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Edge-Enhanced GCIFFNet: A Multiclass Semantic
Segmentation Network Based on Edge Enhancement

and Multiscale Attention Mechanism
Long Chen , Zhiyuan Qu , Yao Zhang , Jingyang Liu , Ruwen Wang , and Dezheng Zhang

Abstract—In recent years, remote sensing images (RSIs) have
witnessed significant improvements in both quality and quantity.
With the application of deep-learning techniques, these RSIs can
be more effectively utilized to harnessed to aid in environment
monitoring and urban planning. Semantic segmentation, as a
common task in RSIs processing, confronts numerous challenges,
including inaccurate classification, fuzzy boundaries, and other
problems. This article proposes a novel semantic segmentation
network known as the edge-enhanced global contextual informa-
tion guided feature fusion network to address these challenges.
This network consists of an edge-enhanced part and a backbone
network part. First, in the encoding stage, the recurrent criss-cross
attention block is employed, which incorporates spatial attention,
mechanisms to capture global information. Second, in the decoding
stage, a channel attention residual block module is proposed to
facilitate the fusion of high-level and low-level features. Moreover,
we enhance the network’s ability to extract edge information dur-
ing training by sharing parameters between the backbone and
employing a specialized loss function. The network proposed in
this article utilizes both channel attention and spatial attention at
different stages, effectively utilizing edge information. Finally, we
conduct experiments using the Yinchuan dataset and the LoveDA
dataset. The experimental results show that the proposed network
demonstrates excellent performance on both datasets.

Index Terms—Attention, convolutional neural network (CNN),
edge segmentation, remote sensing images (RSIs), semantic
segmentation.

I. INTRODUCTION

IN RECENT years, remote sensing satellite technology has
developed rapidly, and the quality and quantity of remote

sensing images (RSIs) have been greatly improved, which makes
the RSIs used in engineering practice have a reasonable data
basis. RSIs contain a large amount of ground information,
which is an important data source for guiding land resources
and urban planning. With the help of RSIs, the utilization of
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Fig. 1. Schematic representation of remote sensing images semantic segmen-
tation task.

water resources, land resources, forestry and animal husbandry
resources, and mineral resources can be monitored and planned;
they can also be used to monitor natural disasters, such as
earthquakes and fires, and they can also be used for navigation,
urban road traffic planning, and urban and rural planning [1],
[2].

RSIs contain wealthy information, and their effective utiliza-
tion demands precise and thorough analysis. Early researchers
relied on manual annotation to acquire accurate land category
information, but this approach incurred significant costs. How-
ever, with the progressive adoption of convolutional neural
networks (CNNs) in image processing tasks, the exploration of
deep learning in RSIs has gained considerable momentum. This
includes research areas, such as change detection [3], land cover
classification [4], and object detection [5].

The land cover classification tasks involve dividing an entire
image into different regions, such as buildings, roads, water bod-
ies, vegetation, etc. This task can be achieved through semantic
segmentation methods [6] that classify individual pixels. Fig. 1
illustrates a typical RSI semantic segmentation task [7].

Semantic segmentation tasks in RSIs come with several
challenges, such as discontinuity prediction for larger objects
during the segmentation. RSIs contain rich texture information,
which can lead to confusion at the edges where multiple objects
converge. In addition, issues like imbalanced samples in RSIs
datasets can result in suboptimal training outcomes. National
territory spatial planning is a guide for national spatial develop-
ment, a spatial blueprint for sustainable development, and the
basic basis for all types of development activities. In national ter-
ritory spatial planning, workers need to accurately classify land
use types, and now the time-consuming and laborious manual
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labeling method is usually used. Without solving the problems
mentioned above, the achievements of semantic segmentation of
RSIs cannot be applied to practical work and the efficiency of the
staff would not be improved. Aiming at these problems and the
actual characteristics of the research data in this article, we carry
out the research on deep-learning-based semantic segmentation
of RSIs with multiple land classes, and the main contributions
are as follows.

1) A network named global contextual information guided
feature fusion (GCIFFNet) is proposed based on an
encoder–decoder structure including the recurrent criss-
cross attention (RCCA) module in the encoding stage,
utilizing the spatial attention mechanism to obtain global
information, and completes the fusion of high- and low-
level features in the decoding stage. It also comes with
improved loss functions during the training process.

2) To solve the problem of discontinuous prediction, the
Channel Attention Residual Block (CARB) module is
proposed to use the channel attention (CA) mechanism
and to fuse high-level and low-level features.

3) To improve the edge accuracy of the segmentation model,
an edge-enhanced segmentation model is designed to uti-
lize the semantic edge information of RSIs. The improved
model with this subnetwork is named edge-enhanced
GCIFFNet and realizes the accurate semantic segmenta-
tion of RSIs.

II. RELATED WORKS

A. Semantic Segmentation

Hinton proposed AlexNet [8] to lay the foundation for the
application of deep learning in image processing. In recent
years, networks, such as FCN [9], VGGNet [10], ResNet [11],
and MobileNet [12], have appeared. However, these networks,
characterized by their simple structures and limited parameters,
struggle to capture sufficient global information. The U-Net
based on an encoder–decoder structure [13] was developed to
address this issue. The DeepLab series, from DeepLabV1 [14] to
DeepLabV3+ [15], tackles the challenge of easily losing spatial
information in semantic segmentation. Although DeepLabV3+
enhances model accuracy, its method of segmenting images into
multiple chunks for processing during semantic segmentation,
making the segmentation of irregularly shaped objects ineffec-
tive.

With the development of deep learning, attention mechanism
is also introduced into image processing [16]. Initially proposed
by Fukushima, the attention mechanism enhances the ability
of the model to segment different parts of an image [17]. This
approach is exemplified by networks, such as SE-Net [18],
PSANet [19], CBAM [20], and DANet [21]. While the attention
mechanism significantly improves semantic segmentation, it
faces challenges in handling small targets in RSIs, which leads
to imprecise segmentation of small objects. Subsequently, many
excellent networks based on self-attention mechanisms have
been proposed [22], such as GCNet [23] and ANN [24].

Vaswani et al. [17] at Google introduced the transformer
model to address the drawback of slow training of RNN. The

transformer model incorporates a self-attention mechanism to
achieve efficient parallel processing. Dosovitskiy et al. [25]
extended the transformer model into the image domain and
proposed vision transformer, which achieved state-of-the-art
(SOTA) results on large-scale datasets. Subsequently, many
transformer-based semantic segmentation networks have been
proposed, such as SETR [26], Segformer [27], and Segmenter
[28], breaking the longstanding dominance of CNNs in the field
of semantic segmentation.

B. Edge Information Enhanced Methods

In image processing, edges represent the boundaries where
distinct object classes intersect, leading to pronounced vari-
ations. These edges can be detected through differentiation
techniques [29]. Recently, there are more and more models
using neural networks to extract edges, such as CASENet [30],
DeepEdge [31], and CEDN [32]. However, integrating edge
segmentation with the semantic segmentation tasks necessitates
designing and independently training two distinct networks,
which is a complicated and tedious process.

Alternatively, semantic segmentation can also be executed
through multitask training. This method involves simultaneous
processing of semantic segmentation and edge detection, allow-
ing for mutual enhancement of the results [33], [34]. A potential
drawback of this approach is that it may have a negative impact
during training.

In the task of object detection and semantic segmentation
within RSIs, edges are always confusing. He et al. [35] proposed
uncertainty-aware network, which achieves SOTA performance
in the three public datasets. Based on the encoder–decoder
framework, Hang et al. [36] proposed a CNN-based model
to identify oceanic eddies. This network comprises an eddy
identification branch and an edge extraction branch. The latter
is used to learn the edge information of eddies to enhance the
recognition effect of the network.

C. Remote Sensing Semantic Segmentation

Contemporary research predominantly employs semantic
segmentation algorithms for feature extraction from RSIs. Badri-
narayanan proposed SegNet [37], a notable example in this
domain. Yang et al. [38] performed SegNet for extracting con-
struction land in rural areas and observed its exceptional overall
performance. However, some detailed information present in
RSIs, such as building edges and fine roads, which may be
ignored or misclassified by the SegNet model. To address these
limitations, Liu et al. [39] proposed improving DeepLabV3+
for RSIs by introducing a dual-attention mechanism module
and designing a network model with two different connections.
Hang et al. [40] developed a multiscale progressive segmentation
network to solve the issue of accurate semantic segmentation for
both large and small objects in high-resolution remote sensed
imagery, and validated the effectiveness of the method on the
Vaihingen and Potsdam datasets. Zhou et al. [41] designed a
feature decoupling module and proposed a class-guided feature
decoupling network by exploiting the co-occurrence relation-
ships between different classes of objects in the scene, and
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Fig. 2. Overall structure of our proposed edge-enhanced GCIFFNet. It is composed of three parts: encoder, decoder, and an edge-enhanced network. The
edge-enhanced network helps learning features of the edges by sharing parameters of backbone network. RCCA and CARB modules are introduced in the encoding
and decoding stages, respectively.

the overall accuracy is greater than 90% in the extraction of
high-resolution RSIs.

III. METHODS

In this article, we propose a semantic segmentation network
based on an encoder–decoder structure named GCIFFNet. In
addition, to augment the utilization of edge information, we
proposed an auxiliary edge enhanced. Combined with this sub-
network, we name the final model edge-enhanced GCIFFNet.
The network mainly consists of three parts: the encoder, the
decoder, and the edge-enhanced network. The comprehensive
network structure is delineated in Fig. 2.

A. Network Architecture

In this article, we employ the ResNet 50 architecture as the
backbone network to obtain a feature map with high-level se-
mantic information. At the end of the encoding stages, we incor-
porate the cross-correlation attention module (CCA), proposed
by CCNet [42], which extracts dense contextual information
through two sequentially connected CCA modules, known as
RCCA.

In addition, we also adopted the UNet skip-connection struc-
ture. In the upsampling process, low-level features are refined
through an improved residual module named ConvRes. Then,
these features are fed to the CARB, enabling their fusion with
the high-level features. The fused features contain not only
discriminative semantic information but also detailed spatial
information. The CARB module consists of a CA module and
a residual module. By using the RCCA module and CARB
module, our proposed network can utilize both spatial attention
and CA with low computational effort.

We also introduce an edge-enhanced network to alleviate
blurry boundaries and utilize edge information. During the
training process, this network serves as another output head
supervised by semantic edge labels.

In the following sections, we will describe each module in
detail.

B. RCCA Module

The attention mechanism derives from human habit and im-
bues neural networks by concentrating on pertinent information.
This process is shown in (1). The elements Q, K, and V are
calculated by multiplying the inputs with different matrices.
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Fig. 3. Schematic diagram of CCA module.

The similarity between Q and K is computed through the dot
product, and then the result is normalized by softmax to get a
matrix with values between 0 and 1, which establishes a dynamic
weighting relationship. V represents the features after the linear
transformation of the inputs, and a filtered feature F is obtained
by multiplying a normalized matrix with a value between 0 and
1 with V

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V. (1)

There is a certain level of correlation between various ele-
ments within the input, and the application of attention mecha-
nisms among the internal elements of the input is known as the
self-attention mechanism. In the field of computer vision, the
input feature map of size H×W×C is regarded as H×W vectors
of length C. Self-attention lies in calculating the interrelation-
ships between these H × W vectors, i.e., the similarity of the
vectors at each position. Therefore, in the semantic segmentation
task, the use of the self-attention mechanism can improve the
phenomenon that only local features can be extracted in the fully
CNN. The self-attention mechanism can be used to effectively
capture contextual information across extended spatial ranges
and is especially beneficial in addressing the problem of discon-
tinuous prediction in the semantic segmentation of large size
targets in RSIs.

Our network incorporates the CCA module, as shown in
Fig. 3. It is essentially a form of self-attention mechanism but
with a greatly reduced number of parameters compared to Non-
Local [43] and DANet. In Fig. 3, H represents the local features
with size C × H × W. Initially, two feature maps are obtained
for the local features using two 1 × 1 convolution modules,
and their sizes will be changed to C’ × W × H. Subsequently,
the similarity computation is used to compute the similarities
between these feature maps.

The definition of similarity computation (affinity) in Fig. 3 is
shown as

di,u = Qu ΩT
i,u. (2)

In this equation,Qu represents a vector obtained by extracting
the features from C ′ channels at a specific position u in the
feature maps. Similarly, we can extract features from the second
feature map corresponding to positions in the same row and
column as u, forming a (H+W− 1)×C ′ vector.Ωi,urepresents
the ith element of this vector. Ω(i, u) and Qu are dot-multiplied
to compute the similarity to obtain di,u. By performing the above

Fig. 4. Structure of RCCA module.

operations on each position of the feature map, the final feature
map D is obtained, which has the size of (H + W − 1) × W × H.
Finally, the softmax operation is applied across the channels to
generate the attention feature map A.

The CCA module initiates its process by performing a 1 × 1
convolution of the feature map H to obtain the feature map V.
Then, it extracts cross-feature maps from all the channels at a
certain position on the feature map V to form a cross-feature
vector with a spatial size of (H + W − 1) × C. This feature
vector is aggregated with the previously obtained feature map
A according to (3), so that each position of the feature map V
contains information about other positions in the same column
with it. In this way, the CCA module can fuse features from
different directions to better capture the contextual relationships
of distinct locations in the image. Finally, feature map A and
feature map V are weighted and aggregated with feature map
H after weighted aggregation to obtain the final output feature
vector of the CCA module

H ′
u =

∑
i∈|Φu|

Ai,uΦi,u +Hu. (3)

To acquire dense contextual information, we utilize two CCA
modules connected in series, as illustrated in Fig. 4. The first
CCA module establishes a connection between a dark blue
pixel and two light green pixels. Subsequently, the second CCA
module connects these two light green pixels and a dark green
pixel. In this way, the dark blue pixel point is brought into
contact with the dark green pixel point, which is far away
from it, thereby facilitating the capture of more extensive global
contextual information.

Our proposed network contains RCCA module and CARB
module, which allows the network to utilize both spatial attention
and CA. We choose the RCCA module to capture long-range cor-
relations instead of modules, such as pyramid squeeze attention
(PSA) or coordinate attention. The reason is that both PSA and
coordinate attention utilize the CA, and our CARB module also
utilizes CA. Employing PSA or coordinate attention to capture
long-range correlations leads to the redundant application of the
squeeze-and-excitation mechanism in the decoding process. It
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Fig. 5. Structure of ConvRes module.

Fig. 6. Structure of CARB module used during decoding stage.

makes the network pay more attention to the channel information
and ignores the importance of spatial location information.

C. ConvRes Module

The role of the ConvRes module is to relearn the low-level
features to refine the features. As shown in Fig. 5, ConvRes
unifies the number of channels of the low-level features through a
1 × 1 convolution module. Subsequently, it refines the low-level
feature maps again through the residual module. This module
is similar to the basic residual module in ResNet, and primarily
consists of two 3× 3 convolutional modules. The ConvRes mod-
ule not only standardizes the number of channels but also enables
the neural network to learn important information in low-level
features. In this article, ConvRes standardizes the number of
channels in two cases. In the semantic segmentation network,
the number of channels is unified to 512. In the edge-enhanced
segmentation network, the number of channels is reduced to 21.
This approach not only minimizes computational demands but
also prevents gradient vanishing or gradient explosion.

D. CARB Module

RSIs contain many complex land classes, and there are often
cases of cross-existence of land classes. In order to ensure
intraclass consistency, neural networks need to extract global
contextual information with discriminative properties.

Fig. 6 illustrates a single decoder module in this article. The
decoder module applied in this article refers to UNet. However,
instead of directly feeding the low-level features into the decoder
via skip connections, they are initially routed through the Con-
vRes module, which refines the low-level features again before
feeding them into the decoder. At the time of high- and low-level
feature fusion, the high- and low-level features are inputted into
the CARB for amalgamation. As a result, this module’s final
output features contain global semantic information and detailed
features at different scales.

Fig. 7. Structure of CARB module.

The CARB module is shown in Fig. 7, which can alleviate the
intraclass inconsistency problem by utilizing high-level features
to filter low-level features and retaining more discriminative
features in the decoding process. This module refers to the
squeeze-and-excitation module in SENet. Initially, the channel
numbers of both high-level and low-level features are unified
to 512. Following this, the high-level and low-level features
are spliced to obtain a feature vector of size H × W × 1024.
This vector is then subjected to global pooling and subsequently
processed through a convolutional module, effectively reducing
the channel count back to 512. The vector with a channel number
of 512 is passed through the ReLu layer, the 1 × 1 convolutional
layer, and a Sigmoid layer to obtain the final 1 × 1 × 512 vector.
The final 1 × 1 × 512 vector, comprising weight coefficients,
is instrumental in recalibration of the low-level features. It
functions to suppress the channels with small discriminative
properties in the low-level features, and strengthens the channels
with more significant discriminative attributes, thereby facil-
itating effective feature channel selection. Subsequently, the
recalibrated low-level features are combined with high-level
features to generate the output of the CA module. The obtained
output is then fed to the ConvRes module to get the refined fused
features.

In extracting features from the backbone network, the high-
level features help to acquire accurate categorical information,
while low-level features contain clearer details but have a smaller
receptive field, so the discriminative ability of the low-level fea-
tures is poor. The two features are spliced together to adaptively
learn the interchannel correlations in this new feature map to
obtain a weight vector. This weight vector is used to filter the
low-level features to highlight the feature channels that contain
more category information. The decoders in this article use such
a structure several times in the upsampling process to fuse the
low-level features to obtain discriminative features stage by
stage without losing the underlying detailed information. It is
proved by subsequent experiments that the CARB module we
proposed in this article can improve the performance of semantic
segmentation.
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Fig. 8. Segmentation results of GCIFFNet, which show that the edge extrac-
tion effect still needs to be improved. (a) Ground truth. (b) GCIFFNet results.

E. Edge-Enhanced Network

Fig. 8 illustrates that GCIFFNet still needs to be improved
from the perspective of edge extraction effect. To address the
issue of “interclass feature similarity” in RSIs, it is essential
for the network to pay enough attention to both the semantic
edges and their adjacent pixels. In addition, the network must
effectively learn the features of the semantic edges and the
images on both sides of the edges. This approach is critical for
significantly enhancing the precision of semantic segmentation
to a large extent [44].

1) Selection of Edge Extraction Operators: The core point of
semantic segmentation is to determine the boundaries between
different classes of objects. It is important to note that semantic
edges are different from image edges. Specifically, image edges
will focus on the edges between categories as well as the edges
within the same categories, while semantic edges will not focus
on the edges between the same categories. For example, image
edges can be extracted from two houses that are very close to
each other, while semantic edges cannot be extracted from these
two houses. To improve the accuracy of semantic segmentation,
we need to utilize these two types of edge information. The
image edges are extracted from the original images, and the
semantic edges are obtained directly from the labeled images.

Our objective is that the edge information extracted from the
original image can be more similar to the semantic boundary,
which can reduce the network training difficulty. Fig. 9 displays
the edge extraction results of different algorithms. This figure
reveals that Sobel operator [45], Laplacian operator [46], and

Fig. 9. Edge labels extracted by different operators. (a) Image. (b) Sobel. (c)
Roberts. (d) Laplacian. (e) Prewitt. (f) Canny.

Fig. 10. Extraction of semantic edge labels. (a) Image. (b) Class label. (c)
Semantic label.

Prewitt [47] operators are more sensitive to noise. Consequently,
the edges they extract are not clear, and they often identify
nonsemantic boundaries as edges in the original image. The
results extracted by the Roberts [48] operator omit a lot of edge
information. In contrast, Canny [49] operator extracts better
edge information due to the use of Gaussian filtering to remove
the apparent noise and nonmaximum suppression to refine the
edges. Therefore, in this article, the Canny operator is selected
as the way of edge information extraction.

We also extract the semantic edges of labeled images as
supervisory signals to the edge-enhanced module. The accurate
semantic boundaries need not be relabeled and can be extracted
directly from the labels. The process of semantic boundary
extraction is consistent with the above. Fig. 10 shows an image
in the training set with its corresponding semantic segmentation
label and semantic boundary label.

2) Edge-Enhanced Network Architecture: As is shown in
Fig. 2, the edge-enhanced network is supervised by extracted
edge labels and semantic edge labels during training. The edge-
enhanced network helps learning features of the edges by sharing
parameters of backbone network.

Specifically, the input image is extracted into four stages of
features by ResNet50, and the feature maps of these four stages
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are input into the ConvRes module for refinement learning. Since
the size of the feature maps at different stages is also different,
the refined features need to be upsampled before they are added
with the refined deep features at the next stage. In this article,
bilinear interpolation is employed for upsampling, following
which the resulting fused feature map is fed into the ConvRes
module again. The network can learn more intricate edge in-
formation from the low-level features through this multilevel
feature learning approach. At the same time, we use the semantic
information of the higher level features to filter the edges of the
nonsemantic boundaries and get accurate semantic boundaries.
To mitigate the potential issue of insufficiently detailed seman-
tic boundaries derived from deeper layers, we incorporate the
Canny operator. This operator extracts the edge image from the
original image, adding it as a new channel to the deepest fused
features. Subsequently, the number of channels is unified by the
Convres module. In this part, the ConvRes module is utilized
to reduce the number of channels of the output features to 21.
This reduces the computational demands and avoids gradient
vanishing or gradient explosion.

It is worth noting that the auxiliary network is only involved
in the training process and does not affect the speed of edge-
enhanced GCIFFNet during testing.

F. Loss Functions

To alleviate the issue of class imbalance in the Yinchuan
high-resolution remote sensing dataset, our approach in-
volves a specifically designed loss function comprising two
parts: weighted cross-entropy loss (WCE Loss) [50], [51] for
GCIFFNet and focal loss [52] for edge-enhanced network. We
will describe the two losses in detail as follows.

First, a WCE loss is used as shown as follows, where c
represents the number of categories in the current semantic
segmentation task, yc represents the labeled values, and pc
represents the predicted value:

L = −
class∑
c = 1

wcyclog (pc) (4)

where the weight of each class wc is calculated as described as
follows:

Then, we traversed the entire dataset and calculate the total
number of pixel points of the category in the dataset,nc_pixel, fur-
thermore, record the number of images in the dataset which the
category occurs, recorded asnc, and the frequency of occurrence
of the category as nc_freq as follows:

nc_freq =
nc_pixel

nc ×H ×W
. (5)

After obtaining nc_freq for all categories, we denote these
categories’ median frequency of occurrence as nfreq_mid. The
weight wc is then shown as follows:

wc =
nfreq_mid

nc_freq
. (6)

The Yinchuan high-resolution remote sensing dataset uses the
median frequency balance to obtain the weight values of 12 land
categories, as shown in Table I.

TABLE I
WEIGHTS IN YINCHUAN DATASET

For the edge-enhanced network, we apply focal loss instead.
WCE loss only considers the issue of the unbalanced number
of samples and does not consider the difficulty of sample cate-
gorization. In contrast, focal loss can control both the weights
of positive and negative samples and the weights of easy-to-
classified and hard-to-classified samples.

The specific form of focal loss is shown in (7), where the
weighting factor α is used to balance positive and negative
samples, α � [0, 1] for class 1 and 1− α for class −1. At
the same time, (1− pt)

γ is introduced to distinguish between
easy-to-classified samples and hard-to-classified samples, p �
[0, 1] for class 1 and 1− p for class −1 same as α. In (7), the
exponential part is used to control the sensitivity of the loss
to the easy-to-classified and hard-to-classified samples. When
this value is larger, the loss contributed by easy-to-classified
samples will be minor, and the model will pay more attention
to the hard-to-classified samples. Focal loss is equivalent to CE
loss when this value is set to 0. The experiments in this article
set α to 0.25 and set γ to 2.0

FL =

{−α(1− p)γ log (p) , y = 1
− (1− α) pγ log (1− p) , y �= 1.

. (7)

In this article, we integrate the two losses with assigned
weights. Since edge extraction is only involved in edge-
enhanced network during training, and the main task is still
semantic segmentation. It is crucial to establish hyperparam-
eters that balance the contribution of these two tasks to the
neural network loss. Therefore, the loss of the whole network
is presented in (8), where Lossseg represents the loss function
of semantic segmentation, Lossedge represents the loss function
of the edge-enhanced network, and β represents the loss weight
parameter of the auxiliary task, and the experimental value of β
in this article is set to 0.4

Loss = Lossseg + βLossedge. (8)
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Fig. 11. Showcases of class imbalance in Yinchuan dataset. (a) Small wetland.
(b) Large wetland. (c) Hard-to-segment bare land. (d) Dark green vegetation in
wetland.

TABLE II
PIXEL DISTRIBUTIONS IN YINCHUAN DATASET

IV. DATASET

The dataset used in this article contains 6417 images of
1024 × 1024 size, all captured by the Gaofen-2 remote sensing
satellite with a spatial resolution of 1 m. The dataset is segmented
into training, validation, and test sets in a 7:2:1 ratio, consisting
of 4533 pictures in the training set, 1295 pictures in the validation
set, and 648 pictures in the test.

The following characteristics exist in the dataset.
1) Wide variation in characteristics within the same cate-

gory: In the Yinchuan dataset, the same landform exhibits
a wide range of characteristics, as shown in the red box
in Fig. 11(a) and (b), where the landforms differ greatly
in shape and scale and also have different color charac-
teristics. Some streams are very dark in color and can be
easily confused with the dark green cropland. The features
exhibited by the bare ground in Fig. 11(c) are not the same,
which can lead to intraclass inconsistency in segmentation.
There are small patches of dark green vegetation in the
wetland shown in Fig. 11(d), but the image features of
the vegetation are very similar to the wetland, which will
bring some challenges to semantic segmentation.

2) Class imbalance: There are 12 categories in the dataset
used in this article, and the pixel occupancy of each
category is shown in Table II and Fig. 12.

Fig. 12. Histogram of pixel proportions for different land categories.

3) Unclear edges between different land cover categories:
The edges between different land features in the Yinchuan
high-resolution RSI dataset are unclear, and the image de-
tails are not obvious. The intersecting edges of landforms
may appear multiple other landforms, resulting in poor
segmentation results.

V. EXPERIMENTS AND RESULTS

In order to verify the effectiveness of our proposed method,
we have done many comparison and ablation experiments on
the Yinchuan dataset. First, the GCIFFNet network is compared
with the mainstream semantic segmentation network nowadays
to verify the advancement of GCIFFNet. Then, ablation experi-
ments are carried out on each GCIFFNet module we used, prov-
ing that each module can improve the semantic segmentation
effect. Furthermore, experiments are carried out using different
loss functions, proving that our loss function can achieve the
optimal effect on the Yinchuan dataset.

To improve the edge extraction accuracy, we propose an edge-
enhanced network and conduct comparison experiments. First,
the positive effect of edge extraction using the Canny operator
on semantic segmentation accuracy is verified. Then, the edge-
enhanced GCIFFNet with the addition of the edge-enhanced
module is subjected to ablation experiments with the origi-
nal GCIFFNet network. Finally, the complete edge-enhanced
GCIFFNet is compared with the mainstream semantic segmen-
tation networks at this stage using the boundary intersection over
union (BIoU) evaluation metric.

A. Evaluation Metrics

In the experiments of this article, a total of four metrics is
used. They are aAcc, mAcc, mIoU, and the edge segmentation
evaluation metric BIoU.
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TABLE III
EXPERIMENTAL ENVIRONMENT

TABLE IV
HYPERPARAMETER SETTINGS

The overall pixel accuracy (aAcc) is used to count the pro-
portion of correctly predicted pixels to the sum of all pixels, as
shown in (9), which can also be expressed in the form of (10)

aAcc =

∑k
i=0 pii∑k

i=0

∑k
j=0 pij

(9)

aAcc =
TP + TN

TP + TN + FP + FN
. (10)

The average pixel accuracy mAcc refers to averaging the pixel
accuracy for all categories as follows:

mAcc =
1

n

n∑
i = 1

Acci. (11)

The BIoU is utilized as an evaluation metric for boundary
segmentation [53]. As shown in (12), where Gd represents the
set of pixels in the labeled image whose edges with the labeled
image are not greater than d,Pd represents the set of pixels in the
predicted image whose edges with the predicted image are not
greater than d, G represents the labeled image, and P represents
the predicted image. In the experiments on the Yinchuan dataset
in this article, d is equal to 10

BIoU =
|(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∪ (Pd ∩ P )| . (12)

B. Experimental Environment

The experimental environment is shown in Table III.
The experimental parameters are set as shown in Table IV.

C. Comparative Experiments of GCIFFNet

In this article, we selected FCN, UNet, PSPNet [54], and
DeepLabV3 for comparative experiments. We also chose DANet

TABLE V
COMPARATIVE EXPERIMENTS OF GCIFFNET

and CCNet based on attention mechanisms, as well as SETR,
Segformer, and Segmenter grounded in transformers. This com-
parison with networks employing attention mechanisms illus-
trates that this article achieves superior experimental outcomes
through the integration of multiple attention mechanisms.

The experimental results are shown in Table V. aAcc of
GCIFFNet is 89.27%, mIoU is 74.15%, and mAcc is 89.43%. All
three evaluation indexes are higher than other networks, and the
experimental results show the superiority of GCIFFNet network
model. The performance of the transformer-based model on the
Yinchuan dataset is unsatisfactory, which may be caused by the
three characteristics of the Yinchuan dataset (Section IV).

The segmentation results are shown in Fig. 13.
In Fig. 13, the original image, the ground truth, and the

segmentation results of different networks are shown from left to
right. The first row demonstrates that GCIFFNet can maintain
commendable intraclass consistency. The second row reveals
that GCIFFNet can pay attention to more detailed information
when segmenting the construction land, and the effect is better
when segmenting similar land classes. The third row proves that
GCIFFNet is more effective in segmenting the small pieces of
cultivated land that appear in a large piece of garden land, i.e.,
it is more sensitive to small-sized objects.

D. Ablation Experiments of GCIFFNet

To tackle the challenges of uneven classes and intraclass
inconsistency in the dataset, we propose GCIFFNet. We capture
the global information by using the RCCA module. At the same
time, we added the CARB module to ensure that the model
has better intraclass consistency, while preserving detailed in-
formation. The results of the ablation experiments based on the
proposed network design are shown in Table VI.

The first to the fourth group of experiments show that each
module of our proposed network enhances semantic segmenta-
tion to different degrees, thereby validating the efficacy of the
modules we employed. Notably, the fifth group of experiments
utilizes both the RCCA and CARB modules, achieving the
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Fig. 13. Comparison of segmentation results between GCIFFNet and commonly used semantic segmentation algorithms.

TABLE VI
ABLATION EXPERIMENTS OF GCIFFNET

TABLE VII
ABLATION EXPERIMENTS OF GCIFFNET

experimental results markedly superior to those of the second
and fourth groups. The sixth group of experiments adds the
ConvRes module based on the fifth group of experiments, re-
sulting in the highest overall segmentation accuracy, with mIoU
reaching 73.58%, mAcc reaching 84.42%, and aAcc only 0.31%
lower than the fifth group. In summary, our module combination
reaches the optimum in several evaluation indexes, and aAcc is
slightly inferior but comparable, proving the effectiveness of
each module of GCIFFNet.

Table VII presents the pixel accuracies of the network model
with different modules added to the baseline network on each
land category. GCIFFNet exhibits superior performance on the
extraction of wetland, cropland, forest land, other agricultural

Fig. 14. Visualized feature maps obtained by RCCA module. (a) Original
image. (b) Feature output of backbone network. (c) Feature after RCCA module.

Fig. 15. Visualization of feature output obtained by different layers in back-
bone network. (a) Feature output by res_1. (b) Feature output by res_2. (c)
Feature output by res_3. (d) Feature output by res_4.

land, garden land, sandy land, and greenhouses. The perfor-
mance of the other categories remains comparably consistent
with the control group, demonstrating no significant decline in
the recognition accuracy of a particular category.

1) Visualization of Intermediate Features: Fig. 14 illustrates
the visualization of the new features obtained after the RCCA
module. The feature map extracted by the RCCA module can pay
more attention to some hard-to-classify areas on the sides of the
road and among the cultivated land, this can suppress irrelevant
features. The global information can be obtained by the RCCA
module, which increases the image’s intraclass consistency. The
use of RCCA improves the segmentation accuracy of large-sized
objects and objects with varied shapes, and reduces the problem
of discontinuous prediction.

Fig. 15 illustrates the visualized feature maps extracted at four
different stages of the backbone network. The shallow extracted
feature maps of the backbone network contain more detailed
information, while the deep features give more semantic infor-
mation. Specifically, the shallow feature map shown in Fig. 15(a)
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Fig. 16. Visualization of segmentation results on Yinchuan dataset by ablation
models. (a) Image. (b) GT. (c) Base. (d) Base_rcca. (e) GCIFFNet.

TABLE VIII
COMPARATIVE RESULTS OF LOSS FUNCTIONS

can distinguish each building in the complex, and Fig. 15(d)
shows that the deep feature map can distinguish the category
of this area. Therefore, it is necessary to combine the deep and
shallow features and utilize their respective characteristics for
upsampling.

2) Results of Ablation Experiments: Fig. 16 shows the orig-
inal image, the ground truth, and the segmentation results of
different networks from left to right, respectively.

When solely the RCCA module is integrated into the baseline
network, there is a partial alleviation of the discontinuous predic-
tion, yet the segmentation in areas requiring detailed information
remains suboptimal. The addition of the RCCA module and the
proposed CARB module can strengthen the network’s discrim-
inative ability and maintain intraclass consistency. At the same
time, the network pays attention to more detailed information.

E. Studies of Different Loss Functions

We compared the performance of various loss functions on
the Yinchuan dataset in a comparative experiment. As shown
in Table VIII, the cross-entropy loss function with weights
significantly improves the network’s mIoU and mAcc to achieve
the best results. Especially in mAcc, it is 5.01% higher than the

Fig. 17. Comparison of accuracy using different loss functions (CELoss,
FocalLoss, Ohem, WCELoss).

TABLE IX
COMPARATIVE RESULTS OF LOSS FUNCTIONS

second loss. aAcc is only about 0.1% different from the optimal
result in the comparison experiment. Overall, the cross-entropy
loss function with weights is better.

Fig. 17 shows the pixel accuracy across various land types,
with the horizontal coordinates representing the land type and
the vertical coordinates representing the accuracy. From the
figure, it can be seen that WCELoss has optimal performance in
several categories with a small sample. The accuracy on some
land categories does not reach the highest value but maintains a
high level.

Table IX presents the performance outcomes of the models
obtained by training several loss functions on different land
classes. These results clearly demonstrate that the WCELoss
we use can alleviate the problems caused by the imbalance of
sample categories.
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Fig. 18. Comparative results of edge-enhanced GCIFFNet and GCIFFNet on
Yinchuan dataset.

TABLE X
ABLATION STUDY OF CANNY OPERATOR

F. Studies of Edge-Enhanced Network

1) Comparative Experiments of Canny Operator for Edge
Extraction: In the edge-enhanced network, we use the Canny
operator to extract the image edges and splice them with the
deepest feature maps of the backbone network to enhance the
sensitivity to the image edges. In order to prove the effectiveness
of the method, we conducted a comparison experiment, and the
results are shown in Table X.

Table X demonstrates that the application of the Canny
operator for high-level feature enhancement results in a notable
improvement of 2.37% in mAcc and 1.33% in BoundaryIoU.

TABLE XI
ABLATION STUDY OF EDGE-ENHANCED NETWORK

TABLE XII
RESULTS OF LAND TYPES (EDGE-ENHANCED GCIFFNET)

TABLE XIII
COMPARATIVE STUDY OF EDGE-ENHANCED GCIFFNET

Overall, after adding the Canny operator to the edge-enhanced
network, there is a great improvement in the accurate differenti-
ation between categories at the edges, and there is no significant
decrease in other metrics.

In contrast, alternative operators, such as Sobel, do not yield
significant enhancements in mAcc and BIoU. As shown in Fig. 9,
the Sobel operator, the Laplace operator, and the Prewitt operator
tend to extract excessive nonedge noise, leading to suboptimal
results. These three operators also extract wrong edge informa-
tion in the same land category. Moreover, the Roberts operator
misses a lot of edge information and cannot improve the edge
segmentation effect.
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Fig. 19. Comparison of semantic segmentation results.

Fig. 20. Experimental results on the LoveDA dataset.

The table shows that aAcc and mIoU have decreased, mainly
because the Canny operator is the extraction based on grayscale
images, and some pseudo edges will be extracted in the detail-
rich regions. In order to prove the above point, we use the accu-
rate semantic edge image instead of the edge image extracted by
the Canny operator on the validation set, which can be improved
to 91.84%, 78.18%, 89.59%, and 89.32% in the indexes of aAcc,
mIoU, mAcc, and BIoU. These results prove the rationality
of utilizing edge information as auxiliary information in this
article.

2) Comparative Experiments of Edge-Enhanced GCIFFNet:
We compare the edge-enhanced GCIFFNet with the GCIFFNet
network, including evaluation metrics, such as aAcc, mAcc,
mIoU, and BoundaryIoU, with the results detailed in Table XI.

BoundaryIoU is the metric used for evaluating edge segmenta-
tion, and the accuracy of the improved network in this metric is
also greatly improved, reaching 88.54%. It proves that the edge-
enhanced GCIFFNet we proposed can segment image edges
well. The accuracy on the remaining two metrics is reduced
but still higher than other networks.

Table XII shows the segmentation accuracy of edge-enhanced
GCIFFNet on each land class.

As shown in Table XII, the addition of the edge-enhanced
module to our network enhances the network’s extraction of the
edge-unclear land categories. The enhancement effect is most
obvious for the land categories of wetland, grassland, bare land,
garden land, and greenhouse, all of whom are prone to erroneous
segmentation results due to unclear edges. On the other hand,
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TABLE XIV
COMPARISON EXPERIMENT OF EDGE-ENHANCED GCIFFNET ON LOVEDA DATASET

the enhancement of construction land, arable land, and forest
land, which have already clear edges, is not significant, and the
accuracy is slightly reduced but still maintains a high standard.
Other agricultural land has the lowest percentage of pixels in
the dataset (shown in Fig. 12), and other agricultural land is not
a key land category, so the reduction of pixel accuracy has no
significant effect on the network effect.

Fig. 18 shows the semantic segmentation outcomes of
GCIFFNet and edge-enhanced GCIFFNet. From left to right
are the original image, the real label, the segmentation result
of GCIFFNet, and the segmentation result of edge-enhanced
GCIFFNet.

In the first line, the original image exhibits indistinct edges,
where GCIFFNet fails to enhance the edges between categories.
However, the accuracy is notably improved with the addition of
the edge-enhanced network.

In the second and third rows, it is observed that GCIFFNet
does not segment the roads. The improved network is more
sensitive to the texture information of the original image, so
it is more effective in this case of interclass similarity.

In the fourth line, GCIFFNet does not distinguish the light
blue and pink regions in the labels, while the improved network
can focus on the edges of the landforms through the auxiliary
network and learn the difference between the two.

In the sixth line, the segmentation result of GCIFFNet is
sticky, and the improved network alleviates this problem.

Comparing edge-enhanced GCIFFNet with other networks:
In this article, the superiority of GCIFFNet is proved by compar-
ing GCIFFNet with current commonly used semantic segmen-
tation networks, and the comprehensive performance of edge-
enhanced GCIFFNet is superior to that of GCIFFNet. Therefore,
our proposed edge-enhanced GCIFFNet performs optimally in
the three evaluation metrics of aAcc, mAcc, and mIoU. We
compare edge-enhanced GCIFFNet with other semantic seg-
mentation networks using the BIoU evaluation metric, and the
results are shown in Table XIII.

According to the comparison of the results in the table, our
proposed network achieves the highest accuracy of 0.88 in the
metric of BIoU, which proves the superiority of edge-enhanced
GCIFFNet in edge segmentation.

Fig. 19 shows the segmentation results of edge-enhanced
GCIFFNet with other semantic segmentation networks on the
test set. The features of cultivated land and forested land in
the original image are similar. The other semantic segmentation
networks have different degrees of mis-segmentation or omis-
sion for the regions circled by the black dashed box in Fig. 19,
and edge-enhanced GCIFFNet has the best results compared to
them.

G. Experiments on the LoveDA Dataset

To demonstrate the validity of our proposed model, we vali-
date our model on the LoveDA dataset, which contains 5987
images with 0.3-m resolution. There are seven land classes
in LoveDA, including building, road, water, barren, forest,
agriculture, and ground. During the experiment, the training
set, validation set, and test set contain 2522, 1669, and 1796
images. The parameter settings of the experiments remain
the same as above. In contrast of the Yinchuan dataset, the
LoveDA dataset uses background to represent all the land
categories that are not the other six categories in the dataset.
The results of the experiment are shown in Table XIV and
Fig. 20.

As shown in Table XIV, our proposed model achieves the best
performance on aAcc, mAcc, and mIoU. The dataset has a total
of seven load categories, and our model scores the highest IoU
metrics on five categories with the edge-enhanced module and
multiple attentional mechanisms. Background category contains
a tremendous amount of complex information, and our network
achieves the second highest pixel accuracy for this category, with
an IoU of 56.97% and at least 3% better than the other networks.
Barren category is the most difficult to classify and our proposed
model is at the top of the list for its segmentation.

Some of the experimental results are presented in Fig. 20.
The first row of the results shown that our network is able

to discriminate the interfering ground classes in the BACK-
GROUND better.

The second and fourth rows of the results show that our
network can solve the problem of prediction discontinuity and
the experimental results are better than other networks.
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The third and fifth rows of the images prove that the results
of our network can be better applied in real production to assist
practitioners to quickly perform landmarking.

The last row proves that our proposed network can accurately
extract the shape of the land categories.

The effectiveness of our proposed network is demonstrated
through experiments on the LoveDA dataset, and there is an
advantage in accuracy compared to other networks. Moreover,
compared to other networks, our proposed network can better
help practitioners and significantly reduce their workload.

VI. CONCLUSION

Due to the unique characteristics of RSIs, semantic seg-
mentation networks are prone to intraclass inconsistency when
dealing with large-scale and complex regions. Simultaneously,
the remote sensing dataset suffers from an imbalance in the
number of samples across different land classes, resulting in
reduced accuracy for certain land categories. In addition, RSIs
frequently exhibit similarities between different land classes,
leading to edge mis-segmentation issues.

To address the above challenges, this article proposes the
GCIFFNet network. The RCCA module obtains dense contex-
tual information, and the CARB module is proposed to fuse the
low-level and high-level features at the decoder stage to obtain
enhanced category features. By incorporating the RCCA and
CARB modules, our proposed network can utilize both spatial
attention and CA with minimal computational effort. The loss
function is improved to solve the sample imbalance problem in
the dataset. To solve the problem of unclear edge segmentation,
an edge-enhanced network is added to obtain edge-enhanced
GCIFFNet, which strengthens the network model to focus on
the edge. The experiment proves that the segmentation effect
of the edge is improved, whether compared with the original
network or with other semantic segmentation networks. The
edge-enhanced GCIFFNet achieves a 3.03% increase in the
BoundaryIoU evaluation index, reaching 88.54%. Meanwhile,
we validate the effectiveness of the proposed network on the
LoveDA dataset, achieving the highest scores in the three eval-
uation metrics of aAcc, mAcc, and mIoU. Specifically, aAcc
surpasses other networks by at least 2.5%, and five out of seven
land categories in the dataset exhibit the highest IoU scores,
affirming the superior performance of our proposed network.

However, there are still some limitations in this article. There
is room for further improvement in our edge-enhanced network
to enhance the effect of semantic segmentation of RSIs. Al-
though the proposed model demonstrates strong segmentation
effect, it comes with a relatively large number of parameters,
resulting in lengthy training times. Subsequently, the model can
be lightweight to improve the computing speed. In the future,
we will focus on algorithm improvement and carry out in-depth
research to deal with the numerous challenges brought by the
semantic segmentation of RSIs.
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