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CGMMA: CNN-GNN Multiscale Mixed Attention
Network for Remote Sensing Image

Change Detection
Yan Zhang , Xinyang Song , Zhen Hua , and Jinjiang Li

Abstract—Remote sensing change detection (CD) networks have
been increasingly powerful with the application of convolutional
neural networks (CNNs) and transformers. The CNN-based CD
method with a CNN backbone has been widely used and plays
an significant role. In complex spatial relationships within remote
sensing images, CNNs may face limitations due to the restricted
receptive field, making it challenging to handle intricate pixel
relationships effectively. Therefore, to address this limitation of
CNNs, we introduce vision graph neural network (ViG) to tackle
the constrained receptive field issue. In addition, we propose a
backbone network named Congraph, which integrates convolution
and graph interaction. Congraph simultaneously leverages local
information from CNNs and global information from GNNs, en-
abling more comprehensive feature extraction for more accurate
change detection. Furthermore, we introduce a multiscale mixed
attention (MMA) module to make the model focus on different
scale feature information. MMA replaces small-scale features in
the multilayer encoder with self-attention to capture global feature
information within small-scale features. Finally, we feed bitemporal
features into a transformer module to obtain feature difference
information and generate the ultimate feature difference map.
Through extensive experiments on the LEVIR-CD, WHU-CD, and
GZ-CD datasets, our method demonstrates more significant perfor-
mance advantages compared to the current state-of-the-art change
detection methods.

Index Terms—Attention mechanism, convolutional neural
network (CNN), graph convolution, remote sensing change
detection (CD), transformer.

I. INTRODUCTION

R EMOTE sensing change detection (CD) is a vital research
area in the remote sensing community. The detection of

changes occurring on the Earth’s surface over time has sig-
nificant implications. This research typically focuses on high-
resolution satellite remote sensing images captured over the
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Fig. 1. Remote sensing image building change detection task diagram. The
yellow boxes indicate nonchange regions possessing different features, and the
red boxes indicate nonchange regions with nontarget features.

same area at different points in time [1]. Various image process-
ing and pattern recognition techniques are employed to extract
change information from the multitemporal remote sensing data
to detect and characterize surface changes in relevant areas.

The CD task has various application scenarios based on the
variation markers in the given scenario. Currently, CD has
been successfully applied in urban management [2], damage
assessment [3], deforestation [4], environmental monitoring [5],
and cropland change [6]. For example, in Fig. 1, even the same
target object shows slight feature differences between the yellow
boxes. In addition, the performance requirements are higher
because some regions are considered pseudovarying regions,
and therefore should not be labeled in the final binary detection
map, such as the region in the red box with seemingly varying
features.

Early traditional CD images used algebraic operations to
calculate the differences in RS data, enabling the processing
of lower resolution RS data. Typically, clustering [7], threshold-
based approaches [8], or change vector analysis [9] were used
to compute binary CD images based on image segmentation
techniques.

With the significant advancements in deep learning (DL) for
image processing, the efficiency of remote sensing image pro-
cessing has greatly improved. Numerous convolutional neural
network (CNN)-based methods have been introduced into CD
tasks [10], [11], and [12]. Building upon the foundation of pure
convolutional CD methods, some researchers have attempted to
stack additional convolutional layers [13], [14], [15], [16], [17],
and [18] or utilize expanded convolutions [15] to extend the
receptive field (RF). Attention mechanisms have also emerged
as a new direction to expand the RF for better contextual
modeling [13], [14], [19], [11], and [20]. Attention-based CD
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Fig. 2. Overall network architecture of CGMMA, which includes siamese feature extraction backbone and transformer module. The feature extraction backbone
consists of Congraph and a multiscale mixed attention module. The transformer module consists of a tokenizer, a transformer encoder and a transformer decoder.

methods have been developed to improve detection accuracy to
some extent. However, previous channel or space-based atten-
tion mechanisms rely on stacked convolutional layers for feature
extraction backbone. Although self-attention has a good effect
of modeling interpixel relationships, the computational power
consumption increases.

With the successful adoption of transformer in the CD
task [21], their powerful contextual modeling capability has
been utilized to capture longer range dense relationships, which
compensates for the limitation of traditional convolutional and
attentional mechanisms. In fact, even using a shallow CNN
backbone, transformer-based approaches have achieved better
results than deep pure convolutional methods. A large number
of transformer-based methods have been proposed [22], [23],
and [24], demonstrating their significant prominence in the field
of CD.

In recent years, graph convolution-based image processing
methods in the remote sensing field have received increasing
attention. Remote sensing images have high dimensionality,
complex textures, and large scales, making traditional image
processing methods often unable to handle this type of data.
Therefore, graph convolution-based methods have become a
new solution. Graph convolution is a technique for convolutional
operations on graph data, different from traditional pixel-based
convolution. It treats the image as a graph, with each pixel
corresponding to a node in the graph and the relationships
between pixels corresponding to edges in the graph. By per-
forming convolution operations on the nodes and edges of the
graph, spatial features and local structures in the image can be
effectively captured. In remote sensing image processing, graph
convolution-based methods can be used for tasks, such as image
classification [25], [26], and [27], object detection [28], and
image segmentation [29]. Currently proposed graph convolu-
tional networks use the capabilities of both CNNs and GCNs
to capture the dependencies between features, enhance feature
representation, and achieve good results [30], [31], [32], and

[33]. For example, Liu et al. [25] proposed a heterogenous
deep network called CNN-enhanced GCN (CEGCN), where
complementary feature maps are generated at the pixel and
superpixel levels. Similarly, methods such as [26] and [27] also
use a combination of CNN and GCN. Although these methods
achieve feature complementarity between CNNs and GCNs,
this is only a simple feature interaction mechanism, and the
intermediate features of CNNs and GCNs are still ignored.

In this article, we introduce a CNN-GNN interactive mul-
tiscale mixed attention (CGMMA) remote sensing image CD
network, as shown in Fig. 2. In our approach, we propose a
high-performance hybrid backbone called Congraph and MMA
module that effectively integrates feature information. Congraph
allows the CNN branch and GNN branch to complement each
other and make full use of their respective information features,
which can maximize the perception of local and global features.
MMA can better model overall feature information based on in-
formation extracted at different scales, enabling better informa-
tion interaction between features at different scales, which com-
pensates for the global or local features that we ignore without
stacking downsampling layers, and has lower computational cost
than multihead self-attention (MSA). Finally, we use the bitem-
poral image features extracted by Congraph and MMA, convert
them into tokens, and feed them into a transformer to capture
their temporal changes and generate a feature difference map.

Our contribution can be summarized as follows.
1) We designed a hybrid backbone called Congraph. It

consists of multiple stages of feature interaction using
high-performance DO-Conv, which combines traditional
convolution with depthwise convolution, and the vision
graph neural network (ViG), which has a wide RF. This
design allows for maximum perception of local and global
features.

2) We propose an MMA module that balances global and
local features, which are used to extract image details (e.g.,
building edges and shapes) and global structures (e.g.,
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target colors and textures). Furthermore, the multiscale
cross-attention (MSCA) is used to adaptively focus on
features at different scales, thereby improving the perfor-
mance of the model.

3) We outperform current state-of-the-art CD methods in
terms of performance. We conducted extensive experi-
ments on three datasets: LEVIR-CD, WHU-CD, and GZ-
CD, and the results demonstrate that our method performs
well on all datasets, with even better performance on the
most authoritative dataset LEVIR-CD.

The rest of this article is organized as follows. Section II de-
scribes the nontransformer-based approach with the transformer
based CD approach under the DL approach. In Section III, we
describe the design ideas in our method in detail. In Section IV
we summarize and analyze a large number of experimental
reports. Finally, Section V concludes this article.

II. RELATED WORK

As DL technology continues to advance, numerous novel
methods based on convolution, attention mechanisms, and trans-
formers have emerged for the CD task. Currently, these methods
have made significant efforts to explore how to better implement
the CD task, resulting in many innovative approaches based on
different techniques.

According to whether a training sample set is established and
labeled samples are used for learning, existing CD methods can
be divided into unsupervised CD methods [34] and [35] and
supervised CD methods [10] and [36]. Currently, researchers
are focusing their efforts on supervised CD methods. Moreover,
based on how the network processes remote sensing images,
CD methods can be classified into single-stream models [37] and
[38] and dual-stream models [11], [19], [21], [22], [39], and [40].
In the single-stream model, the bitemporal images are usually
fused during the preprocessing stage (based on connection or dif-
ference) and treated as a single input to the entire network, which
makes the CD method only need to perform the cost of a single
network. On the other hand, the dual-stream model is the current
mainstream approach, which converts the bitemporal images
into feature maps and then uses various DL-based analysis meth-
ods to generate CD masks. In the dual-stream model, the feature
extraction process of the bitemporal images can be divided into
Siam-based [11], [22], and [40] and pseudo-Siam-based [21]
and [24] structures. Recently, there has been a growing focus
on the global modeling ability of transformer in the CD task.
The continuous improvement of transformer’s capabilities has
made it a promising direction for further research. In addition,
GNN which excel in modeling graph structures, have also shown
great potential in remote sensing applications [25], [26], [27],
and [28] and have been found to outperform transformers in
some cases. In the following, we will introduce related works in
the field of CD based on three different approaches: CNN-based
CD methods, GCN-based CD methods, and transformer-based
CD methods.

A. CNN-Based CD Method

The powerful feature representation ability of CNN has been
demonstrated in various fields, making it an indispensable part

of the CD task. In the early days of CNN methods for CD,
Daudt et al. [10] proposed the fully convolutional neural network
(FCN) with three processing methods that are still important for
current research. This study was the first to attempt to use excel-
lent segmentation models in the CD task using CNN methods
and tried different processing methods for single-stream and
dual-stream models. However, early traditional CNN methods
were limited by RFs and could not provide global information
effectively. Therefore, Song et al. [38] introduced dilated con-
volution to replace traditional convolution, which increased the
RF and improved the contextual modeling ability.

In addition, in order to obtain better feature extraction ability,
attention mechanisms have become an integral part of CNN
networks and have been continuously improved, playing an im-
portant role. Based on Daudt et al.’s work [10], Li et al. [41] used
the feature attention ability brought by the attention mechanism
to further improve the processing effect of feature difference
maps. This also proves that attention mechanism does have a
good improvement on the basis of CNN. Therefore, with the de-
velopment of attention mechanism, a large number of innovative
new CD methods have emerged. For example, Fang et al. [40]
used channel attention to fuse different scale feature information
on the basis of the Unet++ model, and achieved certain improve-
ments in performance compared to pure CNN networks. Chen
et al. [13] incorporated a self-attention to emulate spatiotemporal
relationships, integrating it into the feature extraction process,
resulting in the design of a self-attention-based CD network.

Simply relying on the attention mechanisms for improving the
network’s performance is not enough. Methods, such as dense
connections, which integrate multiscale features [40] or deep
supervision [11] also play a crucial role in enhancing perfor-
mance. While CNN-based and attention-based approaches have
improved feature representation, FCN-based frameworks with
fixed local RFs are limited in their ability to model long-range
dependencies. Furthermore, to achieve superior results, CNN
backbones have become increasingly complex, with many net-
works stacking additional attention modules on top of already
deep convolutional stages.

Based on our analysis, we propose a CD method that utilizes
MMA module. We leverage the long-range modeling capability
brought by self-attention and design a mixed method for multi-
scale self-attention, which considers both local and global fea-
tures. We have integrated the MMA module into the Congraph
hybrid backbone, resulting in more performance improvements
in the overall network.

B. GCN-Based CD Method

In high-resolution remote sensing images, the images are
characterized by high dimensions, complex textures, and large
scales, which make it difficult for traditional image processing
methods to handle such data. Due to the loss of positional
information and global context information, most existing CNN
methods are insufficient to extract more details and global fea-
tures, resulting in incomplete and discontinuous results. In other
remote sensing fields, the combination of CNN and GCN has
made great progress, which also proves that GCN has a good
performance in processing remote sensing images.
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In remote sensing image research, many researchers have
combined GCN and CNN into a dual-stream model struc-
ture to interact the features of GCN and CNN. For example,
Liu et al. [25] proposed a heterogeneous deep network called
CEGCN, which utilizes the advantages of both CNN and GCN
and generates complementary feature maps at pixel and super-
pixel levels. Similarly, in [28] a similar dual-stream approach
using GCN to enhance CNN’s feature extraction capabilities was
proposed. Liang et al. [27] added information sharing between
CNN and GCN in the dual-stream structure.

Another type of structure is a single-stream model that com-
bines GCN and CNN, such as in [26] and [29], where GCN is
stacked on top of CNN in a single-stream model.

The aforementioned methods can achieve feature comple-
mentarity between CNN and GNN, but they only provide a
simple mechanism for feature interaction, ignoring more inter-
mediate features between CNN and GNN. Therefore, we hope
to transmit more information separately to the GNN branch and
CNN branch, so that the information from both branches can
interact at every step of the local and global feature informa-
tion. Therefore, we designed the Congraph model to allow full
information complementarity between GNN and CNN.

C. Transformer-Based Method

Transformer [42] has demonstrated strong capabilities in vari-
ous computer vision applications, including remote sensing CD.
In comparison to traditional attention mechanisms, transformer
offers irreplaceable advantages due to its nonlocal attention
mechanism. This mechanism can establish better global feature
correlations, which makes it ideal for remote sensing applica-
tions. Moreover, position information can be used to enhance
the modeling ability of context for long-term correlations be-
tween pixel features, which further improves the performance
of transformer.

Currently, transformer-based methods for CD tasks can be
divided into two structures: the twin transformer method [22]
and [23] and the pseudotwin transformer method [21]. Both of
these methods have achieved good results. In [21], Chen et al.
first introduced transformer into CD tasks and achieved good
results using only a shallow ResNet as the feature extraction
backbone. This also proves that transformer has more complete
modeling capabilities in the spatiotemporal domain, and this
approach achieves performance improvement while maintaining
low computational cost compared to previous CD methods. In
the parameter-sharing [22], transformer is used as the encoder
and completely replaces the use of CNN. Multiple layers of
transformer are used for parameter sharing, and decoding is
performed in a multilayer perceptron (MLP) to achieve CD. Sim-
ilarly, in [23], Swin Transformer is used instead of transformer
for encoding. This is also an important exploration of pure trans-
former structures in CD tasks. However, this pure transformer-
based approach increases the network’s computational cost to
some extent, although it can achieve better performance by using
more long-term connections.

As an efficient module for modeling global context, trans-
former’s application in the field of CD is an inevitable trend.

Algorithm 1: Implementation Process of Our CGMMA
Model.

Input: A,B (bitemporal image))
Output: M(a prediction change mask)
// step1 : Congraph feature extraction
FHB

1 = Congraph(A)
FHB

2 = Congraph(B)
// step2 : Multi− Scale mixed Attention Module
for i in {1, 2} do

Fi
4,Fi

3,Fi
2,Fi

1 = AvgPool(FHB
i )

FMS
i = MMA(Fi

4,Fi
3,Fi

2,Fi
1)

end
// step3 : Fusion of multi− stage features
for i in {1, 2} do

Fi = CAT (FHB
i ,FMS

i )
end
// step4 : Feature difference extraction
for i in {1, 2} do

Ti = Semantic Tokenizer(Fi)
Fi

new = Transformer(Fi,Ti)
end
// step5 : Obtain the change mask by prediction head
M = PH(|Fnew

1 − Fnew
2 |)

Moreover, it has been demonstrated in BIT [21] that transformer
has good performance in extracting image difference informa-
tion. Therefore, by leveraging the transformer module, we can
further improve the effect of feature extraction and calculate the
difference image of features.

III. METHODOLOGY

In this article, we propose a CGMMA for remote sensing
image CD. The overall architecture of the network is presented
in Fig. 2. Our proposed method comprises a Siamese feature
learning backbone and a transformer module. The feature
learning backbone includes the Congraph hybrid backbone and
the MMA module. To provide a more intuitive understanding
of our method, we present the detailed reasoning process in
Algorithm 1.

A. Congraph Hybrid Backbone

1) Overview: CNN’s ability in feature learning tasks is un-
deniable. In recent CD research, CNN still plays a crucial role.
Most studies enhance the feature extraction ability and improve
network performance by increasing the number of linear and
nonlinear layers in CNN. The recently proposed DO-Conv [43]
has shown stronger feature extraction ability than traditional
convolutional methods, and achieved significant performance
improvement with minimal parameter increase. However, this
pure CNN approach is still limited by the RF and difficult to
obtain better global features.

To obtain more comprehensive feature information, we con-
sider using ViG, which have a broad and flexible view, to
complement CNN features. Graph representation is a general
data structure. Compared with grid or sequence methods, graphs
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Fig. 3. Construction of Congraph includes two branches, the CNN branch and
the GNN branch. Each branch will pass its own feature information to the other
branch for interaction to enhance the feature extraction ability and generate more
complete feature maps.

can more flexibly handle complex objects with irregular shapes,
which is suitable for processing remote sensing images. Com-
pared to vision transformer (ViT), ViG models the relationships
between nodes, thus better handling structural information and
global relationships in images.

In order to utilize both local and global features for better
feature extraction, we designed a concurrent network structure
named Congraph, as shown in Fig. 3. Our design is inspired by
Conformer [44]. Congraph is a dual-stream model consisting
of a CNN branch and a GNN branch. Considering the com-
plementary nature of the two types of features, we integrate
the features from the ViG branch and the DO-Conv branch to
perform information interaction and execute information fusion
of the two branches in parallel. We will explain the different
parts of Congraph as follows.

2) Depthwise Overparameterized Convolutional: We em-
ploy DO-Conv [43] as the primary unit in the CNN branch.
DO-Conv offers advantages over traditional convolution in
that it combines depthwise and traditional convolution, deliv-
ering superior results under equal computational load. Let us
consider an input patch as P ∈ RC×M×N , where the train-
able kernels for depthwise convolution are represented by
D ∈ R(M×N)×Dmul×Cin , and for standard convolution by W ∈
RCout×Dmul×Cin . Here, Dmul = M ×N denotes the depth multi-
plier for depthwise convolution, where M and N are the spatial
dimensions of the patch. Cin stands for input channels, and Cout

represents output channels. We define the DO-Conv operation
as �, and its workflow can be represented as follows:

O = (D,W )� P

=
(
DT ◦W ) ∗ P (1)

where ∗ means traditional convolution, ◦ means depthwise
convolution, and DT ∈ RDmul×(M×N)×Cin is the transpose of
D ∈ R(M×N)×Dmul×Cin on the first and second axes. The RF of
DO-Conv remains M ×N throughout the operation. Although
DO-Conv slightly increases the number of parameters compared
to traditional convolution, its depthwise and pointwise convolu-
tions can be independently calculated, making the model more
computationally efficient. Moreover, the separation of depthwise
and pointwise convolutions in DO-Conv makes it easier to inter-
pret the model’s intermediate results and feature maps, leading
to a better understanding of how the model works. In summary,

DO-Conv offers several advantages, including fewer parame-
ters, high computational efficiency, strong generalization per-
formance, and interpretability. These advantages enable CNNs
to achieve good performance without significantly increasing
the number of parameters.

3) Vision GNN: The GNN branch operates on the input fea-
ture F ∈ RC×H×W . First, the image is divided into N patches
as in ViT. By converting these patches into a feature vector
xi ∈ RD, we obtain X = [x1, x2, . . ., xN ], where D is the fea-
ture dimension. To represent positional information, we add a
positional encoding vector to each node feature

xi ←− xi + ei (2)

where ei ∈ RD. The features in X are treated as a set of
unordered graph nodes, represented as V = {v1, . . ., vn}. Each
node vi can find K nearest neighboring nodes N(vi) and add
an edge eij from vj ∈ N(vi) to vi. In this way, we can obtain a
graph G = (V, ε), where ε represents all edges.

A graph is constructed based on the features of G,and the abil-
ity to aggregate the features of neighboring nodes and exchange
information through the graph convolution layer is performed
as follows:

G′ = F (G,W )

= Update (Aggregate (G,Wagg) , Wupdate) (3)

where Wagg and Wupdate are learnable weights for aggregation
and update operations, respectively. The aggregation operation
computes the current node’s feature by aggregating the features
of all neighboring nodes surrounding each node

x′i = h(xi, g(xi, N(xi),Wagg),Wupdate) (4)

where N(xi) is the set of xi neighbor nodes. For convenience
and efficiency, maximum relative graph convolution [45] is used
here. The aggregated features are divided into h heads, which
are then updated using different weights and finally concatenated
into the final value of

x′i =
[
h1W

1
update, . . ., hnW

n
update

]
. (5)

This update operation allows information within subspaces to be
processed in parallel while simultaneously updating information
in the spatial domain.

In previous GNNs, it was common to aggregate features ex-
tracted by iterative graph convolutional layers. The oversmooth-
ing phenomenon in deep GCNs [46] and [47] reduces the degree
features of node features, leading to a decline in performance
for target area recognition. To alleviate this problem, ViG blocks
introduce more feature transformations and nonlinear activa-
tions. After the graph convolution, a linear layer is employed
to project node features into a common domain, enhancing
feature diversity. To prevent layer collapse, a nonlinear activation
function is introduced following the graph convolution. This
enhanced module is referred to as the Grapher module, denoted
as

Y = σ (GraphConv (XWin))Wout +X (6)
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Fig. 4. Construction details of the multiscale mixed attention module are as follows. First, the input features are processed into four different scales of feature maps
through a pooling layer, and then input to the multihead cross self-attention (MSCA) module. The larger scale features are responsible for extracting fine-grained
features, while the smaller scale features are responsible for extracting global features. The local features and global features are then fused using MSCA, thereby
generating multiscale features.

TABLE I
CONGRAPH’S STRUCTURE, INCLUDING THE CNN BRANCH AND THE GNN

BRANCH

where Y ∈ RN×D, Win and Wout are the weight of fully con-
nected layers, σ denotes the activation function.

To enhance the capability of feature transformation and al-
leviate the smoothing effect, each node is equipped with a
feedforward network (FFN). The FFN module is a simple MLP
composed of two fully connected layers, as illustrated in the
following:

Z = σ (YW1)W2 + Y (7)

whereZ ∈ RN×D,W1 andW2 are the weight of fully connected
layers.

The ViG block, which serves as the fundamental building
block of the GNN branch, consists of a stacked Grapher and an
FFN module.

4) CNN-GNN Feature Interaction: In the final Congraph, we
divide it into four steps, as shown in Table I. The operations in
the CNN branch are similar to ResNet, with n 3 × 3 DO-Conv

layers in each stage. Similarly, in the GNN branch, each stage
includes n ViG blocks.

First, both the CNN branch and the GNN branch go through
a convolutional layer to transform the number of channels and
feature size, and then enter the DO-Conv block and ViG block
in the second step, respectively. In the DO-Conv block, we use
a 3 × 3 convolution and set the number of layers to 3. For the
ViG block, we divide it into 16 × 16 patches, set the number
of neighbor nodes to 9, and the number of nodes to 768. The
number of layers in ViG is set to 2. In the third step, to save
computational cost, downsampling is performed first to reduce
the feature size to RC×H/4×W/4. Then, the features from both
branches are fused. The information from the CNN branch is
passed into the GNN branch’s features, fused, and then passed
into the next ViG block. The fused graph information is still
divided into 16 × 16 patches, and the number of nodes is set
to 768. The number of layers in this ViG block is set to 6. The
output of ViG is passed back into the CNN branch for feature
fusion and then goes through a 16-layer deep DO-Conv block.
The operations in the fourth step are the same as those in the third
step, except that the number of layers in the DO-Conv block is
increased to 3, and the number of layers in ViG is set to 2. The
outputs of both branches in the fourth layer are fused and then
passed to the next step.

The reason why the second layer is set to be relatively shallow
is that the computational cost of a large size is too high, but
we still want to obtain more detailed information. The third
layer is the main layer for information extraction. Deep feature
extraction enables the network to better learn complex features.
Since too much downsampling is not suitable for segmentation
tasks, we use it as the main feature extraction size. In the third
step, the model has sufficient perception of global and detail
information of the image, so there is no need to further increase
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the number of layers or perform downsampling in the fourth
layer. This step only performs a simple fusion and extraction
of the information in the third step, while ensuring that both
branches obtain sufficient information and retaining more orig-
inal features.

This concurrent structure means that the CNN and GNN
branches can, respectively, maximize the perception of local
and global features, and complement each other in information,
achieving better feature extraction.

B. Multiscale Mixed Attention Module

To better integrate local detailed features and global features,
we designed MMA module, as shown in the Fig. 4. Using mul-
tiscale average pooling to generate multiple scales of features
allows the model to adaptively focus on different scale feature
information, thereby improving the performance of the model.
Then, using MSCA mechanism to weight different scale features
can better focus on the information of different scale features.
Unlike MSA, which enforces the same global attention on all
image blocks without considering other scale features, in MSCA
we divide MSA into four paths and use cross self-attention to
obtain complete feature information.

First, the input spatiotemporal images are processed through
the Congraph backbone to obtain a finely detailed feature map.
After undergoing the MMA operation of multiple scale average
pooling, four different scales of features, namelyF1,F2,F3, and
F4, the sizes are 64, 32, 16, and 8, respectively.F4 is the coarsest
feature layer, while F1 is the finest feature layer. The encoding
object inF1 is more focused on local details, so for the extraction
of detailed features, we use local window self-attention, which
is more efficient than using global attention to obtain the desired
results. The multihead operation used in F1 can be represented
as follows:

MH(F1, F1, F1) = Concat(head1, . . ., headn)W
0 (8)

where headi can be expressed as

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)

= σ

(
QKT

√
Dh

)
V (9)

where WQ
i , WK

i , and WV
i are the linear projection matrices for

query, key, and value, respectively. The dimension of each head
is denoted asDh. We setF1 and F2 to be feature maps that focus
more on local details. Therefore, the same operation as in F1 is
applied to F2.

The coarse feature map F4 is used in a similar manner as
F3, with the difference being that it has an even lower spatial
resolution and a higher focus on global features. The multihead
attention operation on F3 can be expressed as follows:

MH(F1, F3, F3) = Concat(head1, . . ., headn)W
0 (10)

where W 0 is the linear projection matrix for concatenating the
multihead attention. The representation of the head here is the
same as in (7), but the query is generated from feature F1.

Fig. 5. Construction details of the transformer module. It includes three parts:
tokenizer, transformer encoder, and transformer decoder.

In the allocation of heads, to achieve better efficiency, our
MSCA assigns double the number of heads in the standard MSA
layer to the four scaled features, where F1 and F2 are allocated
the same number of heads with a split ratio of α. F3 and F4 are
allocated the remaining heads with a split ratio of (1− α). The
attention maps of different scales are then aggregated to generate
the final feature output.

C. Transformer Module

After extracting features from the paired images, we pass them
through a transformer module for analyzing feature differences.
In the transformer module, features from the paired temporal
images are first processed by a tokenizer to represent them as
several high-level semantic features. These features are then
fed into an encoder to extract difference information, which is
subsequently mapped back to the original features in the decoder,
as shown in the Fig. 5.

For the bitemporal features Xi ∈ RN×C , we begin by con-
verting pixel-level information into two sets of tokens T1, T2 ∈
RL×C that encompass high-level semantic concepts using spa-
tial attention. Here, L represents the size of concept information
within each token. The tokenization process can be expressed
as follows:

Ti = (Ai)
T Xi = (σ (φ (Xi;W )))T Xi, i ∈ {1, 2} (11)

φ(·) denotes the pointwise convolution carried out using the
learnable kernel W ∈ RC×L. In addition, σ(·) serves to normal-
ize the attention maps Ai ∈ RHW×L for each semantic group.
T1, T2 are passed into the transformer encoder for contex-

tual modeling. The encoder is an NE-layer iterative structure
composed of normalization, MSA, and MLP. The MSA used
here is the classic MSA operation in transformer. After the
above-mentioned operations, new tokens T new

1 , T new
2 will be

obtained.
In the decoding operation, the optimized tokens T new

i will be
mapped back to the original features Xi through the decoder
structure, thus updating new weights. In the decoder, we have
improved the original MSA with a multihead cross-attention
(MCA) mechanism. In this approach, query are obtained from
Xi, while key and value are acquired from T new

i . The advantage
of this approach is that it helps avoid excessive computation
resulting from the dense relationships between pixels. This can
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be represented as follows:

MCA
(
FC
i , T new

i

)
= CAT (h1, h2, . . ., hn)W

0 (12)

where W 0 ∈ Rhd×C is a linear projection matrix and n is the
number of attention heads.

The transformer module concatenates two feature tokens to
obtain a vector that contains information from both remote
sensing images. This makes it easier to understand and explain
the model’s differential prediction results. The self-attention
mechanism can calculate the correlation between different posi-
tions and features of input vectors, thus better understanding the
relationship between different positions. This helps to improve
the accuracy and robustness of the model. Moreover, this design
only requires one transformer model to process the merged
vector, which reduces the model’s parameter count and improves
its training and inference efficiency. This approach has been well
demonstrated in the [21].

D. Other Network Details

Network structure: The reason for adopting a three-layer
structure in the encoding part is because we considered that
downsampling to a smaller size might not provide significant
assistance in feature extraction during the early stages. There-
fore, we downsized it to 64 × 64. In addition, we aimed to
capture feature difference information from a relatively clear
size. Thus, we avoided reducing the feature size too much
in the final layer to prevent uncertainty in feature difference
information extraction due to excessively small sizes, while
too large sizes would incur substantial computational overhead.
While it might yield better results to perform difference feature
extraction at each layer, it comes with significant computational
costs, given the exponential growth in the computational expense
of self-attention.

Loss function: In the CD method, its essence is similar to
binary classification tasks in semantic segmentation. Therefore,
we use the minimization of cross-entropy loss to optimize the
model parameters. The loss function is defined as follows:

L =
1

H0 ×W0

H,W∑
h=1,w=1

l (Phw, Yhw) (13)

where l(Phw, y) = − log(Phwy) is the cross-entropy loss, Phw

and Yhw is the label for the pixel at location (h,w).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

Evaluation metrics: In order to evaluate the effectiveness of
our method, we use precision, recall, F1-score, intersection over
union (IoU), and overall accuracy (OA) as the five evaluation
metrics in our experiments. F1-score and IoU are the main
evaluation metrics, and higher values indicate better model
performance. The expressions for these metrics are as follows:

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1− score = 2
Precision · Recall
Precision+Recall

Intersection over Union (IoU) =
TP

TP+FN+FP

Overall Accuracy (OA) =
TP+TN

TP+TN+FN+FP
. (14)

Implementation details: We conducted experiments on a Ubuntu
system, running our DL model using the PyTorch framework
with Torch version 1.11. During training, we utilized two Ti-
tan RTX GPUs, setting the batch size to 24. We employed
the stochastic gradient descent optimization algorithm with a
momentum of 0.99. The initial learning rate across all datasets
was set to 0.01 and linearly decayed to 0 over 200 epochs. After
each training stage, we performed validation and saved the best
model.

B. Datasets

We evaluate all CD methods using three datasets.
LEVIR-CD [13] is a high-resolution (0.5 m/pixel) dataset

consisting of 637 pairs of Google Earth images, each with a size
of 1024 × 1024 pixels. It focuses on building-related changes,
including various types of buildings. During the experiments,
we cropped the images into nonoverlapping blocks of size 256
× 256, and set the training/validation/testing datasets to be
7120/1024/2048, respectively.

WHU-CD [48] is a large public CD dataset. It consists of
a pair of high-resolution (0.075 m/pixel) images with a size
of 32 507 × 15 354, and a spatial resolution of 0.075 m/pixel.
We cropped the images into samples of size 256 × 256 for
training/validation/testing, with dataset sizes of 6096/762/760,
respectively.

GZ-CD [49] is a dataset consisting of 19 pairs of high-
resolution (0.55 m/pixel) Google Earth images, including 19
pairs of seasonal change images covering the suburban areas
of Guangzhou, China over the past decade. The focus is on
changes related to buildings. The image sizes range from 1006
× 1168 to 4936× 5224. We cropped them into nonoverlapping
image blocks of size 256 × 256. Finally, we set the sizes
of the training/validation/testing datasets to be 2834/400/325,
respectively.

C. Comparative Experiment

In this section, we compare CGMMAanchor with several
state-of-the-art methods, including three purely convolutional-
based methods (FC-Siam-Conc [10], FC-Siam-Di [10],
FC-EF [10]), four attention-based methods (DSIFN [11],
DTCDSCN [19], SNUNet [40], AERNet [50]), and four
transformer-based methods (BIT [21], ChangeFormer [22],
MSCANet [6], AMTNet [51]).

1) FC-EF [10] combining UNet and Early Fusion results
in FC-EF, where EF stands for early fusion. The EF
structure involves concatenating two input images before
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TABLE II
COMPARISON RESULTS ON THREE CD TEST SETS

TABLE III
PARAMETERS AND FLOPS RESULTS FOR ALL METHODS ON THE THREE DATASETS, AND SHOWS THE F1-SCORE AND IOU VALUES ON EACH DATASET

feeding them into the network, i.e., different channels of
one image.

2) FC-Siam-Di [10] is another structural form based on
the Unet architecture and FC-EF. Di represents the dif-
ference image, where the feature extraction from the
paired temporal images, followed by interpolation cal-
culations, is employed to achieve differential image
detection

3) FC-Siam-Conc [10] is also a structural form based on
the Unet architecture and FC-EF. In this approach, paired
temporal images are concatenated at each layer, and the
concatenated images are passed backward to the decoder
for differential image analysis.

4) DTCDSCN [19] is a twin CNN composed of three sub-
networks, designed for dual-task constraints. It incorpo-
rates dual-attention modules and an improved focus loss
to address the issue of sample imbalance. The network’s
output consists of a CD map and a segmentation result
map.

5) IFNet [11] is a method that utilizes a multiscale feature
fusion strategy. After utilizing multilayer feature results
and undergoing feature extraction by VGG, features from
each layer are passed to the decoder. Deep supervision
loss is applied to achieve multiscale feature supervision.

6) SNUNet [40] employs a multilevel feature fusion tech-
nique, using the NestedUNet with dense connections
for CD. In addition, it incorporates deep supervision
to enhance the recognition capabilities of intermedi-
ate features and improve the effectiveness of the final
features.

7) MSCANet [6] is a feature-level method based on the
transformer architecture. It leverages both CNN and
transformer, resulting in enhanced performance and im-
proved CD capabilities.

8) BIT [21] is a lightweight approach that relies solely on a
shallow ResNet, using transformer to extract difference
features. The mentioned transformer approach proves to
be highly effective.
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TABLE IV
INTERNAL BACKBONE ABLATION EXPERIMENT

Fig. 6. Visualization results on the LEVIR-CD dataset. Different colors represent different results, with white representing true positive, black representing true
negative, red representing false positive, and green representing false negative. The local detail maps of (a) and (c) are shown in the following.

9) ChangeFormer [22] is a pure transformer model that
completely forgoes CNN. It incorporates multilevel in-
formation through concatenation into the difference in-
formation analysis module.

10) AMTNet [51] is a CNN-transformer-based architecture
that utilizes ConvNets as the backbone to extract mul-
tiscale information. It effectively incorporates context
information from paired temporal images using attention
and transformer modules.

11) AERNet [50] introduces an attention-guided edge refine-
ment network (AERNet) that utilizes a global context
feature aggregation module to aggregate information
from extracted multilevel context features. It enhances
the network’s perception and refinement of change re-
gions by combining attention decoding blocks and edge
refinement modules.

12) GMTS [52] introduces a feature extraction method
that involves the interaction between GNN and CNN.
This method enhances feature extraction capabilities by

leveraging the interaction between global features from
CNN and local features from GNN. In addition, it utilizes
high and low-frequency attention along with pyramid
transformers to focus on information at different scales.

We use the common code with default parameters to imple-
ment various advanced CD methods mentioned previously for
comparative experiments, and use the same number of epochs
during training.

Table II shows the evaluation results of all methods on the
three CD test sets. The highest score is highlighted in bold.
By comparing the results in the table, it is easy to see that our
CGMMA method has significant advantages. Currently, meth-
ods based on transformer and attention mechanisms have better
performance than traditional convolutional methods. However,
our method achieves the highest results in most indicators. The
DSIFN method performs well in the pre indicator, but not very
well in the rec indicator. Usually, precision and recall have a
mutually exclusive relationship, so we usually consider the more
comprehensive F1-score measure. On the F1-score metric, we
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TABLE V
BACKBONE STRUCTURE ABLATION EXPERIMENT

TABLE VI
MMA MODULE AND TRANSFORMER MODULE ABLATION EXPERIMENTS

have demonstrated higher values compared to current state-of-
the-art methods, outperforming GMTS by 0.24% on the LEVIR-
CD dataset and by 0.17% on the WHU-CD dataset. However,
we also acknowledge limitations, particularly due to the low
spatial resolution of the GZ-CD dataset, where buildings appear
more blurred. Deeper networks may cause these fuzzy features
to gradually disappear during the sampling process. Therefore,
the generalization capability may require further improvement.

Compared to the current pure transformer backbone and
widely used ResNet and Unet backbones, our adopted Congraph
achieved better results. We increased the RF while maintaining
the efficiency of CNN. We believe that the significant improve-
ment in our performance is attributed to the proposed Congraph
backbone and MMA module. Obtaining superior feature infor-
mation is crucial for addressing the majority of segmentation
tasks.

To demonstrate the differences in parameter and computation
complexity among the various methods, we have conducted
tests on all the compared methods and the results are shown
in Table III. Our parameter and FLOPs counts are not the best
among the methods, but compared to methods of similar levels,
our improvement is significant. For instance, when comparing
our approach with the advanced methods AMTNet and AERNet
in 2023, we have a smaller parameter count but achieve better
results.

To address the issue of pseudochanges, we believe that only
essential bitemporal feature mixing can accurately determine
the correct feature difference component. The feature extraction
stage aims to obtain superior feature information, while the
acquisition of feature difference information is the key to resolv-
ing pseudochange problems, requiring the extraction of change
components from two distinct features. Comparable methods,
such as BIT, MSCAnet, and GMTS, have employed similar
approaches and achieved decent results. CGMMA builds upon
these methods, obtaining superior results due to the backbone’s
design producing better feature extraction, making the extraction
of differential features more effective.

To better compare the differences between our CGMMA and
other methods, we visualized the results of each method on
three datasets and used different colors to represent TP (white),
TN (black), FP (red), and FN (green). From the figures, we

can intuitively see that our method has a higher overlap with
the ground truth, and the proportion of red and green areas is
smaller. Moreover, our method has fewer noise points on all three
datasets. For example, in Fig. 6(a) and 6(c), for the recognition
of complex buildings, our method has better completeness,
while other comparative methods lack completeness in object
recognition and have unclear edges. Most of the other methods
have the problem of incorrect recognition outside the target
area, resulting in many red areas. In Fig. 7(b) and 7(d), our
method can accurately identify all targets, while many other
methods ignore the target area, which further demonstrates that
our method performs better in extracting feature details. In
Figs. 6(c) and 8(a), our method performs much better in the
integrity of large-area targets than other methods, which also
proves that our method has better performance in focusing on
global features, and the use of ViG and MMA for global feature
processing is more effective. We have included detailed images
of the visualization results of each dataset below each figure.

From the visualizations, we should be able to roughly ob-
serve the changed areas to study surface changes. Therefore,
excessive green and red areas indicate challenges in correctly
identifying changed regions. The ultimate focus of the CD task
is a high-resolution remote sensing image, potentially composed
of tens of thousands of pixels. Consequently, low accuracy
may be more pronounced in ultralarge-scale images, making
the recognizability of the final results crucial. We can use these
results to study the scale of urban expansion, analyze land use
areas, and explore the development of cities.

D. Ablation Experiments

To demonstrate the effectiveness of the modulesenlrg used
in our method, we conducted ablation experiments on three
modules, including Congraph, MMA, and transformer.

1) Congraph Backbone: In the ablation experiments of
the Congraph backbone, we conducted multiple experiments.
Among them, we conducted two ablation experiments on the
GNN branch of Congraph. First, we removed the GNN branch
in Congraph and only used the DO-Conv block as the back-
bone. Second, we used a pyramid pooling module (PPM) to
expand the CNN RF to verify that ViG can provide more
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Fig. 7. Visualization results on the WHU-CD dataset. Different colors represent different results, where white represents true positives, black represents true
negatives, red represents false positives, and green represents false negatives. The local detail images of (b) and (d) are shown below.

Fig. 8. Visualization results on the GZ-CD dataset. Different colors represent different results, where white represents true positives, black represents true
negatives, red represents false positives, and green represents false negatives. The local detail images of (a) and (c) are shown in the following.
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TABLE VII
α ABLATION EXPERIMENT IN MMA MODULE

Fig. 9. Visualization results of CGMMA at various stages on LEVIR-CD
dataset. These include Congraph feature maps, feature maps of the MMA
module, feature maps after transformer, and feature difference maps.

comprehensive feature information for CNN. The results of the
above-mentioned two experiments are shown in Table IV. The
experimental results show that the CNN backbone has a good
performance improvement after combining with ViG.

We also conducted two ablation experiments on the overall
structure of Congraph. First, we compared the CNN-transformer
interaction backbone Conformer to demonstrate that Congraph
has better performance than Conformer. We used a Conformer
with the same computation complexity as Congraph to maintain
a fair comparison. Second, we conducted an ablation experiment
using traditional convolution instead of DO-Conv. The results
of the two experiments are shown in Table V. The experimental
results show that we achieved better results than using the
Conformer method, and DO-Conv has a significant decrease in
computation complexity compared to traditional convolution.

2) Multiscale Mixed Attention: In the MMA module, we also
conducted several ablation experiments. First, we removed the
MMA module, as shown in Table VI. After removing the MMA
module, the performance on the test set slightly decreased. After
removing the MMA module, there was a slight decrease in
performance on the test set. Second, we adjusted the parameter

Fig. 10. Visualization results of CGMMA at various stages on WHU-CD
dataset. These include Congraph feature maps, feature maps of the MMA
module, feature maps after transformer, and feature difference maps.

Fig. 11. Visualization results of CGMMA at various stages on GZ-CD dataset.
These include Congraph feature maps, feature maps of the MMA module, feature
maps after transformer, and feature difference maps.
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TABLE VIII
SCALE PARAMETER ABLATION EXPERIMENT IN MMA MODULE

α inside the MMA module to find its optimal value, as shown in
Table VII. After changing the parameter, there was a significant
decrease in performance on all datasets. In addition, we also
compared the performance of four scales and dual scales, as
shown in Table VIII.

3) Transformer Module: For the ablation experiments of the
transformer module, we used a deletion approach, as shown in
Table VI. After removing this module, the metrics on all three
datasets showed a significant decrease.

E. Network Visualization

In order to offer a more comprehensive visual representation
of the crucial phases within our CGMMA methodology, we
have generated visualizations of the intermediate layers in our
network. These visualizations, depicted in Fig. 9 (LEVIR-CD),
Fig. 10 (WHU-CD), and Fig. 11 (GZ-CD), encompass a range
of visual elements. This includes representations of Congraph
features, MMA features, posttransformer features, alongside the
incorporation of class activation mapping and feature difference
maps.

V. CONCLUSION

In this article, we aim to address the limitations of CNN
in handling complex spatial relationships within remote sens-
ing images through the application of GNN. The proposed
backbone network, Congraph, integrates convolution and graph
interaction, allowing for the simultaneous utilization of local
information from CNN and global information from GNN. This
integration results in more comprehensive feature extraction,
enhancing the accuracy of CD. In addition, the introduction
of the MMA enables the model to focus on different scale
feature information. MMA replaces small-scale features in
the multilayer encoder with self-attention, capturing global fea-
ture information within small-scale features. In the final stage,
we input bitemporal features into the transformer module to
obtain feature difference information, ultimately generating the
feature difference map. Extensive experiments conducted on the
LEVIR-CD, WHU-CD, and GZ-CD datasets demonstrate that
our method outperforms current state-of-the-art CD methods.
These findings underscore the efficacy of our proposed Con-
graph backbone, MMA module, and the overall architecture in
addressing the limitations of traditional CNN-based methods.
The demonstrated improvements in accuracy and performance
pave the way for more effective remote sensing CD, contributing
to advancements in urban expansion studies, land use analysis,
and the exploration of urban development dynamics.

REFERENCES

[1] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
1989.

[2] S. Iino, R. Ito, K. Doi, T. Imaizumi, and S. Hikosaka, “Generating
high-accuracy urban distribution map for short-term change monitoring
based on convolutional neural network by utilizing SR imagery,” in Earth
Resources Environmental Remote Sensing/GIS Applications VIII. Belling-
ham, WA, USA: SPIE, 2017, pp. 11–21.

[3] B. Peng, Z. Meng, Q. Huang, and C. Wang, “Patch similarity convolutional
neural network for urban flood extent mapping using bi-temporal satellite
multispectral imagery,” Remote Sens., vol. 11, no. 21, 2019, Art. no. 2492.

[4] P. P. De Bem, O. A. de Carvalho Junior, R. F. Guimarães, and R. A. T.
Gomes, “Change detection of deforestation in the brazilian amazon using
landsat data and convolutional neural networks,” Remote Sens., vol. 12,
no. 6, 2020, Art. no. 901.

[5] C. Mucher, K. Steinnocher, F. Kressler, and C. Heunks, “Land cover
characterization and change detection for environmental monitoring of
pan- Europe,” Int. J. Remote Sens., vol. 21, no. 6–7, pp. 1159–1181, 2000.

[6] M. Liu, Z. Chai, H. Deng, and R. Liu, “A CNN-transformer network
with multi-scale context aggregation for fine-grained cropland change
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4297–4306, 2022.

[7] T. Celik, “Unsupervised change detection in satellite images using prin-
cipal component analysis and k-means clustering,” IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.

[8] S. Patra, S. Ghosh, and A. Ghosh, “Histogram thresholding for unsuper-
vised change detection of remote sensing images,” Int. J. Remote Sens.,
vol. 32, no. 21, pp. 6071–6089, 2011.

[9] F. Wang and Y. J. Xu, “Comparison of remote sensing change detection
techniques for assessing hurricane damage to forests,” Environ. Monit.
Assessment, vol. 162, pp. 311–326, 2010.

[10] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in Proc. IEEE 5th Int. Conf. Image
Process., 2018, pp. 4063–4067.

[11] C. Zhang et al., “A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images,” ISPRS J.
Photogrammetry Remote Sens., vol. 166, pp. 183–200, 2020.

[12] X. Song, Z. Hua, and J. Li, “LHDACT: Lightweight hybrid dual attention
CNN and transformer network for remote sensing image change detec-
tion,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1–5, 2023.

[13] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, 2020, Art. no. 1662.

[14] J. Chen et al., “DASNet: Dual attentive fully convolutional siamese net-
works for change detection in high-resolution satellite images,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2021.

[15] M. Zhang, G. Xu, K. Chen, M. Yan, and X. Sun, “Triplet-based semantic
relation learning for aerial remote sensing image change detection,” IEEE
Geosci. Remote Sens. Lett., vol. 16, no. 2, pp. 266–270, Feb. 2019.

[16] M. Zhang and W. Shi, “A feature difference convolutional neural network-
based change detection method,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 10, pp. 7232–7246, Oct. 2020.

[17] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change de-
tection based on deep siamese convolutional network for optical aerial
images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1845–1849,
Oct. 2017.

[18] S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised deep change vector
analysis for multiple-change detection in VHR images,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 6, pp. 3677–3693, Jun. 2019.

[19] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change
detection for remote sensing images using a dual-task constrained deep
siamese convolutional network model,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 5, pp. 811–815, May 2021.



ZHANG et al.: CGMMA: CNN-GNN MULTISCALE MIXED ATTENTION NETWORK FOR REMOTE SENSING IMAGE CD 7103

[20] X. Peng, R. Zhong, Z. Li, and Q. Li, “Optical remote sensing image change
detection based on attention mechanism and image difference,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7296–7307, Sep. 2021.

[21] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5607514.

[22] W. G. C. Bandara and V. M. Patel, “A transformer-based siamese network
for change detection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2022, pp. 207–210.

[23] C. Zhang, L. Wang, S. Cheng, and Y. Li, “SwinSUNet: Pure transformer
network for remote sensing image change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5224713.

[24] X. Song, Z. Hua, and J. Li, “Remote sensing image change detection
transformer network based on dual-feature mixed attention,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5920416.

[25] Q. Liu, L. Xiao, J. Yang, and Z. Wei, “CNN-enhanced graph convolutional
network with pixel-and superpixel-level feature fusion for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 10,
pp. 8657–8671, Oct. 2021.

[26] S. Liu, L. Duan, Z. Zhang, X. Cao, and T. S. Durrani, “Multimodal
ground-based remote sensing cloud classification via learning heteroge-
neous deep features,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 11,
pp. 7790–7800, Nov. 2020.

[27] J. Liang, Y. Deng, and D. Zeng, “A deep neural network combined CNN
and GCN for remote sensing scene classification,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 13, pp. 4325–4338, 2020.

[28] F. Cui, Y. Shi, R. Feng, L. Wang, and T. Zeng, “A graph-based dual
convolutional network for automatic road extraction from high resolution
remote sensing images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2022, pp. 3015–3018.

[29] C. Liang, B. Xiao, and B. Cheng, “GCN-based semantic segmentation
method for mine information extraction in GAOFEN-1 imagery,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp. IGARSS, 2021, pp. 3432–3435.

[30] S. Liang, Z. Hua, and J. Li, “GCN-based multi-scale dual fusion for remote
sensing building change detection,” Int. J. Remote Sens., vol. 44, no. 3,
pp. 953–980, 2023.

[31] X. Tang et al., “An unsupervised remote sensing change detection method
based on multiscale graph convolutional network and metric learning,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5609715.

[32] H. Chen, J. Song, C. Wu, B. Du, and N. Yokoya, “Exchange means change:
An unsupervised single-temporal change detection framework based on
intra-and inter-image patch exchange,” ISPRS J. Photogrammetry Remote
Sens., vol. 206, pp. 87–105, 2023.

[33] H. Chen, C. Lan, J. Song, C. Broni-Bediako, J. Xia, and N. Yokoya,
“Land-cover change detection using paired openstreetmap data and
optical high-resolution imagery via object-guided transformer,” 2023,
arXiv:2310.02674.

[34] M. Gong, Y. Yang, T. Zhan, X. Niu, and S. Li, “A generative discriminatory
classified network for change detection in multispectral imagery,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 1, pp. 321–333,
Jan. 2019.

[35] Y. Zhou and X. Li, “Unsupervised self-training algorithm based
on deep learning for optical aerial images change detection,” 2020,
arXiv:2010.07469.

[36] H. Cheng, H. Wu, J. Zheng, K. Qi, and W. Liu, “A hierarchical self-
attention augmented Laplacian pyramid expanding network for change
detection in high-resolution remote sensing images,” ISPRS J. Photogram-
metry Remote Sens., vol. 182, pp. 52–66, 2021.

[37] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high
resolution satellite images using improved UNet,” Remote Sens., vol. 11,
no. 11, 2019, Art. no. 1382.

[38] K. Song, F. Cui, and J. Jiang, “An efficient lightweight neural network for
remote sensing image change detection,” Remote Sens., vol. 13, no. 24,
2021, Art. no. 5152.

[39] X. Song, Z. Hua, and J. Li, “PSTNet: Progressive sampling transformer
network for remote sensing image change detection,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 15, pp. 8442–8455, 2022.

[40] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected
siamese network for change detection of VHR images,” IEEE Geosci.
Remote Sens. Lett., vol. 19, 2022, Art. no. 8007805.

[41] S. Li and L. Huo, “Remote sensing image change detection based on fully
convolutional network with pyramid attention,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. IGARSS, 2021, pp. 4352–4355.

[42] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[43] J. Cao et al., “DO-Conv: Depthwise over-parameterized convolutional
layer,” IEEE Trans. Image Process., vol. 31, pp. 3726–3736, 2022.

[44] A. Gulati et al., “Conformer: Convolution-augmented transformer for
speech recognition,” 2020, arXiv:2005.08100.

[45] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs
go as deep as CNNs?,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 9266–9275.

[46] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proc. AAAI Conf. Artif. Intell.,
2018, pp. 3538–3545.

[47] K. Oono and T. Suzuki, “Graph neural networks exponentially lose ex-
pressive power for node classification,” in Proc. Int. Conf. Learn. Repre-
sentations, 2020, pp. 1–37.

[48] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[49] D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. Ding, and X. Huang,
“SemiCDNet: A semisupervised convolutional neural network for change
detection in high resolution remote-sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 7, pp. 5891–5906, Jul. 2021.

[50] J. Zhang et al., “AERNet: An attention-guided edge refinement network
and a dataset for remote sensing building change detection,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023, Art. no. 5617116.

[51] W. Liu, Y. Lin, W. Liu, Y. Yu, and J. Li, “An attention-based multiscale
transformer network for remote sensing image change detection,” ISPRS
J. Photogrammetry Remote Sens., vol. 202, pp. 599–609, 2023.

[52] X. Song, Z. Hua, and J. Li, “GMTS: GNN-based multi-scale transformer
siamese network for remote sensing building change detection,” Int. J.
Digit. Earth, vol. 16, no. 1, pp. 1685–1706, 2023.

Yan Zhang received the bachelor’s degree in commu-
nication engineering in 2022 from Shandong Tech-
nology and Business University, Yantai, China, where
she is currently working toward the master’s degree
in electronic information.

Her research interests include computer graphics,
computer vision, and image processing.

Xinyang Song received the bachelor’s degree in
communication engineering from Qingdao Agricul-
tural University, Qingdao, China, in 2020. He is cur-
rently working toward the master’s degree in elec-
tronic information with Shandong Technology and
Business University, Yantai, China.

His research interests include computer graphics,
computer vision, and image progressing.

Zhen Hua received the B.S. and M.S. degrees in
electrical automation from the Taiyuan University
of Technology, Taiyuan, China, in 1989 and 1992,
respectively, and the Ph.D. degree in electronic in-
formation engineering from the China University of
Mining and Technology, Beijing, China, in 2008.

She is currently a Professor with Shandong Tech-
nology and Business University, Yantai, China. Her
research interests include computer aided geometric
design, information visualization, virtual reality, and
image processing.

Jinjiang Li received the B.S. and M.S. degrees
from the Taiyuan University of Technology, Taiyuan,
China, in 2001 and 2004, respectively, and the Ph.D.
degree from Shandong University, Jinan, China, in
2010, all in computer science.

He is currently a Professor with the School of Com-
puter Science and Technology, Shandong Technology
and Business University, Yantai, China. From 2004
to 2006, he was an Assistant Research Fellow with
the Institute of Computer Science and Technology,
Peking University, Beijing, China. From 2012 to

2014, he was a Postdoctoral Fellow with Tsinghua University, Beijing, China.
His research interests include image processing, computer graphics, computer
vision, and machine learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


