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Long-Term Prediction of Sea Surface Temperature by
Temporal Embedding Transformer With Attention

Distilling and Partial Stacked Connection
Hao Dai , Zhigang He, Guomei Wei, Famei Lei , Xining Zhang , Weijie Zhang, and Shaoping Shang

Abstract—Sea surface temperature (SST) is one of the most
important parameters in the global ocean–atmosphere system, and
its long-term changes will have a significant impact on global
climate and ecosystems. Accurate prediction of SST, therefore,
especially the improvement of long-term predictive skills is of great
significance for fishery farming, marine ecological protection, and
planning of maritime activities. Since the effective and precise
description of the long-range dependence between input and output
requires higher model prediction ability, it is an extremely challeng-
ing task to achieve accurate long-term prediction of SST. Inspired
by the successful application of the transformer and its variants
in natural language processing similar to time-series prediction,
we introduce it to the SST prediction in the China Sea. The model
Transformer with temporal embedding, attention Distilling, and
Stacked connection in Part (TransDtSt-Part) is developed by em-
bedding the temporal information in the classic transformer, com-
bining attention distillation and partial stacked connection, and
performing generative decoding. High-resolution satellite-derived
data from the National Oceanic and Atmospheric Administration
is utilized, and long-term SST predictions with day granularity
are achieved under univariate and multivariate patterns. With
root mean square error and mean absolute error as metrics, the
TransDtSt-Part outperforms all competitive baselines in five oceans
(i.e., subareas of Bohai, Yellow Sea, East China Sea, Taiwan Strait,
and South China Sea) and six prediction horizons (i.e., 30, 60, 90,
180, 270, and 360 days). Experimental results demonstrate that the
performance of the innovative model is encouraging and promising
for the long-term prediction of SST.

Index Terms—Attention distilling, China Sea, long-term
prediction, partial stacked connection, sea surface temperature
(SST), temporal transformer.

I. INTRODUCTION

S EA surface temperature (SST) provides basic informa-
tion about the global climate system and is an important
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parameter for weather prediction and atmospheric model sim-
ulations [1], [2]. SST measurements benefit a wide range of
operational applications, including climate monitoring, fishery
farming, maritime commercial activities, etc. From north to
south, the China Sea is mainly composed of the Bohai Sea,
the Yellow Sea, the East China Sea, the Taiwan Strait, and the
South China Sea. The China Sea spans four climatic zones:
temperate zone, warm temperate zone, subtropical zone, and
tropical zone. The confluence of ocean currents and the devel-
opment of fronts have created many important fishing grounds,
and the marine aquaculture industry is developed. Meanwhile,
red tide disasters are more serious in spring and summer every
year. Moreover, the China Sea is part of the Maritime Silk
Road and also has one of the busiest shipping lanes in the
world. Hence, accurate prediction of SST in the China Sea is
crucial for an in-depth understanding of marine fishery farming,
ecological change dynamics, and maritime activity planning,
which are very important to the production and lives of Chinese
people.

SST is mainly affected by many factors, such as solar ra-
diation, air–sea heat flux, and diurnal winds, which form a
complex and changeable vertical structure that changes over
time. Changes in solar radiation affect the energy balance at the
sea surface. Variations in cloud cover, atmospheric conditions,
and the time of day influence the radiation balance, impacting
SST. Positive heat flux, where the ocean gains heat from the
atmosphere, leads to an increase in SST, and negative heat flux
results in a decrease. Diurnal winds can affect the vertical mixing
of the ocean layers. During the day, solar heating can lead to
the development of sea breezes, causing mixing and influencing
SST. At night, cooling processes may dominate. Due to the
irregularity of thermal radiation, flux, and the uncertainty of
wind blowing over the sea surface, it is difficult to construct
effective and reliable mathematical equations to describe the
causal relationship between SST and these factors, resulting in
many difficulties in accurately predicting SST [3], [4].

Currently, SST prediction methods are mainly divided into
three categories: numerical models based on physics, data-
driven techniques, and hybrids of the two. The numerical models
rely on the dynamical and thermal equations based on the
required initial and boundary conditions. They describe the
physical states using partial differential equations and make
predictions of future SST after conducting a large number of
calculations to derive numerical solutions [5], [6], [7]. Since no
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clear physical explanation can be given for the mechanism of
SST generation and evolution, the construction of such models
is generally inaccurate, relatively complex, and computationally
expensive. They are more suitable for large-scale SST prediction
with rough resolution. Starting from the characteristics of the
data and internal laws, the data-driven methods learn rules
from the data and make predictions by training a large number
of known samples. The methods mainly include a statistical
approach [8], genetic algorithm [9], and deep learning [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. Under the premise that a large amount of reliable
observation data is available, this type of method can obtain
satisfactory prediction results quickly. Now the hybrid approach
combines the numerical model and artificial neural network for
SST prediction [4]. Due to the use of two models, such a method
is the most intricate, consuming the most computing resources
and taking the longest time.

Through literature research, we find that most studies on SST
prediction using daily average data only focus on short- and
medium-term prediction (lead time≤ 10 days) probably because
it is difficult to find reliable dependencies from the long-term
complex time patterns in the future [10], [11], [12], [14], [15],
[16], [18], [19], [21], [22], [23]. The so-called long-term predic-
tion is weekly mean or monthly mean as the granularity interval
which is too rough [13], [17], [20], [24], [25]. No long-term
prediction studies with a prediction horizon ≥30 days based on
daily average SST have been reported.

Extending the lead time of SST is a key requirement for
practical applications, such as marine ecosystems and long-term
planning of marine activities. Benefiting from the self-attention
mechanism, transformer has gained a huge advantage in model-
ing sequential data dependencies, such as natural language pro-
cessing (NLP, [26]) and audio processing [27]. This brings light
to its introduction for SST prediction. However, the prediction
task is extremely challenging in the long-term prediction horizon
setting. First, it is unreliable to discover temporal dependencies
directly from long-term time series because dependencies may
be masked by entangled temporal patterns. Second, due to
the quadratic complexity of the sequence length, the canonical
transformer with the self-attention mechanism is computation-
ally prohibitive and difficult to be directly used for long-term
prediction.

Based on the traditional transformer, therefore, this article
uses generative decoding, embeds timing information, and adds
attention distillation/partial stacked connection to construct the
model named Transformer with temporal embedding, attention
Distilling, and Stacked connection in Part (TransDtSt-Part).
Five typical oceans of the China Sea are selected. With the help of
daily average SST, using univariate and multivariate prediction
patterns, the long-term prediction skill of TransDtSt-Part is com-
prehensively evaluated by comparing it with multiple baseline
models.

The rest of this article is organized as follows. The details
of the model proposed in this article are provided in Section II.
Section III clarifies the data used in this article and the research
area. Section IV evaluates the proposed model via experiments.
Finally, Section V concludes this article.

Fig. 1. Classic transformer architecture.

II. METHODS

A. Classic Transformer

Similar to recurrent neural networks (RNN), the classic trans-
former [28] is designed to process sequential input data and
is applied to tasks, such as translation and text summariza-
tion. It features self-attention, which differentially weights the
importance of each part of the input (including the recursive
output). Unlike RNNs, transformers process all inputs at once
during training. The self-attention mechanism provides context
for any position in the input sequence. Hence, to a large extent,
transformer solves the problems of RNN training inefficiency
and long-range dependency insufficiency. It should be noted
that during inference, the transformer decoder still uses the
autoregressive method for dynamic decoding.

The classic transformer for NLP first parses the input text into
tokens through a byte-pair-encoded tokenizer, and each token
is converted into a vector through word embedding. Then, the
tagged position information is added to the word embedding.

As shown in Fig. 1, the transformer model uses an encoder and
decoder architecture. The encoder consists of encoding layers
that iteratively process the input layer by layer, while the decoder
consists of decoding layers that perform the same operation on
the output of the encoder.

The function of each encoder layer is to generate an encod-
ing containing information about which parts of the input are
related to each other. It passes its encoding as input to the next
encoder layer. Each decoder layer does the opposite, taking all
the encodings and using their combined contextual information
to generate an output sequence. To achieve this, each encoder
and decoder layer uses a multihead scaled dot-product attention
mechanism. For each part of the input, attention weighs the
relevance of all other parts and extracts information from them
to produce output. Each decoder layer has an additional cross-
attention for incorporating the output of the encoder. Both the
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Fig. 2. Structure of TransDtSt-Part.

encoder and decoder layers have a feedforward neural network
for additional processing of the output and contain residual
connection and layer normalization steps.

B. TransDtSt-Part Model

LSTM and its variants, which have been used in NLP, have
also been employed to predict SST [23], [24]. Inspired by the
great success of transformer and the similarity to a certain extent
between SST prediction and sequence tasks, such as machine
translation, according to the characteristics of SST time-series
prediction, we make the following improvements to construct
the model TransDtSt-Part.

1) Employing generative decoding to improve the recur-
sive output form of the traditional transformer, which is
inefficient and has accumulated errors, to heighten the
prediction skill.

2) Considering the time-dimensional information that has not
been employed in the previous SST prediction works, and
adding timestamp embedding.

3) Performing attention distilling and partial stacked connec-
tion of the encoder to improve the prediction accuracy and
enhance the robustness.

The article designs a deep-learning network for SST long-
term prediction and the structure of the TransDtSt-Part with
attention distilling and partial stacked connection is exhibited
in Fig. 2.

From bottom to top, these three improvements correspond
to the black dotted boxes marked (1), (2), and (3) in Fig. 2,
respectively. These improvements will be detailed as follows.

1) Generative Decoding: As shown in Fig. 2, the input Xen

of the stacked encoder before embedding is the daily average
data of SST for n days from the historical (t − n)th day to the
current tth day (seqlen). The start token strategy is successfully
applied to NLP [26], and we extend it into a generative way
in the article. Instead of choosing specific flags as the token,
we sample a long sequence in the input, that is, sampling a
sequence of length (labellen) in the input sequence of the stacked
encoder before embedding (namely, the daily average data of
SST from the day (t − x)th to the day tth in Fig. 2, x ≤ n, i.e.,
labellen ≤ seqlen). The initial values of the expected prediction
horizons [day (t + 1)th–day (t + m)th, a total of predlen days]
are m zeros, and are connected as the input of the decoder before
embedding.

In Fig. 2, the SST sequence Xtoken is used as the start token
to lead the initial values of the target sequence into the classic
transformer decoder. Through a forward process, the multistep
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Fig. 3. Sample formation instructions.

prediction output (namely, the “outputs” in Fig. 2) can be ob-
tained. In this way, the sudden drop in the inference speed of the
original “dynamic decoding” in the long prediction is alleviated,
and the accumulation of errors is avoided.

As shown in Fig. 3, for a new sample, the lookback window
SST with a length of seqlen moves forward one step as a
whole, and the predlen prediction also moves one step forward
accordingly. Repeat this to form k samples and one batch.

2) Temporal Embedding: In previous articles on deep learn-
ing to predict SST, temporal dimension information has not
been exploited. The ability to achieve remote independence
requires global information, for example, hierarchical times-
tamps (week, month, and year). These are rarely exploited in
canonical self-attention, so a query-key mismatch between the
encoder and decoder may lead to a potential drop in prediction
performance.

In this article, before the SST enters the stacked encoder and
decoder, we perform three forms of embedding on the input
and superimpose them. The three forms of embedding are as
follows.

1) Position embedding: Similar to NLP, it is required to
deal with longer inputs in long-term SST prediction, so
a parallel input strategy is adopted. However, consider-
ing the contextual relationship between time-series SST
data, position embedding needs to be added. Hence, we
follow the embedding operation in [28]. Specifically, it is
formalized by

PE(pos,2i) = sin
(
pos/

(
(10 000)

2i
dmodel

))
PE(pos,2i+1) = cos

(
pos/

(
(10 000)

2i
dmodel

))
(1)

where pos represents position, i represents dimension, and
dmodel represents embedding vector dimension.

2) Timestamp embedding: Temporal embedding is per-
formed on the timestamp information corresponding to
the encoder and decoder inputs, respectively, to access

the global context information. Embedded coding is per-
formed according to the timestamp interval type. This
article uses daily average SST data, that is, the timestamp
interval is “day.” Assuming that each day is indexed from
0, it is encoded into week, month, and year. The encoding
formulas are as follows:

indexdayofweekencoded =
2× indexdayofweek

6
− 1

(2)

indexdayofmonthencoded =
2× indexdayofmonth

30
− 1

(3)

indexdayofyearencoded =
2× indexdayofyear

365
− 1

(4)

where indexdayofweek ∈ [0, . . . , 6], indexdayofmonth ∈
[0, . . . , 30], and indexdayofyear ∈ [0, . . . , 365].

With the help of (2), (3), and (4), the timestamp “day” is encoded
into three vectors and then passes through a linear layer
with the input dimension 3 and output dimension dmodel for
timestamp embedding.

3) Scalar projection: To align the dimension, one-
dimensional (1-D) convolution is performed with ker-
nelsize 3, stride 1, padding 1, and the circular padding
mode, and the encoder and decoder inputs are separately
projected.

3) Attention Distilling and Partial Stacked Connection: In
the long-term prediction task of SST, more computing resources
are consumed because of long time series. To improve the
prediction ability of the model, given the redundant combination
of values V in the feature map of the entire encoder, we first use
the distilling operation to sample, greatly reducing the input size,
and prioritize the attention scores with dominant features. Then,
the input is halved encoder-by-encoder to enhance the distilla-
tion robustness, and the distilling layer is reduced accordingly
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Fig. 4. Encoder stacking process in TransDtSt-Part network.

to align the output of each encoder. Finally, the outputs of all or
partial encoders are concatenated to form the final feature map.

The whole process of the encoder stacking is shown in Fig. 4
(take stacking three encoders as an example).

According to the encoder settings of the traditional trans-
former, Fig. 5(a) exhibits that the encoder layer mainly includes
scaling dot product multihead self-attention, residual connec-
tion, layer normalization, feedforward, activation, and dropout,
where feedforward mainly includes the 1-D convolution Conv1d
with parameters kernelsize 1, padding 0, and stride 1 to realize
the effect of a fully connected structure [28], activation, and
dropout.

As shown in Fig. 5(b), the distilling layer mainly consists
of downsampling (1-D convolution, parameters: convolution
kernelsize 3, padding 2, stride 1, padding mode circular), batch
normalization, activation (function selected as ELU [29]), and
maximum pooling. In particular, stride = 2 in the maximum
pooling is employed to achieve halved self-attention “distilling.”

It should be pointed out that we investigate the effect of
the encoder stacking connection length on the SST prediction
performance, and discover that probably due to receiving more
long-term information, a longer stack is more sensitive to the
input, resulting in the prediction effect of connecting all encoders
is inferior to that of partial connecting encoders (for details,
please refer to the prediction indicators of models TransDtSt-
All and TransDtSt-Part in Supplementary Material A. Ablation
study). Therefore, in the model TransDtSt-Part, we take the
most robust strategy of joining Encoder I and Encoder III of
Fig. 4.

Fig. 5. Encoder layer and distilling layer in stacked encoder. (a) Encoder layer.
(b) Distilling layer.
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Fig. 6. Research area.

III. DATA AND RESEARCH AREA

A. Data

Similar to many works of literature that employ deep-learning
techniques to predict SST [19], [20], [21], [22], the source data
come from multiyear daily average data in the Optimum Interpo-
lation High-Resolution SST Dataset Version 2 (OISST) provided
by the Physical Sciences Laboratory of National Oceanic and
Atmospheric Administration. The time range of the dataset is
from September 1981 to the present, and the spatial coverage
is 89.875 °S to 89.875 °N and 0.125 °E to 359.875 °E with a
spatial resolution of 0.25 ° latitude by 0.25 ° longitude. Models
are trained, validated, and tested on OISST as ground truth.

B. Research Area

To accurately compare the effects of our method in differ-
ent China Sea areas, the interest subareas of the five typical
oceans should be equal in size. Since the Taiwan Strait is a
strip-shaped region and the research area that can be selected is
relatively limited, 5 × 5 pixels is basically the largest square
region in the OISST dataset. Meanwhile, we also consider
the application effect of our model in nearshore and offshore
areas. The subregions of the Taiwan Strait and Bohai Sea in-
clude the coastal areas, while those in the Yellow Sea, East
China Sea, and South China Sea belong to the open sea. As
shown in the red boxes of Fig. 6, the longitude and latitude
coordinate ranges of the five sea areas from north to south
are Bohai Sea (119.625 °E–120.625 °E, 38.625 °N–39.625 °N),
Yellow Sea (122.125 °E–123.125 °E, 35.125 °N–36.125 °N),
East China Sea (124.125 °E–125.125 °E, 29.125 °N–30.125 °N),

Taiwan Strait (118.875 °E–119.875 °E, 23.625 °N–24.625 °N),
and South China Sea (115.125 °E–116.125 °E, 19.125 °N–
20.125 °N).

IV. EXPERIMENTS AND RESULTS

A. Dataset Partitioning and Preprocessing Method

We use a total of 40 years of data from 1982 to 2021 and divide
by the volume of 7:1:2, i.e., 1982–2009 as the training dataset,
2010–2013 as the validation set for hyperparameters tuning, and
2014–2021 as a test set to evaluate the generalization ability of
the model in the face of new data. In this article, mean-variance
normalization is employed to preprocess the SST training set
and applied to the validation and test datasets in the same way.

B. Baseline Models

Four baseline models are selected for predictive performance
comparison, i.e., RNN-based model LSTM [30], CNN-based
model TCN [31], transformer-based model informer [32], and
interpretable time-series prediction model N-BEATS [33].

C. Hardware Platform and Software Environment

The experiments of the proposed model and baseline mod-
els are carried out on the following hardware configurations:
CPU-Intel i9-9900k, RAM-64G, NVIDIA Geforce RTX 2080Ti
11G. The software environment adopts the Win10 Operating
System, Integrated Development Environment Pycharm, and
deep-learning framework PyTorch (1.10.1).

D. Hyperparameters

The hyperparameters to be determined in the prediction of the
model TransDtSt-Part are as follows:

1) Number of encoder layers: elayers = [3, 4, 5, 6].
2) Number of decoder layers: dlayers = [1, 2].
3) Generate dimensions of all sublayers and embedding lay-

ers in the model: dmodel = [128, 256, 512].
4) Dimension of feedforward network layer: dff = [512,

1024] and dff > dmodel.
5) Training epoch: epoch = [10, 15, 20].
6) Training with the early stop strategy, involving waiting for

patience: patience = [3, 5].
Since the TransDtSt-Part model has a large number of hy-

perparameter combinations, the screening workload is relatively
large. Considering the cost of time and computing resources, for
some lead time in a certain ocean and univariate/multivariate
prediction pattern, we first fix the parameters epoch = 10,
patience = 3, and use grid search to determine the best pa-
rameters of elayers, dlayers, dmodel, and dff. That is, construct
networks through various hyperparameter combinations within
the screening range, model fitting on the training dataset, and
choose the hyperparameters corresponding to the best prediction
results on the validation set as the optimal values. Then, fix
the selected best hyperparameters (elayers, dlayers, dmodel, and
dff), set different epoch/patience combinations, compare the
prediction performances on the validation dataset, and determine



4286 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

the best epoch and patience (taking the Bohai Sea as an example,
Section B in the Supplementary Material shows the optimal
hyperparameter determination process and results).

Other fixed hyperparameters: the activation function is gelu,
the initial learning rate lr = 0.0001, the number of heads nheads
= 8, batchsize = 32, and dropout = 0.05.

E. Loss Function and Optimizer

We choose MSE as the loss function when predicting SST,
and the loss is passed back to the whole model from the decoder
output. The optimizer selects Adam.

F. Predictive Pattern

Specifically, the univariate prediction pattern refers to taking
the historical data of the geographical center grid point of the
interesting region as input, feeding each model, and obtaining the
multistep prediction of the point at one time. The multivariate
prediction pattern refers to using all the historical data of the 25
grid points of the interesting area as input, feeding each model,
and getting multistep predictions for all points at once.

G. Metrics

As shown in Fig. 3, the metrics of whole length predlen pre-
dictions in all samples are calculated to evaluate the predictive
skill.

According to (5) and (6), the RMSE and MAE between the
ground truth and the prediction are calculated as evaluation
indicators. A lower RMSE or MAE indicates a better prediction

RMSE =

√∑n
i=1 (yi−xi)

2

n
(5)

MAE =

∑n
i=1 |yi−xi|

n
(6)

where yi(i= 1, . . . , n) is the prediction, xi(i= 1, . . . , n)is the
ground truth, and n is the number of samples.

H. Main Results

Table I shows univariate SST predictive skill for
five sea subregions and lead times of predlen ∈ {30, 60,
90, 180, 270, and 360} days. Also, Table II is for the multi-
variate case. Since the change cycle of SST is in years, seqlen
= 360 days is chosen. And predlen ≤ labellen ≤ seqlen, seqlen
= labellen + predlen could generally achieve better prediction
results (Section C in Supplementary Material will give the
prediction performance with fixed seqlen and different labellen).
Hence, when predlen ∈ {30, 60, 90, 180} days, seqlen is equal
to 360 days, correspondingly labellen ∈ {330, 300, 270, 180}
days. And when predlen ∈ {270, 360} days, seqlen = labellen
= 360 days.

In addition, we examine the relationship between encoder
input length and model performance. So Tables I and II also
include the prediction errors of each model when seqlen ∈
{360, 540, 720} days, and labellen = predlen = 360 days.

Fig. 7. Univariate, all oceans, number of prediction improvement rate inter-
vals of TransDtSt-Part relative to N-BEATS. (a) All lead times. (b) Lead times
≥ 180 days.

In the prediction effect comparison of the baseline models, we
call the models LSTM, N-BEATS, and TCN of the Library Darts
and use the Library Optuna for hyperparameter screening. Note
that N-BEATS achieves multivariate prediction by flattening the
model input into a 1-D series and reshaping the output into
a tensor of appropriate size, while TCN requires seqlen to be
greater than predlen during prediction, so the symbol “×” is
employed to fill in the prediction blanks of seqlen = predlen =
360 days in Tables I and II.

1) Analysis of SST Univariate Prediction Results: Following
conditions can be found in Table I.

1) From the perspective of the lead times of 30–360 days in
each ocean, the prediction error of the model TransDtSt-
Part, which uses generative decoding to predict multiple
values in one step, has generally resisted the extended lead
time, showing the characteristics of a steady and slow rise
with the prediction horizon increasing.

2) For all oceans and all lead times, the prediction error
of TransDtSt-Part is smaller than other baseline models
from the statistical values of the optimal prediction results
(i.e., the Count row). It is verified that the long-term SST
predictive skill of TransDtSt-Part is satisfactory with the
day as the fine-grained interval. When compared with N-
BEATS which has closer predictive performance, accord-
ing to the prediction improvement rate (RMSE and MAE
≤5%, 5%–10%, and ≥10%) of TransDtSt-Part relative
to N-BEATS, we count the counts of all lead times for all
research subareas (a total of 40 counting points), as shown
in Fig. 7(a).
As can be seen in Fig. 7(a), about half of the predictors
improve below 5%. However, if we consider the statistical
results of the prediction horizons ≥180 days [that is,
Fig. 7(b), a total of 25 count points], we find that the counts
whose metrics improve below 5% are greatly decreased,
while the number of improvements more than 5% does
not change. This phenomenon reveals that compared with
N-BEATS, a relatively large improvement occurs at a
longer lead time. In other words, TransDtSt-Part improves
more for a longer prediction horizon.

3) The prediction errors in the open seas of the Yellow
Sea, the East China Sea, and the South China Sea are
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TABLE I
SST UNIVARIATE PREDICTIVE SKILL OF THE MODELS WITH DIFFERENT PREDICTION HORIZONS IN THE FIVE SEA AREAS
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TABLE II
SST MULTIVARIATE PREDICTIVE SKILL OF THE MODELS WITH DIFFERENT PREDICTION HORIZONS IN THE FIVE SEA AREAS
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Fig. 8. Univariate, every ocean, all lead times, number of prediction im-
provement rate intervals of TransDtSt-Part relative to N-BEATS. (a) Yellow Sea.
(b) East China Sea. (c) South China Sea. (d) Bohai Sea. (e) Taiwan Strait.

relatively small (RMSE∼0.75 °C–1 °C, MAE∼0.6 °C–
0.8 °C), while those in the Bohai Sea and the Tai-
wan Strait are relatively large (RMSE∼0.95 °C–1.2 °C,
MAE∼0.75 °C–0.9 °C). The prediction effect of the open
sea is better than that of other oceans, which may be
attributed to the larger SST fluctuations in the coastal area,
while the SST in the open ocean area is relatively stable
[17], [21], [22], [24].
Divided by sea area, the number of prediction improve-
ment rates of TransDtSt-Part relative to N-BEATS is cal-
culated for all lead times, as shown in Fig. 8. It can be found
that the numbers of the three improvement rate intervals
in the Yellow Sea and the Bohai Sea are roughly the same,
while the improvement rates in the East China Sea, South
China Sea, and Taiwan Strait are concentrated below 10%.

4) The prediction accuracy of the model TransDtSt-Part is
significantly higher than that of the models LSTM for each
ocean and each lead time. This may be due to the fact
that LSTM adopts autoregressive decoding, so the model
prediction error accumulates as the lead time increases.
Since the period of the SST signal is about 360 days, the
TCN prediction error is smaller than other lead times when
seqlen is an integer multiple of 360 days (i.e., seqlen = 720
days). The predictive skill of TransDtSt-Part that considers
full attention is better than that of Informer only with part
of the attention coefficients.

2) Analysis of SST Multivariate Prediction Results: Similar
to the analysis of univariate prediction results, the following
conclusions on SST multivariate prediction results (Table II)
are drawn.

1) The model TransDtSt-Part also has a trend of a steady and
slow rise in performance as the lead time becomes longer.

2) In all research areas, the prediction error of TransDtSt-
Part is smaller than that of other baseline models at all
prediction horizons.
From Fig. 9, compared with N-BEATS, TransDtSt-Part
improves more for longer lead times.

Fig. 9. Multivariate, all oceans, number of prediction improvement rate
intervals of TransDtSt-Part relative to N-BEATS. (a) All lead times. (b) Lead
times ≥ 180 days.

Fig. 10. Multivariate, every ocean, all lead times, number of prediction
improvement rate intervals of TransDtSt-Part relative to N-BEATS. (a) Yellow
Sea. (b) East China Sea. (c) South China Sea. (d) Bohai Sea. (e) Taiwan Strait.

3) The prediction errors in the open seas of the Yellow Sea,
the East China Sea, and the South China Sea are rel-
atively small (RMSE∼0.75 °C–1.20 °C, MAE∼0.60 °C–
0.95 °C), while those in the Bohai Sea and the Tai-
wan Strait are relatively large (RMSE∼1 °C—1.25 °C,
MAE∼0.80 °C–1.0 °C).

Fig. 10 exhibits the statistical value of the number of pre-
diction improvement rate intervals of TransDtSt-Part relative to
N-BEATS for all prediction horizons and research areas. The
numbers of the three improvement rate intervals in the Yellow
Sea are roughly equal, the improvement rates in the Bohai
Sea are distributed at both ends of ≤5% and ≥10%, and the
improvement rates in the East China Sea, South China Sea, and
Taiwan Strait are concentrated below 10%.

3) Relationship Between Encoder Input Length and Model
Performance: From Tables I and II, the prediction re-
sults of TransDtSt-Part present area-specific for seqlen ∈
{360, 540, 720} days, labellen = 360 days, and predlen = 360
days. Specifically, for the univariate case, the prediction errors
of the Bohai Sea and the Yellow Sea decrease with the increase
of seqlen, while the prediction errors of the East China Sea,
the Taiwan Strait, and the South China Sea increase. For the
multivariate case, the prediction error of the East China Sea
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TABLE III
SEASONAL PREDICTION ERROR—UNIVARIATE PREDICTION SHOWCASE OF BOHAI SEA

Fig. 11. Under the univariate pattern, the predictions (predlen = 360 days with seqlen = 720 days) of (a) TransDtSt-Part, (b) LSTM, (c) N-BEATS, (d) TCN,
and (e) informer on the Bohai Sea. The orange/blue curves stand for slices of the prediction/ground truth.

Fig. 12. Under the univariate pattern, the correlations between the predictions (predlen = 360 days with seqlen = 720 days) of (a) TransDtSt-Part, (b) LSTM,
(c) N-BEATS, (d) TCN, and (e) informer and the ground truth on the Bohai Sea. The dark red dash line stands for the 1:1 line.

decreases with the seqlen increasing. The prediction errors of
the Bohai Sea, the Yellow Sea, and the Taiwan Strait increase
first and then decrease. But the South China Sea is the opposite,
first decreasing and then increasing.

4) Univariate Prediction Showcase: Fig. 11 shows the pre-
diction slices of the model TransDtSt-Part and the baseline
models in the Bohai Sea with seqlen = 720 days, labellen =
360 days, and predlen = 360 days. Fig. 12 shows the correlation
between each model’s prediction and ground truth.

It can be seen from Fig. 11(b) that due to the autoregres-
sive decoding, the LSTM prediction error continues to ac-
cumulate, and the prediction curve seriously deviates from

the ground truth. From Figs. 11(c), (d), and 12(c), (d), N-
BEATS and TCN have larger prediction errors at some troughs
(2 °C–5 °C) and peaks (22 °C–25 °C). Although in Figs. 11(a),
(e), and 12(a), (e), informer and TransDtSt-Part have rela-
tively poor performance in the low-value part of SST, they
will be more in line with the ground truth in the high-value
part of SST. Compared with informer, the overall predictive
skill of TransDtSt-Part considering all attention coefficients is
better.

5) Multivariate Prediction Showcase: Taking the South
China Sea as an example, when the predlen is 270 days, Fig. 13
exhibits the slices of the last dimension of the prediction results
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TABLE IV
SEASONAL PREDICTION ERROR—MULTIVARIATE PREDICTION SHOWCASE OF SOUTH CHINA SEA

Fig. 13. Based on the multivariate pattern, the predictions (predlen = 270 days with seqlen = 360 days) of (a) TransDtSt-Part, (b) LSTM, (c) N-BEATS,
(d) TCN, and (e) informer on the South China Sea. The orange/blue curves stand for slices of the prediction/ground truth.

Fig. 14. Based on the multivariate pattern, the correlations between the predictions (predlen = 270 days with seqlen = 360 days) of (a) TransDtSt-Part,
(b) LSTM, (c) N-BEATS, (d) TCN, and (e) informer and the ground truth on the South China Sea. The dark red dash line stands for the 1:1 line.

and the corresponding Ground truth. Fig. 14 shows the correla-
tion between the prediction and Ground truth at this time.

The prediction performance of LSTM in Figs. 13(b) and 14(b)
is even worse, and the model cannot make normal predictions
and finally presents a straight line. TCN has also been unable to
capture the individual long-range dependencies between outputs
and inputs for SST long-sequence [Figs. 13(d) and 14(d)]. From
Figs. 13(c) and 14(c), N-BEATS exhibits overestimation at the
lower SST (22 °C–24 °C) and underestimation at the higher SST
(28 °C–30.5 °C) under this case. In Fig. 13(a) and (e), informer

and TransDtSt-Part can still accurately grasp the long-term
change trend of SST. On the whole, informer’s prediction is
more fluctuating, and the prediction curve of TransDtSt-Part is
smoother. Both informer and TransDtSt-Part have large predic-
tion errors in the range of 24 °C–28 °C [Fig. 14(a) and (e)].

6) Seasonal Prediction Error Analysis: For all SST predic-
tion slice data in the univariate prediction showcase (i.e., Bohai
Sea with seqlen = 720 days, labellen = 360 days, and predlen
= 360 days) and multivariate prediction showcase (i.e., South
China Sea with seqlen = 360 days, labellen = 360 days, and
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predlen = 270 days), according to the four seasons of Win-
ter (Jan.–Mar.), Spring (Apr.–Jun.), Summer (Jul.–Sep.), and
Autumn (Oct.–Dec.), the average predictive skills of TransDtSt-
Part and the baseline models are calculated, respectively, as
shown in Tables III and IV.

It is easy to find from Tables III and IV that except for the
Spring in the univariate prediction of Bohai Sea, the prediction
performance of the TransDtSt-Part model is slightly inferior to
that of the informer and its predictive skills are the best in other
seasons. It proves the excellent seasonal SST prediction ability
of the TransDtSt-Part model.

V. CONCLUSION

We focus on the long-term prediction of SST in the China
Sea at a fine-grained daily level in the article. Transformer
has powerful time-series modeling capabilities, but it also
with some disadvantages, such as high computational com-
plexity, low autoregressive decoding efficiency, and easy ac-
cumulation of errors. We make targeted improvements to build
the model TransDtSt-Part: using generative decoding, embed-
ding time-dimensional information, and introducing attention
distilling and partial stacked connection. Among the exten-
sive experiments of two prediction patterns and multiple lead
times in the five China Sea regions, the prediction perfor-
mance of the model TransDtSt-Part outperforms all compet-
itive baseline models to varying degrees, proving its excel-
lent long-term predictive skill of SST. It may be helpful for
many urgent long-term requirements in marine and climate
applications.
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