology [1],
[21, [3], [4] and computer vision [5], [6], [ 7], [8]. There has been a
growing interest and research focus on UAV and computer vision
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techniques to detect forest fires promptly and accurately [9],
[10], [11]. Object detection is a fundamental task in computer
vision, involving the classification and localization of objects
in images [12], [13], [14]. While object detection algorithms
have achieved considerable success in natural images, the task
becomes highly challenging when dealing with images observed
from UAVs. Detecting fires in such scenarios is particularly
difficult due to factors, such as smoke or obstruction from trees,
as well as the small scale at which fires are often captured by
UAVs. These factors pose limitations on the performance of fire
detection algorithms.

To meet the requirements of deplorability on UAVs and
real-time detection, current mainstream forest fire detectors are
lightweight and high-speed single-stage object detectors. The
training process of a single-stage object detector [15] is depicted
in Fig. 1(a), relying solely on detection labels to train the entire
network. Some detectors incorporate auxiliary branches during
training to facilitate network learning. These auxiliary branches
are used for training but are discarded during inference, not
increasing the inference cost. Fig. 1(b) illustrates how certain
detectors utilize features from the backbone network or fused
features from the neck [16] to perform auxiliary tasks, such as
semantic segmentation [17] and super-resolution [18]. These
detectors utilize both detection labels and supplementary labels
from auxiliary tasks to enhance detection performance. How-
ever, they mainly focus on label-dependent information and
overlook the relationships between features. Fig. 1(c) shows self-
supervised learning models [19], [20], [21], which employ two
different augmented views of the same image to train an encoder
that can extract features for downstream tasks, by assuming that
the feature representations from different views of the same
image are similar. Motivated by self-supervised learning, We
propose the feature invariance and covariance constraint (FICC)
structure, as illustrated in Fig. 1(d). FICC structure leverages
feature relationships as additional supervisory signals to assist
the detector’s learning. Unlike self-supervised learning model,
object detector utilize labels to train networks for detecting and
classifying objects. Furthermore, while self-supervised learning
models mainly focus on capturing global features containing in-
formation from the entire image, object detector prioritize local
features of individual objects. Considering these differences, the
FICC structure explicitly constrains positive sample features to
reduce the impact of fire feature variations caused by occlusions.
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(d)

Single-stage detector, detector with auxiliary task, self-supervised learning model and our model. (a) General structure of a single-stage object detector,

where the entire model is supervised by detection labels. (b) Detector with auxiliary task, where the entire model is supervised by both detection labels and auxiliary
task labels. (c) Self-supervised learning model, where the entire network is supervised by the relationships between features. (d) Our method, which simultaneously

learns from detection labels and feature relationships.

Due to the small scale of fires, the positive sample corre-
sponding to the center point of the object contains rich object
information in the feature map. In contrast, the other two positive
sample features may contain less object information or not
contain any object information at all. Although higher-level
feature maps are fused in the neck to expand the receptive
field of the current layer’s feature map [22], [23], [24], [25],
[26], [27], these higher-level feature maps mainly focus on
object semantic information and may not adequately address the
positional information requirements of the object localization
task. To compensate for the lack of object positional information
in the feature maps, local guided global module (LGGM) has
been proposed to complement the missing object positional
information in the feature maps. In LGGM, the frequency
module expands the receptive field to the entire image through
Fourier transform [28], [29] and extracts global features that
focus on frequency information. The spatial module extracts
local features that emphasize spatial information. Then, the local
features extracted by the spatial module guide the learning of
global features extracted by the frequency module to get rich
positional information. In summary, our main contributions are
as follows.

1) A well-designed FICC structure explicitly incorporates
constraints on object features to ensure invariance of the
same object features and covariance within features. This
design enhances the model’s robustness, especially in the
presence of smoke influences.

2) A well-designed LGGM enhances the discriminability of
positive sample features by enhancing the semantic and
positional information of objects in the feature map, result-
ing in significant improvement in the model’s resistance
to occlusion caused by trees.

3) A novel model has been proposed that effectively in-
tegrates FICC structure and LGGM for forest fire de-
tection. This integration enhances the discriminability
and saliency of the extracted object features, resulting in
our model achieving the best performance on forest fire
datasets.

II. RELATED WORK
A. Fire Detection

Visual-based fire detection methods can be categorized into
two groups: traditional machine learning methods and deep
learning methods. Thepade et al. [30] utilized the LUV color
space has shown promising results in reducing false alarm
rates in fire detection. Chowdhury et al. [31] combined visual
sensors with smoke sensors can provide more effective fire
detection. Traditional machine learning methods heavily rely
on handcrafted features and support vector machines (SVMs)
for fire detection [32]. However, these methods are susceptible
to false alarms caused by objects with similar colors to fire. With
the development of computer vision, a deep classification net-
work has been employed to classify the presence or absence
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of fire in images [33]. Mseddi et al. [34] combined YOLOv5
with U-Net to accomplish fire detection and segmentation tasks.
While fire image classification is a coarse-grained method that
cannot provide accurate flame localization, object detection
methods can determine both the presence of fire and the precise
location of flames in an image. Furthermore, fire segmentation
aims at classifying each pixel in the image as either fire or non-
fire [35]. However, detection tasks align more closely with the
practical requirements of fire detection, as the primary methods
widely used are still based on object detection methods.

Object detector can be broadly categorized into two
groups: CNN-based detector and transformer-based [36] de-
tector. CNN-based detectors encompass popular models, such
as R-CNN [37], RetinaNet [13], Faster R-CNN [14], and
YOLOVS [15]. R-CNN utilizes deep neural networks to extract
features, which are then used by SVMs and bounding box
regressors for classification and bounding box regression tasks,
respectively. Single-stage detectors [13], [15] streamline the
workflow of two-stage detectors [14] by eliminating the need for
aregion proposal network. Instead, they directly generate predic-
tion boxes and predicted class on the feature map. Transformer-
based detectors include DETR [38] and its variants [39], [40],
[41]. They have shown significant improvements in detection
accuracy and convergence speed on the COCO dataset [42].
However, CNN-based detectors have unique advantages, such
as compact size, requiring less training data, and fast inference
speed. CNN-based detectors still dominate in practical appli-
cations. Although CNN-based detectors are mature, they still
have limitations in specific tasks, such as forest fire, detection
in UAVs.

B. Self-Supervised Learning

Self-supervised learning [43], [44] is a process of training
a generic feature extractor using a large amount of unlabeled
data, which can be used for various downstream tasks. Self-
supervised learning originated from the field of natural language
processing [45] and was initially introduced to the computer
vision domain through the definition of various pretext tasks.
Examples of these pretext tasks include: converting RGB images
to grayscale and then training a network to reconstruct the
original RGB images using the grayscale [46]; dividing images
into patches, randomly shuffling the patches, and training a
network to predict the relative positions of each patch [47];
training a generator to generate high-resolution images from
low-resolution input images, while also training a discriminator
to distinguish between real high-resolution images and high-
resolution images generated by the generator [48]. With the
development of self-supervised learning, the predefined tasks
have now been unified into two types: image inpainting or recon-
struction of missing or distorted parts, and contrastive learning of
different augmented views of the same image. Image inpainting
or reconstruction is mainly used to train models related to
transformer, while contrastive learning of different augmented
views is mainly used for encoder models related to CNNs. The
two different augmented view of the same image are considered
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as a positive sample pair, while any pair of different images’
augmented views is considered as a negative sample pair. Such
as, SimCLR [19], MoCo [20], and InstDisc [49], aim to bring the
feature representations of positive sample pairs closer and push
away the feature representations of negative sample pairs to learn
meaningful visual feature representations. These methods have
slight difference. BYOL [50] and SimSiam [51] only require
bringing the feature representations of positive sample pairs
closer to learn meaningful visual feature representations. The
VICReg [21] algorithm is based on the covariance matrix of
the features from two augmented views. The variance along
each feature representation dimension is regularized to prevent
feature collapse. The invariance term ensures that the features
from different augmented views are encoded into similar repre-
sentations, while the covariance term encourages the encoding
of different feature information across different dimensions.
The FICC structure is inspired by self-supervised learning and
uses feature constraint to facilitate the learning of detection
networks.

C. Fourier-Based Networks

Recently, Fourier transform has been introduced into deep
learning for analyzing the optimization and generalization abil-
ities of DNNs [52]. In addition, Yang et al. [53] applied
Fourier transform to both source and target domains, exchanging
their low-frequency signals to reduce the distribution discrep-
ancy between the two domains, thus achieving domain adapta-
tion. Xu et al. [54] suggested that phase information contains
high-level semantic information and is less susceptible to do-
main shift. Based on this, they design amplitude-mixing data
augmentation to strengthen the learning of domain-invariant
information, thereby improving the model’s generalization
ability. Rao et al. [28] transformed feature maps into the fre-
quency domain and multiplied them with learnable convolu-
tional kernels to obtain a global receptive field. Fuoli et al. [55]
designed a frequency-domain supervised loss to supervise a
super-resolution network to learn high-frequency information
that is easily lost during the super-resolution process. Jiang
et al. [56] introduced a frequency-domain focal loss by reducing
the weight of simple components in the frequency domain,
encouraging the reconstruction network to focus on learning
difficult frequency-domain components. Yu et al. [57] designed
an amplitude-guided phase module in the frequency domain and
a global-guided local module in the spatial domain to jointly
accomplish the task of image dehazing. Huang et al. [58] fully
utilized frequency-domain information to restore brightness and
structural details in overexposed images for image restoration.
Wang et al. [29] proposed a novel network architecture that
extracts frequency and spatial information separately using
frequency branches and spatial branches. It then uses multi-
head attention mechanisms to fuse the frequency and spatial
information, reconstructs the high-resolution image using the
fused features, and uses the frequency features to separately
reconstruct the phase and amplitude parts of the high-resolution
image.
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FICC structure, which comprises two identical networks sharing the same architecture and parameters, along with a feature supervision module. Each

network receives two distinct image augmentation views of the same image and is supervised by its respective detection labels. The fused features from the neck
of the two networks undergo additional constraint through the feature supervision module, facilitating the overall network learning process. It is important to note
that the figure does not depict the auxiliary head, and a detailed explanation of the LGGM depicted in the figure will be presented in Section I1I-B.

III. METHODS

The FICC structure encompasses two identical detection net-
works along with a feature supervision module, which will
be thoroughly elucidated in Section III-A. During the infer-
ence phase, solely one detection network is utilized to predict,
while another detection network and the feature supervision
module are disregarded. On the other hand, the LGGM consists
of three essential blocks: frequency block, spatial block, and
fuse block, which will be comprehensively expounded upon in
Section III-B. During the inference stage, only the frequency
block remains active, whereas the spatial block and fuse block
are not employed.

A. FICC Structure

The FICC structure as illustrated in Fig. 2, each detec-
tion network consists of three components: a backbone net-
work for extracting multiscale features, denoted as F' = {F] €
RO HXWA \where | € {3,4,5} denotes the feature pyramid
levels, from the inputimage X € RC*#*W where C represents
the channel dimension of the image and (H, W) represent the

spatial dimensions of the image; a neck for fusing the multi-
scale features [F; and a detection head for generating prediction
results. The dimensions (Cy, H;, W;) are generally equal to
(Co x 2L, | H/2|, |[W/2!]). Image X is partitioned into grids
of uniform size, with grid corresponding to a size of 2! x 2!
at level [. Consequently, after downsampling by the backbone,
each grid is represented as a single point in the feature map. Any
point P € R®" in the feature map F} is decoded by the detection
head into prediction boxes. In the training stage, all points in the
feature map F; are matched with objects via the label assignment
strategy, and will be categorized into two groups: positive sam-
ples and negative samples. Positive samples correspond to points
that are matched with at least one object, while negative samples
do not have any matches. Consequently, positive samples are
responsible for predicting the matched objects, while negative
samples do not need contribute to the object predict.

Image X has corresponding labels = {Aq, As, ..., Ax},
where k is the number of objects in image X, 4; = (cls, box),
cls € {0,1,2,...,n — 1} represents the class of the object,
box € R* represents the bounding box, and n is the number
of object classes to be detected. In this case, we detect only
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one class, which is fire. Here, n = 1. Assuming that the pos-
itive sample corresponding to the center point of object A
on the feature map F; is denoted as a;, and the other two
positive samples in the feature map F; are denoted as ao and as,
where a1, as, and a3 € R, During the training process, these
positive samples a1, as, and aj is decoded into prediction boxes
offsets (t5,ty,tw,tn) and class probabilities by the detection
head. To obtain the predicted box (b, by, b, by, ), the following
formula can be utilized:

by = co + 0(ty) x 2— 0.5
by =cy +0(ty) x2—0.5

bw = puw X (2 X 0(tw))? (1
b, = pr X (2 X o(ty))?
o(z) = 7=

where ¢, and ¢, denote the coordinates of the top-left position
of the grid that contains the object feature, while p,, and py,
represent the width and height of a predefined anchor box. These
prediction boxes will then be supervised by the ground truth
bounding box and class label of object A, which is a common
in all object detector.

Image augmentation distribution is denoted as 7', and two ran-
dom image augmentation operations t; and ¢, are sampled from
T. The image X is then transformed by ¢; and to, resulting in
two augmented views of X, X7 = ¢1(X) and X5 = t2(X). Sim-
ilarly, we obtain the feature maps Fj; = neck(backbone(X7))
and Fj5 = neck(backbone(X5)) for each level [. Taking F3;
and F3o as illustrative examples, let us consider an object
A; = (cls;, box; ), with the positive samples corresponding to
the center point of A; in F3; and F3o denoted as a(ziy1 and az;)2,
respectively. The other two positive samples are represented
by (a(3i+1)1,a(3i+2)1) and (a(siq1)2, a(3i42)2)- In F3q, there
is a unique possibility where a(3;)1, a(3;41)1, and a(zi42y1 are
decoded by the detection head as the prediction boxes for object
A;. Hence, we can regard a(3;)1, a(3i11)1, and a(z;y2)1 as the
three feature representations of object A; in F3;. In a similar
manner, we can consider a(s;)2, a(3;y1)2, and a(si;2)2 as the
three feature representations of object A; in F3o. As the three fea-
ture representations of object A;, a(siy1, @(3i+1)1> and a(zi42)1
occupy distinct grids, the position offsets (¢, t, ) required by the
detection head for each feature representation must also differ.
Consequently, if we desire the prediction boxes corresponding
to these feature representations to approximate the ground truth
box, there need to be discernible variations among the three
feature representations a ;) 1, @(3i+1)1, and a3, y2)1. The feature
representations of object A; in different views, (a(3i)1, a(3i)2).
(a3i+1)15 A3i41)2)> and (a(3i12)1, @(3i+2)2) are located in the
same grid. If the same feature representation is decoded by the
detection head, it will inevitably result in the same box offsets
(tz,ty). Therefore, these three pairs of feature representations
should be identity.

The object feature representations in feature map F3; are
arranged into an object feature representation matrix denoted
as Y1 = [ao1, 11, G21, - - -, A(3p—1)1]. Similarly, the object fea-
ture representation matrix in feature map F3o is denoted as
Ys = [ag2, a12, a2, . . ., a(3,-1)2]. Here, Y1 and Y5 are ma-
trices in R3"*Cs, where n represents the number of objects
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and C3 denotes the channel dimension of feature maps Fj;
and Fj3o. After applying the projector, Y; and Y> undergo
projection processes resulting in their corresponding embed-
ding matrices denoted as Z1 = [z01, 211, 221, - - -, Z(3n—1)1] and
Z2 = [ZOQ’ 2125222y« « «y z(3n,1)2],where Zl, ZQ S RBnXCs. We
impose a invariance constraint on the embedding matrices
Zl and Z2
1 3n—1
S(Zh Z2) = % Z (21'1 - Zi2)2- ()
=0
Subsequently, we impose a covariance constraint, which aims
to decorrelate the different dimensions of the features and pre-
vent them from encoding similar information, on the embedding
matrices Z; and Zs
1

¢l2) = 3n—1

Slem(Z)R, G)
i#]j

where C'm is to get the covariance matrix defined by

3n—1
1
Cm(Z) = o— > (zi— ) (2 - 2) 4)
i=0
1 3n—1
where z = o] ; 2. 5)

The final feature supervised loss is
LoSSfeat = a0 X S(Zl, Zg) + B X [C(Zl) + C(ZQ)} (6)

where o and j3 are the weights of the two terms « = 1and 8 = 25
following Bardes et al. [21]. This component draws inspiration
from self-supervised learning and serves as an additional feature
supervision mechanism.

B. Local Guided Global Module

The LGGM is introduced in the neck to supplement the object
information to positive samples in the feature maps. Benefiting
from the Fourier transform, amplitude component and phase
component can capture the image-size receptive field. Notably,
the phase component offers a wealth of structural information
that significantly aids in object discrimination. Table III tabu-
lates that the forest fire dataset contains a considerable number of
small objects that is primarily detected in the P3. Consequently,
the LGGM is exclusively inserted before the P3 to enhance the
model’s ability to detect small objects.

To optimize the performance of the frequency block while
minimizing the associated increment in parameters and com-
putations in the inference stage, we formulated the LGGM, as
illustrated in Fig. 3(a). During the training stage, the spatial
block and fuse block modules play a pivotal role in guiding
the learning process of the frequency block. The spatial block
extracts local features enriched with spatial information, while
the frequency block captures global features enriched with
frequency information. Furthermore, the fuse block integrates
the features extracted from both the spatial block and frequency
block, and in conjunction with the auxiliary head, facilitates
the learning process of the frequency block. Serving as the
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TABLE I
INFORMATION OF DATASET SOURCE

Source Resolution

Aircraft

Camera

FLAME [60] 3840x2160

FLAME?2 [61]

Phantom 3 Professional
19201080 Mavic 2 Enterprise Advanced M2EA Visual Camera

Phantom 3 camera

TABLE I
TECHNICAL SPECIFICATION OF CAMERAS

Camera FOV 35 mm format equivalent Effective Pixels
Phantom 3 camera 94° 20 mm 124M
M2EA Visual Camera  84° 24 mm 48 M
TABLE III
DATASET INFORMATION
Image  Fire Large Middle Small Occlusion
train 3565 15252 1436 (9.4%) 5037 (33.0%) 8779 (57.6%) 3213 (21.1%)
val 1018 4350 379 (8.7%) 1431 (32.9%) 2540(58.4%) 966 (22.2%)
test 509 2174 210 (9.7%) 687 (31.6%) 1277 (58.7%) 501 (23.0%)
TABLE IV of 3 x 3
COMPARISON WITH OTHER DETECTION MODELS
pha,.; = Conv2d(ReLU(Conv2d(pha))) (11)
Method Params GFLOPs mAPS50
Faster R.CNN [14] 413M  203.0G  61.7% ampy; = Conv2d(ReLU(Conv2d(amp))). (12)
ATSS [62] 32.1M  203.0G  72.1% The enhanced feature representation in the frequency domain
AutoAssign [63] 36.2M  199.0G  78.4% is obtained by combining the enhanced phase and amplitude
FCOS [64] 32.1IM  198.0G  68.9% real = amp,.; X cos(pha,)
RetinaNet [13] 363M  201.0G  61.8% {imag —amp. . % Sin(pha“’f) (13)
FreeAnchor [65] 36.3M  206.0G  77.9% ref ref
DINO [66] 47.5M 274.5G 78.4% fre,ef = complex(real, imag). (14)
FZirg(;;glgg (([)6;]_5) 3720713[/1 1196940(}G ;11;):;'; Finally, the feature map with attention to frequency informa-

cornerstone of the LGGM, the frequency block solely operates
during the inference stage.

In the following sections, we will provide a comprehensive
explanation of the frequency block, spatial block, and fuse block,
which are integral components of the LGGM:

Fern = FreBlock(F) (7
Fipan = SpaBlock(F) (8)
Fout == FuseBlOCk(FfreIna qualn) (9)

where F' € RCVH*W represents the feature map.

The frequency block is implemented as outlined below. First,
the feature map F' is converted to the frequency domain by ap-
plying the 2-D Fourier transform, expressed as fre = fft2d(F’).
Subsequently, the phase and amplitude components are acquired
individually

pha = abs(fre), amp = angle(fre). (10)
The phase and amplitude components undergo separate en-
hancement via two convolutional layers with a kernel size

tion and global receptive field is obtained by inverse 2-D Fourier
transform

Flrern = abs(ifft2d(fre.r)) + F. (15)
The implementation of the spatial block is as follows:
Fipan = Conv2d(Res(ReLU(Conv2d(F")))) (16)
where Res is the residual block defined by
Res(F') = Conv2d(ReLU(Conv2d(F))) + F.  (17)

The spatial block consists of two convolutional layers and a
residual block is designed to extract feature with attention to
local spatial information.

The implementation of the fuse block is as follows:

Fye = ReLU(Conv2d(Firern)) (18)
Fipa = ReLU(Conv2d(Fiparn)) (19)
Feor = Concat(Fie, Fipa) (20)
Fryse = TokenMixer(Fiy) 21
Fou = Dropout(ReLU(Conv2d(Fuse))) (22)
where TokenMixer is defined by
TokenMixer(F') = R(fft(F)) (23)
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where the function R(x) denotes extracting the real part of the
result following the Fourier transform. The fuse block simulta-
neously takes the feature maps from the spatial block and the
frequency block. The two feature maps are individually passed
through separate convolutional layers, then concatenated along
the channel dimension. The concatenated feature map undergoes
reshaping along the H and W dimensions are flattened into
a single dimension HW, subsequently being passed into the
token mixer layer. Within the token mixer layer, a complete
integration of the spatial and frequency information in the feature
map is achieved. The token mixer layer plays a crucial role in
integrating frequency and spatial information. This is accom-
plished by extracting the real part of the results obtained through
Fourier transform. This operation serves as a viable substitute
for multihead attention [59], offering a similar effect in terms of
information integration but without any learnable parameters.
As a result, it leads to a substantial reduction in the model’s
computational complexity and alleviates the training load on
the network.

C. Loss

The complete loss consists of three parts: the loss of the main
detection heads of two branches of the network, the loss of the
auxiliary detection heads of two branches of the network, and

the feature supervision loss. The expressions are as follows:

Loss = LosSder + Wy X L0oSSaux + Wy X LOSSteat 24)

where W, and W correspond to the weights assigned to the loss
of the auxiliary detection head and the feature supervision loss,
respectively. These weights are employed to achieve a balanced
importance among the various losses. The loss of lead detection
head and the auxiliary detection head is as follows:

(25)
(26)

Lossger = 77 X L0SSpos + 1 X LOSSop;
Lossaux = 7 X LOSS3pos + 171 X L0OSS40b;

where v and 7 refer to the weights assigned to the prediction box
loss and the target loss, Setting v = 0.05 and 7 = 1.0. Since the
forest fire dataset contains only a single class of target, there is no
classification loss component in either the main detection head
or the detection head assistance loss. The detailed expression of
Lossgey can be found in (6).

IV. EXPERIMENTAL RESULTS
A. Dataset

The dataset was obtained from FLAME [60] and FLAME2
[61], consisting of video recordings with resolutions of 3840
x 2160 and 1920 x 1080 pixels. The hardware to collect
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the dataset are detailed in the Tables I and II. The correlation
between consecutive frames can aid in the detection of forest
fires. However, our primary focus is on identifying the pres-
ence of a fire in each individual frame, and considering the
interframe relationship regarding fires is unnecessary and would
require additional computational resources. As a result, we
extracted the frames from the original videos and randomly
selected 2533 and 2559 images containing fires, respectively.
Hopkins et al. [61] provided timestamps and latitude—longitude
information in the top-left corner of the videos. While retaining
the original aspect ratio of 1920:1080, we aimed to preserve
as much of the image content as possible when removing the
timestamps and latitude—longitude information. This process
resulted in an image resolution of 1611 x 907 pixels. Using the
labelimg tool, a total of 5092 images were annotated and create
a dataset in the YOLO label format. Subsequently, the dataset
was divided into training, validation, and testing sets in a ratio
of 7:2:1. Please refer to Table III for specific details regarding
the dataset.

In Table III, “large,” “medium,” and “small” present large,
medium, and small object, respectively. “Occlusion” column
indicates the number of fires that are obscured by smoke. Aligns
with the definition provided in [42]: objects smaller than 32
x 32 pixels are defined as small objects, objects larger than
96 x 96 pixels are considered large objects, and objects falling
within this size range are defined as medium objects. The dataset
predominantly consists of small targets, making up close to 60%
of the dataset. In Table III, For all experiments conducted in this
article, unless explicitly stated otherwise, the dataset used is this
dataset. This dataset is available online.'

B. Implementation Details

The proposed framework was implemented using PyTorch
and runs on an NVIDIA 3090 GPU. The effectiveness of the
framework was assessed through ablation experiments and com-
parative experiments conducted on the Section IV-A dataset. The
input image size was set to 640 x 640 pixels for both the training
and inference stages. In the training stage, the input images
underwent image augmentation, including transformations, such
as hue saturation value adjustments, translation, left—right flips,
up—down flips, and mosaic augmentation. Conversely, no im-
age augmentation operations were applied during the inference
stage. The optimizer employed was stochastic gradient descent
with a momentum value of 0.937 and weight decay of 0.0005.
The batch size was specified as 8, the initial learning rate was set
to 0.01, and the training process was carried out for 300 epochs.

C. Accuracy Metrics

We employ mean Average Precision at 50% (mAP50) IoU as a
metric to compare and evaluate the detection performance of our
model. The mAP50 is calculated by considering precision and
recall values. The calculations of precision, recall, and mAP50

![Online]. Available: https://www.github.com/zhangshao249/FCLGYOLO
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metrics are defined as follows:

TP
Precision = TP+ FP 27
TP
Recall = —— (28)
TP + FN
1
AP [, p(r)dr
AP="—" =0""" 2
m N N 29)

Here, TP, FP, and FN represent the counts of true positive
predictions, false positive predictions, and false negative pre-
dictions, respectively. In addition, p indicates precision, 7 in-
dicates recall, and N denotes the number of categories. The
precision and recall metrics are associated with the concepts of
commission and omission errors, respectively. Furthermore, the
mAP50 is a comprehensive indicator obtained by averaging AP
values, utilizing an integral method to calculate the area enclosed
by the Precision—Recall curve and the coordinate axis of all
categories.

Furthermore, we utilize Giga Floating-point Operations
(GFLOPs) to quantify the computational complexity of the
model, and the parameter size to measure the model’s size.
Unless stated, otherwise, all tables presented hereafter include
GFLOPs and Params, representing the computational complex-
ity and the number of parameters used by the model during the
testing stage, respectively.

D. Comparisons With Previous Methods

In order to validate the advantages of our proposed model, we
compare FCLGYOLO with advanced detectors, such as Faster
R-CNN, ATSS, AutoAssign, FCOS, RetinaNet, FreeAnchor,
DINO, and VarifocalNet. As shown in Table IV, DINO and
AutoAssign performed the best on fire dataset among these
advanced detectors. Our proposed model improved the detec-
tion accuracy by 1.7% compared with DINO and AutoAssign.
Notably, DINO had 6.8 x the number of parameters and 16.7 x
the computational complexity of our proposed model, while
AutoAssign had 5.2x the number of parameters and 12.1x
the computational complexity. This demonstrates the significant
advantages of our model in terms of model size, computational
complexity, and detection performance. In particular, DINO,
which is transformer-based detection method, benefits from the
self-attention mechanism, which can achieve global receptive
field. LGGM in our proposed FCLGYOLO, shares similarities
in achieving global receptive field, yet it is noteworthy that our
method exhibits significant advantages in terms of model size
and computational complexity.

Furthermore, in Fig. 4, we visualize three detectors that per-
formed well on the fire dataset, along with our proposed model.
DINO displayed missed detections in Fig. 4(a), (b), (c), and (e)
due to its emphasis on global features while neglecting the local
features, leading to the overlooking of small objects. Conversely,
when severe occlusion is present in Fig. 4(d), both AutoAs-
sign and FreeAnchor produced multiple overlapping bounding
boxes. This suggests an overemphasis on local object features by
these models, resulting in incorrect identification of certain fire
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Fig. 4.

components as complete fires. In contrast, FCLGYOLO exhib-
ited superior performance in such scenarios. The incorporation
of the FICC structure improved the detection performance of
FCLGYOLO by minimizing the feature disparity between fires
exhibiting notable color variations under dense smoke occlusion
in Fig. 4(b). Furthermore, in Fig. 4(d) and (e), FCLGYOLO
effectively detected severely occluded fires as complete flames,
benefiting from the extensive global receptive field of LGGM.
This highlights the capability of FCLGYOLO in effectively
detecting fires even in challenging scenarios with thick smoke
and severe object occlusion.

FreeAnchor
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FCLGYOLO Ground Truth
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Visualization results of multiple detectors, which include AutoAssign, DINO, FreeAnchor, and our proposed FCLGYOLO. To better showcase the
detection performance of the various detectors, (a)—(e) image patchs were cropped from different images, considering the significant size difference between the
images and the targets.

E. Ablation Study

Table V presents the model size, computational complex-
ity, and testing accuracy for various base models. YOLOVS5 x
achieves the highest detection accuracy, but it requires 12.3x
the number of parameters and 12.8x the computational com-
plexity compared with YOLOVS5s. Despite slightly lower ac-
curacy compared with other YOLOvVS5 models, YOLOvVSs of-
fers a significant advantage in terms of fewer parameters and
GFLOPs, making it ideal for deployment and real-time detection
on UAVs. As a result, YOLOVSs is selected as the baseline
model.
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TABLE V
COMPARISON OF DETECTION MODELS IN YOLO SERIES

Method Params GFLOPs mAP50
YOLOv4 [68] 9.1M 20.6G 75.0%
YOLOvV7 [69] 6.0M 13.2G 63.8%
YOLOx [70] 8.9M 13.1G 78.5%

YOLOv5x% 86.2M  204.6G  80.8%
YOLOVS51 46.1M 108.2G 80.5%
YOLOv5m 20.9M 48.2G 80.0%
YOLOVS5s 7.0M 15.9G 79.1%

The bold entities highlight the best value.

TABLE VI
IMPACT OF FICC STRUCTURE AND LGGM

FICC LGGM(AUX) | mAP50
79.1%
v 80.3%
v 80.2%
v v 81.1%
TABLE VII

IMPACT OF AUXILIARY HEAD IN LGGM

LGGM AUX | mAP50
79.1%
v 79.6%
v 79.4%
v v 80.2%

The bold entities highlight the best value.

TABLE VIII
IMPACT OF LGGM BEING INSERTED POSITION

Position Py Py Ps
mAP50 80.2% 79.5% 79.3%

The bold entities highlight the best value.

The detection performance of the baseline model can be
enhanced by both FICC and LGGM, as demonstrated in
Table VI. The simultaneous usage of FICC and LGGM does
not appear to result in any noticeable conflicts. FICC shows a
1.2% improvement in the baseline, while LGGM demonstrates
a 1.1% improvement. In an ideal situation, the baseline would
experience a 2.3% improvement, but the actual improvement
observed is 2.0%. This discrepancy might be attributed to effect
of FICC, which primarily focuses on constraining features to
enhance model performance. In contrast, LGGM employs an
auxiliary detection head to indirectly impose feature constraints.
The potential overlap in constraining the intermediate features
between FICC and LGGM may interference, thereby hindering
the attainment of the desired improvement.

The findings presented in Table VIII align with the analysis
conducted in Section III-B. This alignment can be attributed
to the dataset containing a significant number of small targets.
Specifically, the P; demonstrates the highest contribution to the
detection of small targets, followed by the P,. Conversely, the
P5 contributes the least to the detection of small targets.
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LGGM is designed to be utilized in conjunction with an
auxiliary detection head. When the auxiliary detection head is
not present, only the FrequencyBlock in LGGM is active, while
the SpatialBlock and FuseBlock do not contribute to the loss
function. Consequently, they do not undergo learning during the
training process and do not guide the learning of the Frequen-
cyBlock. In Table VII, the performance results demonstrate the
impact of adding different components to the network. When
only LGGM is incorporated, equivalent to solely adding the
FrequencyBlock, there is a performance improvement of +0.5%
compared with the baseline. Besides, when only the auxiliary
detection head is added, there is a performance improvement of
+0.3% compared with the baseline. The most notable improve-
ment is observed when both LGGM and the auxiliary detection
head are integrated into the network, leading to a performance
enhancement of +1.1% compared with the baseline. By in-
corporating both LGGM and the auxiliary detection head, the
SpatialBlock and FuseBlock aptly learn and offer constructive
guidance to the FrequencyBlock throughout the training process.

V. CONCLUSION

The detection of forest fires in UAV imagery poses significant
challenges, particularly in terms of considering both speed and
accuracy. We propose FCLGYOLO, a novel approach that tack-
les issues related to smoke occlusion and small objects in forest
fire detection tasks. FCLGYOLO incorporates the FICC struc-
ture to constrain features based on object feature relationships,
while LGMM expands the network’s receptive field and utilizes
local features to guide global features. Notably, the FICC struc-
ture does not introduce any additional inference cost and does
not require extra training labels. In addition, LGGM introduces
a small number of parameters and computational operations
to extract object features with improved object information.
Ultimately, FCLGYOLO outperforms state-of-the-art detection
algorithms in terms of detection performance on forest fire
datasets, while also exhibiting the smallest number of parameters
and computational complexity.
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