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Deep Content-Dependent 3-D Convolutional Sparse
Coding for Hyperspectral Image Denoising

Haitao Yin

Abstract—Despite the significant successes in hyperspectral im-
age (HSI) denoising, pure data-driven HSI denoising networks
still suffer from limited understanding of inference. Deep un-
folding (DU) is a feasible way to improve the interpretability of
deep network. However, the specialized spatial-spectral DU meth-
ods are seldom studied, and the simple spatial-spectral extension
leads to unpleasant spectral distortion. To tackle these issues, we
first propose a content-dependent 3-D convolutional sparse coding
(CD-CSC) to jointly represent spatial-spectral feature. Specifically,
the 3-D filters used in CD-CSC for each HSI are unique, which
are determined by linear combination of base 3-D filters. Then,
we develop a novel CD-CSC-inspired DU network for HSI denois-
ing, called CD-CSCNet. Furthermore, by exploiting the lightweight
of separable convolution and the adaptability of hypernetwork, we
design a separable content-dependent 3D Convolution (SCD-Conv)
to carry out CD-CSCNet. SCD-Conv not only reduces computa-
tional complexity, but also can be viewed as the convolutional sparse
coding with spatial and spectral dictionaries. Extensive experimen-
tal results on the ICVL, Zhuhai-1 OHS-3C, and GaoFen-5 datasets
demonstrate that CD-CSCNet outperforms several recent pure
data-driven and DU-based networks quantitatively and visually.

Index Terms—Hyperspectral image denoising, deep network,
convolutional sparse coding, deep unfolding, 3-D convolution,
separable convolution.

1. INTRODUCTION

YPERSPECTRAL image (HSI) is acquired by a spec-
H trometer with many narrow spectral bands ranging from
ultraviolet to infrared wavelength, and different imaging spectral
band can capture specific information of observed scenes. Due
to abundant spatial-spectral descriptions, HSI has a broad range
of applications in Earth observation, environmental protection,
agriculture monitoring, and mineral exploration [1]. However,
HSI acquisition system is influenced inevitably by atmospheric
environment, imaging technology limitation, and lighting con-
dition, which result in various noise degradations, including
Gaussian noise, stripe, impluse, and deadline. These noises
severely degrade the spatial-spectral structure of HSI, and cause
huge challenges in image classification [2], [3], [4], [5] and
target detection [6], [7], [8]. HSI denoising is an effective tool to
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remove noise from corrupted HSI, and can dramatically improve
the image quality.

Owing to its paramount importance in various high-level
vision interpretations, HSI denoising is always research hotspot.
During the past few decades, numerous HSI denoising methods
have been developed [9]. The existing methods typically revolve
around the spatial-spectral model between noise-free HSI and
noisy HSI. According to the types of spatial-spectral model,
the existing HSI denoising methods can be roughly divided into
the filtering-based, optimization model-based, and deep learning
(DL)-based.

The filtering-based methods adopt the viewpoint that image
structure and noise have different distributions, and the noise
component can be separated through filtering. Benefiting from
the compact representation of wavelet basis, the wavelet with
thresholding is popularly used. Othman et al. [10] used the 2-D
wavelet and 1-D wavelet for the spatial denoising and spectral
denoising, respectively. Chen et al. [11] executed the 2-D bivari-
ate wavelet and 1-D dual-tree complex wavelet sequentially in
the low-energy part of principal component analysis domain. To
exploit the 3-D structure of HSI, multidimensional filters based
methods have been developed, such as the 3-D wavelet [12],
multidimensional wavelet packet [13], and block-matching 4-D
(BM4D) [14].

The optimization model-based methods restore the noise-free
HSI through variational optimization model that derives from
the theory of Bayesian maximum a posteriori estimation. The
regularization term is the core of this category, which commonly
corresponds to the prior assumption and statistical property of
HSI. The total variation (TV) and low rank (LR) priors are
two representative models. The classical TV model considers
the local spatial variation of image, which can preserve spatial
smoothness and edge structure. As to HSI, simple band-by-band
implementation of TV may destroy spectral information. Thus,
some spatio-spectral extensions of TV are developed by taking
account of both spatial and spectral variations, such as the
Cubic TV [15], spatio-spectral TV (SSTV) [16], anisotropic
SSTV [17], lp-l1—2 SSTV [18], and graph SSTV [19]. The
LR models exploit the spectral correlation and the nonlocal
self-similarity in HSI, which are mostly realized through LR
matrix recovery (LRMR) and tensor decomposition. The popular
implementations of LRMR based approaches include the matrix
nuclear norm minimization [20] and the weighted Schatten
p-norm [21], [22]. To avoid the calculation of singular value
decomposition (SVD) in nuclear norm minimization, lots of
matrix factorization-based LRMR methods [23], [24], [25] are
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proposed. To jointly use the spatial low rankness and spectral
low rankness, Xue et el. [26] developed the joint spatial and
spectral LR based method. Alternatively, the tensor decom-
position based LR methods attempt to preserve the spectral—
spatial correlation using tensor operations, such as Tucker
decomposition [27], [28], [29], CANDECOMP/PARAFAC de-
composition [30], [31], t-SVD [32], [33], [34], tensor-ring
decomposition [35], multigraph-based LR tensor approxima-
tion [36], spectral-spatial transform based sparse and LR
model [37], and optimal LR tensor model [38]. In addition,
multiple priors have also been suggested, such as hybrid LR and
TV [39], [40], [41], [42], hyper-Laplacian regularized LR [43],
and hybrid LR and sparsity [44].

Over the past decade, lots of works employ DL to solve the
HSI denoising task, and achieve dominating performance. Up to
now, numerous ingenious HSI denoising networks have been de-
signed, such as plain convolutional neural network (CNN) [45],
residual network [46], global reasoning network [47], partial
densenet [48], attention network [49], [50], [51], recurrent net-
work [52], [53], multiscale adaptive fusion network [54], 3-D
CNN [55], and transformer [56]. In general, most HSI denoising
networks are handcrafted and pure data-driven, which ignore the
domain knowledge of HSI denoising and make deep network
inexplicable.

Recently, deep unfolding (DU) is utilized to construct deep
network targeting at an explainable architecture. The concept of
DU was originally proposed in the learned iterative shrinkage-
thresholding algorithm (LISTA) [57], that is, the structure of
deep network strictly follows the iterative solution of opti-
mization problem. Due to its white-box operation, LISTA has
attracted continuous attentions. DU has also been extended into
HSI denoising, such as the LR model with DRUNet [58], LR
model with U-Net [59], nonnegative matrix factorization model
with dilated deep residual network [60], Gaussian mixture model
with FFDNet [61], and deep sparse coding [62]. DU provides
a sound strategy to integrate the interpretability of optimization
model with DL. However, the existing DU-based approaches
still have several drawbacks:

1) The network parameters are shared for all HSIs, ignoring

the specificity and diversity of each HSI.

2) The simple extension from 2-D deep network to its 3-D
version suffers from limited flexibility of spatial-spectral
representation. Intuitively, the 3-D convolution is feasible
to capture spatial-spectral features. However, plain 3-D
deep network extracts the coupled spatial-spectral fea-
tures, which has low scalability in different spectral bands.

3) The current implementations of DU cannot balance the
performance and transparency of network effectively.

To address the above issues, we first propose a novel content-
dependent 3-D convolutional sparse coding (CD-CSC). Specif-
ically, CD-CSC is the convolutional sparse coding (CSC) with
dynamic 3-D convolutional dictionary. Based on CD-CSC,
we then develop a meaningful DU network for HSI denois-
ing, termed as CD-CSCNet. Besides, three handcrafted deep
modules are inserted into backbone network for the low-level
features extraction, dynamic weights generation, and denoised
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HSI reconstruction, respectively. Moreover, a separable content-
dependent 3-D convolution (SCD-Conv) is developed to build
CD-CSCNet. To the best of our knowledge, our CD-CSCNet is
the first DU HSI denoising method to leverage the insights of
3-D CSC and separable convolution. The main contributions of
this article are summarized as follows:

1) We propose the CD-CSC, which expresses a HSI through
unique 3-D convolutional filters. It can enhance the adap-
tivity of spatial-spectral features representation.

2) We design the SCD-Conv, which consists of one content-
dependent spatial convolution and one spectral convolu-
tion. The SCD-Conv not only saves computational com-
plexity, but also decouples the spatial and spectral features
which can improve the flexibility of convolution.

3) We develop the CD-CSCNet by plugging three deep
modules into fully interpretable DU network. It offers
a learnable optimization solution of CD-CSC, and also
provides an alternative DU framework with good tradeoff
between performance and transparency.

The rest of this article is organized as follows. In Section II,
we briefly introduce the background. Section III describes
the proposed CD-CSCNet and core components. Section IV
presents the experimental comparisons and discussions. Finally,
Section V concludes this article.

II. BACKGROUND
A. SC and LISTA

Sparse coding (SC) has long been an effective tool to represent
signal. Given an observed signal x € R", SC formulates it as a
sparse combination of prototype features ® € R™"*™(n < m),
that is, x = ®a. The ¢;-norm-penalized least absolute shrink-
age and selection operator (LASSO) problem is widely used to
estimate the sparse coefficient a € R™

. 1
m,gnk\la||1+§|le‘1’a\\§ (M

where A is the balance parameter. The iterative shrinkage-
thresholding algorithm (ISTA) is a popular choice to solve
problem (1), i.e.,

1
ot = S% (a(t) + Z‘I'T (x — i’a(t))) 2)

where L is the largest eigenvalue of &' &, and S. (+) is the
elementwise soft-thresholding operation, defined as Syp(a) =
sign(a) - max (0, |a| — 0).

DU constructs a differentiable estimator by parameterizing
the iterative solution, originating from LISTA [57]. Following
the computational flow of ISTA, LISTA converts each iteration
as one layer, and forms a special recurrent neural network. The
tth layer of LISTA is formulated as

a(tH) = Sg(t) (‘I’la(t) + ‘I’2X) t=0,1,....T -1 (3)
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where ¥, =1— 1®'® and ¥y = L& . The parameters

{W,, Wy, 0} can be trained end-to-end through a task-specific
supervision manner.

B. CSC

CSC is a shift-invariant SC, which uses convolution instead
of matrix multiplication [63]. Formally, let X € RM1*M2 be an
observed image. CSC encodes X as the sum of a set of filters
convolved with feature maps, that is

N
X=> fixA, )
=1

where f; € R *"2 ig the ith filters and A; € RM1*Mz g the
ith feature map. Different from the patchwise implementation
of SC, CSC is capable of handling whole image. By introducing
the variables F = {f;}¥, e RN and 4 = {A;}YV | €
RMixMzxN " we simplify (4) as X = F * A. Then, A can be
sought by the convolutional LASSO

. 1
min ||y + 3| X = F « All% 5)

Problem (5) can be solved by the convolutional ISTA (Conv-
ISTA), that is

A =8, (A“) + %ﬂip(}') x (X — Fx .A(t)>> (6)

where flip denotes the 180° rotation.

To represent volumetric data, such as HSI, dynamic MRI, and
electromagnetic brain signal, the 3-D modification of CSC (3D
CSC) has been developed. Let X € RM1*M2xC be 3 volumetric
data with C' channels. The formula of 3-D CSC can be written
as

N
X =) FixA (7
i=1
where F; € R™*"2*"3 (ng < C) is the ith 3-D filter. The 3-
D filters in (7) can capture the 3-D patterns, which has great
potential in volumetric data representation.

III. PROPOSED METHOD

A. Formulation of CD-CSC

Given a noisy HSI Y € RM1xM2xCHST denoising aims
to restore the latent noise-free HSI X € RM1*M2xC from ),
where My, M, and C' denote the height, width, and number of
spectral bands, respectively. The additive noise model is widely
used to define noisy HSI, i.e.,

Y=X+N 8)

where N € RM1xMzxC" denotes the corrupted noise. In this
article, we propose to use the 3-D CSC to represent X. Hence,
the noise-free HSI restoration is changed into the convolutional
sparse approximation problem.

The 3-D CSC model (7) is able to capture the spatial-spectral
features in HSI. However, the current model adopts a set of
static 3-D filters, which are shared for all HSIs. There is a lack
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of understanding the specificity of different HSI. Intuitively, the
unique 3-D filters could offer more compact representation than
the shared 3-D filters.

Based on this viewpoint, we propose the CD-CSC, which
expresses each HSI using a set of own 3-D filters. Let {B3; €
Rmaxnmexns |5 — 1.2 ... K} be a set of base 3-D filters. Each
3-D filter F; in CD-CSC is defined as the linear combination of
base 3-D filters

K
Fi=Y wi;Bj,i=12...,N )
j=1

where {w; ; }; ; are the dynamic weights. Then, putting (9) back
into (7), we obtain the formula of CD-CSC

N K
x=>Y wi ;B | * A (10)
1

i=1 \j=

Unless otherwise specified, the symbol * denotes 3-D convolu-
tion hereinafter.

CD-CSC has three significances. First, in contrast to the static
filters in (7), CD-CSC employs the unique filters for each HSI
due to the dynamic weights {w; ; }; ;. Second, (9) indicates that
{F}X | can be approximated by {B; }le with K < N. The
convolutional dictionary size is scalable by adjusting the ratio
r = N/K. Third, {B;}/<, can be regarded as the prototype
spatial-spectral features. Although {13; }fil are also shared for
all HSIs, they are quite different from the fixed filters in (7).
In particular, {B; }szl serve as base filters to create unique
filters for representation, which can be transferred into different
hyperspectral modalities.

Meanwhile, defining A = { A}V, € RM*MoxOxN 3 —
{BL}1K:1 c R™m xn2><n3><K’ .7:':{.7:1}5\/:1 c Rnixna ><n3><N’ and
W € RV*K "we then simplify (10) as

X=Bx,W)xA (11)

where the symbol x4 denotes the 4-mode product of a tensor
with a matrix. To be precise, the (i1, i2, i3, j)th element of B x4
W is given by
K
(B x4 W), inind) = O Blivsinsiain) Wiia)

i4=1

12)

where B;, i, i,.i,) and W ; ;) are the (i1, 2, 73,74)th element
and (j,i4)th element of B and W, respectively. Recalling the
noisy HSI model (8), we reconstruct .A and W for represent-
ing X through the following modified 3-D CSC optimization
problem:

.t
min 5[V — (B x4 W)« Al + 21 [ Al + 229(W) (13)

where ¢(-) denotes the constraint on W.

In general, g(-) is defined as a convex function, such as the
{1-norm and ¢5-norm. With accurate formula of g(+), (13) can be
solved through the alternating direction method of multipliers
(ADMM). The basic procedure of ADMM is that A and W are
alternatively optimized with another one fixed, and iterated until
the stopping criterion. However, the ADMM solver has several
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Fig. 1. Overall architecture of proposed CD-CSCNet.

disadvantages in slow convergence speed, intractable multiple
parameters adjustment, and sensitivity to noise. Furthermore, it
is still a challenge to define an universal explicit g(-) due to the
high-dimension structure of HSI.

B. Architecture of CD-CSCNet

To avoid the disadvantages of optimization algorithm to solve
problem (13), we propose a CD-CSC-inspired DU network,
called CD-CSCNet. In particular, we use a separate subnetwork
to predict W instead of explicit function g(+). Then, the problem
of A prediction is transformed as a standard 3-D CSC, which
can be solved through the deep 3-D CSC network (3D-CSCNet)
using the DU strategy. Fig. 1 shows the overall architecture of
CD-CSCNet, which contains head feature extraction network
(HeadNet), 3D-CSCNet, weight generation network (WGNet),
and reconstruction network (RecNet).

1) HeadNet: To enhance the effectiveness and accuracy of
spatial-spectral representation, we first employ the HeadNet to
extract low-level features from input noisy HSI ). Specifically,
the HeadNet is composed of two 3 x 3 x 3 convolutional layers,
and each of which applies the ReLU function. Let H be the
extracted features by HeadNet. Without loss of generality, the
size of H is still denoted as M; x Mo x C. In the following
experiments, the channels of two 3-D convolutioanl layers in
HeadNet are all set to 16.

2) 3D-CSCNet: 3D-CSCNet aims to calculate the sparse
feature maps A from . We assume for a moment that the
3-D filters in CD-CSC are given, and defined as F = B x4 W.
Then, the optimization problem for calculating A is

1
mink\\A\\1+§||%—f*A||2F. (14)

The iterative solution of problem (14) is

A =5, (A“) + %ﬂip(}') (H-Fo A<f>)> .

(15)
Using DU, we reformulate (15) as a feed-forward 3-D CNN
with T layers, namely 3D-CSCNet. The tth layer J} (t =
0,1,...,T — 1) is defined as

A — g, (.A(t) Ly (7{ Gy A(t))) (16)

where 6 is a learnable threshold parameter for Sy(-), C1 €
R %12 xngxCxN and C2 c R™ xnaXngxNxC are the 3-D con-
volutional layers for encoding and decoding, respectively. The
dimension in C; (C») is denoted as “height x width x depth x
in channels x out channels.” Comparing with (15) requiring
hundreds of iterations, 7" in 3D-CSCNet is much smaller, which
is set to 10 in our experiments.

3) WGNet: The goal of WGNet is to predict the weights
of convolutional kernels (C; and Cs) in (16) adaptively. As
we have seen, C; and Cs are the parameterized %ﬂip(.’F ) and
F, respectively. Since F is content-dependent, we also define
C, and Cs using the concept of content dependent. Thus, the
related convolution operation is called as the content-dependent
3-D convolution (CD-Conv). Let {B1,B2} and {W;, Wy}
be the base convolutional kernels and the dynamic weights,
respectively. Based on the concept of CD-Conv, C; and C, are
defined as

Ci =B x5 Wi, Cay =By x5 W (17)

where X 5 denotes the 5-mode product similar to (12). Section II-
I-C will present a separable refinement of C; and Cs with more
details.

To avoid the choice of g(-) in problem (13), we resort to
the implicit WGNet to predict W; and W for each input Y
adaptively. As shown in Fig. 1, WGNet consists of three 3 x 3
convolutional layers with ReLU, one global average pooling
(GAP) layer, and one fully connected (FC) layer. Specifically,
the channels of three convolutional layers are set to 32, 64, and
128 channels, respectively. The output of FC layer is with the
size of 2N K, which is then reshaped as two N x K matrices,
namely W7 and Wo. R

4) RecNet: RecNet reconstructs the final denoised HSI X
from the sparse features AT extracted by 3D-CSCNet, that is,
X = RecNet(.,A™)). RecNet contains two 3 x 3 x 3 convolu-
tional layers with ReLU.

C. Separable Implementation of CD-Conv

The key element of CD-CSCNet is the CD-Conv (C; and
C5) in (16). The naive CD-Conv is based on typical 3-D con-
volution, which requires more expensive computational budget
and memory than 2-D convolution, especially for the HSI with
both large spatial size and lots of spectral bands. We adopt
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Fig. 2. Illustrations of CD-Conv and SCD-Conv about C in (16).

the separable 3-D convolution proposal to refine CD-Conv, and
develop anovel separable CD-Conv (SCD-Conv). The definition
of SCD-Conv considers two fundamental aspects: separable
and content-dependent. We take the decoder Co as example to
describe SCD-Conv in details.

In the aspect of separable, SCD-Conv decouples each 3-
D convolution into one spatial-convolution and one spectral-
convolution. Formally, the n; X ny X n3g 3-D convolution is
decomposed into one n; X ny x 1 spatial-convolution (C5*)
and one 1 x 1 X ng spectral-convolution (C57). Then, Cs is
approximated by cascading C5’* and C3°. Thus, the term
Co % A® in (16) can be rewritten as

Cox A = C5P° & (cgf’“ x A“)) . (18)

In the aspect of content-dependent, a straightforward ap-
proach is to adopt two dynamic networks to generate the kernels
of C5P* and C3P°. The diversity of spectral feature is less
than spatial feature, and it is unnecessary to specialize C5"°.
Hence, we propose to apply the concept of content-dependent
to create C5"*, while C3" is shared for all HSIs. Let B3" €
R xm2xIxNxK and W, € RV*K be the base part of spatial-
convolution and the dynamic weights, respectively. Then, C5P*
is defined as

C;pa = nga X5 Wo. (19)
Replacing C3"* in (18) with (19), we obtain the implementation
of SCD-Conv on Co
Cyx A = C3° ((B;p“ x5 Wa) * A<t>) (20)
where C3P¢ € RIX¥1xnaxNxC Rig ) jllustrates the comparison
between CD-Conv and SCD-Conv.

SCD-Conv has three advantages in terms of model-
interpretable, content-dependent, and complexity reduction:

® Model-Interpretable: The separable convolution in (18) is

interpreted as double dictionaries 3-D CSC. Specifically,
C5P" and C5P can be regarded as the spatial and spectral
convolutional dictionaries, respectively.

® Content-Dependent: C3'* is determined through the adap-
tively predicted W, which has great ability at representing
own spatial content of each HSI.
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e Complexity Reduction: The computational complexity of
CD-Conv for Cs is O(ninangCN + NK), which is then
reduced to O(n1neC'N + n3CN + NK) in SCD-Conv.

In the same way, the encoder C; in (16) is also carried out

using SCD-Conv. Let C77* and C}¥“ be the spatial-convolution
and spectral-convolution, respectively. Based on the concept
of content-dependent, C;"* is defined as C}¥* = B x5 W.
Analogous to (20), the implementation of SCD-Conv on C; is
formulated as

EO =M —Cyx AV €y« EW = C° » (c;f’“ . g@) .
(2D
To this end, incorporating (20) and (21) into (16), we obtain the
computational procedures of 7},

CiP* = B x5 W1,C5" = B3P x5 Wy
C, *A(t) _ C;pe % (Cgpa *A(t))
EO =M —Cyx AV €y« EW = € & (cipa * 8(”)
A — 5, (A<f> 4 Cy g<t>) .
(22)

To visually show the superiority of SCD-Conv, we visualize
the feature maps AWM at different layers, extracted by the
CD-CSCNet with normal 3-D Conv, CD-Conv, and SCD-Conv,
respectively. A noisy HSI [see Fig. 3(b)] is simulated from
clean HSI [see Fig. 3(a)] by adding Gaussian noise, and then
it is fed into the pretrained CD-CSCNet. The obtained feature
maps A" € RM1M2xC are processed by mean(abs(.A!"), 3),
where abs(+) and mean(-, 3) compute the absolute value and the
mean value in the 3-D, respectively. From Fig. 3, we can obtain
the following findings:

1) The features extracted the normal 3-D Conv without
content-dependent are not sparse sufficiently, as shown in
Fig. 3(c)—(e). In contrast, the content-dependent convolu-
tions (CD-Conv and SCD-Conv) can provide more sparse
and sharp features.

2) The comparisons of Fig. 3(f)—(h) and the comparisons of
Fig. 3(i)—(k) show that the features become more sparse
and more sharp with the layer ¢ increasing.

3) Comparing with CD-Conv [see Fig. 3(f)—(h)], the separa-
ble approach (SCD-Conv) [see Fig. 3(i)—(k)] can capture
the salient features more completely.

D. Training Strategy and Implement Details

The mean square error loss function is used, which is defined
as

£(©) =Y |CD-CSCNet(¥y.) — X3l (23)

where { X, Y} are the kth pair of clean-noisy HSIs, and ©
denotes all trainable parameters.

We use the ADAM optimizer with parameters 51 = 0.9 and
B2 = 0.999 for training network parameters. The batch size and
epoch are set as to 16 and 100, respectively. The learning rate
is initialized as 2 x 10~*, and descended by a factor of 0.1 at
70 and 90 epoches, respectively. CD-CSCNet is executed using
PyTorch and trained on a NVIDIA GeForce RTX 3090 GPU.



4130
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® () (k)

Fig.3. Visualization of feature maps A®) obtained by different convolutions.
(a) Clean HSI (composite of bands 31, 11, and 6). (b) Noisy HSI. (c) Normal
3-D Conv (¢t = 1). (d) Normal 3-D Conv (t = 3). (¢) Normal 3-D Conv (¢t = 5).
(f) CD-Conv (¢ = 1).(g) CD-Conv (t = 3). (h) CD-Conv (¢ = 5). (i) SCD-Conv
(t = 1). (j) SCD-Conv (t = 3). (k) SCD-Conv (t = 5).

IV. EXPERIMENTS

A. Experimental Settings

1) Training Dataset: The ICVL' dataset is used to build
training set. Specifically, the ICVL dataset contains 201 real-
world objects, and each image is with size of 1392 x 1300 x 31.
We first select 100 images. A total of 30000 patches with size
of 50 x 50 x 31 are randomly extracted from these 100 images,
which are then used as training set. Moreover, all images are
normalized into [0,1].
2) Simulated Noise Settings: The performance assessment
is conducted on the simulated noise and real noise. For a fair
performance comparison, we follow the simulated noise settings
in [47], defined as:
Case 1 i.i.d. Gaussian noise: All bands are corrupted by addi-
tive Gaussian noise with the same standard deviation
o = {30,50,70}.

Case 2 Non-i.i.d. Gaussian noise: Each band is corrupted by
additive Gaussian noise with different standard devi-
ation o, randomly drawn from the interval [30,70].

![Online]. Available: http://icvl.cs.bgu.ac.il/hyperspectral/
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Case 3 Gaussian noise + Stripe noise: All bands are cor-
rupted by the non-i.i.d. Gaussian noise. Then, 30% of
bands are disturbed by additive stripes. The number
of stripes is 5% — 15% of columns.

Gaussian noise + Deadline noise: The non-i.i.d.
Gaussian noise is added into all bands as Case 2.
Then, 5% — 15% of columns in the randomly se-
lected 30% of bands are affected by the deadlines.
Gaussian noise + Impluse noise: We first add the
Non-i.i.d. Gaussian noise into all bands, and then the
impulse noise with the percentage of 50% — 70% is
applied to randomly selected 30% of bands.

Case 6 Mixture noise: At least one type of noise men-
tioned above is randomly selected and added to each
band.

Moreover, we train a specific network for each simulated noise
case, and then assess performance using the corresponding pre-
trained network.

3) Compared Methods: We compare our CD-CSCNet with
several popular HSI denoising methods selected from different
categories, including one filtering-based method (BM4D? [14)),
six optimization model-based methods (LRTV? [39], LRT-
DTV* [41], TDL® [28], LLRT® [43], NMoG’ [25], and IT-
SReg?® [27]), four pure data-driven DL-based methods (HD-
CNN? [46], QRNN'? [55], SQAD'! [52], and GRN'? [47]), and
two DU-based methods (FastHyMlx13 [61] and T3SC! [62]).
All compared methods are reproduced with default settings.
According to the ablation studies in Section IV-E, the major
hyper-parameters in CD-CSCNet are set as 7' = 10, N = 64,
and r = 4.

4) Evaluation Indexes: For quantitative comparisons, we
adopt three indexes, including the peak signal-to-noise ratio
(PSNR), structure similarity (SSIM), and spectral angle mapper
(SAM), which can quantify the visual quality, structure similar-
ity, and spectral fidelity, respectively. Larger PSNR and SSIM
values, and smaller value of SAM indicates the better denoised
result. Furthermore, the average inference time and the number
of model parameters are adopted for computational complexity
comparison.

Case 4

Case 5

B. Simulated Noise Experiment on ICVL Dataset

In this section, we perform a simulated noise experiment
(Cases 1-6) on the ICVL dataset. Except the images used in

2[Online]. Available: http:/www.cs.tut.fi/foi/

3[Online]. Available: http://www.lmars.whu.edu.cn/prof _web/zhanghong
yan/Homepage.html

4[Online]. Available: http://gr.xjtu.edu.cn/en/web/dymeng/3

3[Online]. Available: http:/gr.xjtu.edu.cn/web/dymeng/

[Online]. Available: https://owuchangyuo.github.io/

7[Online]. Available: https://github.com/xiangyongcao/NMoG_RPCA

8[Online]. Available: http://gr.xjtu.edu.cn/en/web/dymeng/3

9[Online]. Available: https://github.com/qzhang95/HSID-CNN

10[Online]. Available: https://github.com/Vandermode/QRNN3D

1TOnline]. Available: https://github.com/EtPan/SQAD

12[Online]. Available: https://github.com/xiangyongcao/GRN

13[Online].  Available: https://github.com/LinaZhuang/HSI-MixedNoise
Removal-FastHyMix

14[Online]. Available: https://github.com/inria-thoth/T3SC/tree/main
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Fig. 4.
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Denoised results of different methods on the ICVL dataset for Case 1 at o = 50 (composite of bands 31, 11, and 6). (a) Ground truth. (b) Noisy HSI.

(¢) BM4D. (d) LLRT. (¢) LRTDTYV. (f) TDL. (g) ITSReg. (h) GRN. (i) HDCNN. (j) QRNN. (k) SQAD. (1) FastHyMix. (m) T3SC. (n) Ours.

Fig. 5.

uz_
Im; I

Residual maps of different methods on the ICVL dataset for Case 1 at o = 50 (left: spatial residual map, right: spectral residual map). (a) BM4D.

al Residual

(b) LLRT. (c) LRTDTV. (d) TDL. () ITSReg. (f) GRN. (g) HDCNN. (h) QRNN. (i) SQAD. (j) FastHyMix. (k) T3SC. (1) Ours.

training set, we select other 50 images for testing. Then, each
image is centrally cropped into 512 x 512 x 31.

Fig. 4 illustrates the visual comparison of different methods
on “prk_0328-0945" image for Case 1 at noise level o = 50.
In addition, a closeup on tree branch of each image is shown
synchronously. Compared with other methods, the results of
BM4D [see Fig. 4(c)] still have noticeable noise, and obtain
a little poor denoising results. LRTDTV, TDL, ITSReg, and
HDCNN generate some blurring and cause some spatial details
distortions, as shown in Fig. 4(e)—(g), and (i), respectively. The
closeup of Fig. 4(k) shows that SQAD introduces some artifacts.
In contrast, LLRT [see Fig. 4(d)], GRN [see Fig. 4(h)], QRNN
[see Fig. 4(j)], FastHyMix [see Fig. 4(1)], T3SC [see Fig. 4(m)],
and our method [see Fig. 4(n)] exhibit better spatial visual
effects. Furthermore, Fig. 5 displays the spatial residual and
spectral residual, as shown in the left part and right part of each
image, respectively. Specifically, the absolute value of bandwise
spatial residual is calculated band-by-band, and then the average
spatial residual value among all bands is illustrated. Meanwhile,
the spectral residual is computed from the SAM index. Fig. 5

shows that our method obtains the fewest spatial and spectral
distortions.

Tables I and II present the average indexes results on the
ICVL dataset with Case 1 and Cases 2-0, respectively. It can be
observed that the DL-based methods achieve better results than
the filtering- and optimization model-based methods. For Case 1,
T3SC s slightly better than our method at low noise level, but our
method provides the best results at high noise level. Moreover,
our method obtains the best PSNR, SSIM, and SAM values
at Cases 2-6. In particular, our method surpasses the second
best PSNR method by 0.16 dB for Case 1 at 0 = 70 and even
1.65 dB for Case 6. From the SAM index, our method reduces
the spectral distortion about 10.77% and 16.47% over the second
best for Case 1 at ¢ = 70 and Case 6, respectively. The indexes
values verify the superiority of our method on the spatial and
spectral preservations quantitatively. In addition, Fig. 6 depicts
the PSNR and SSIM of different methods for each band in Case
1 at noise level o = 50. From Fig. 6, it can be found that our
method obtains the best PSNR and SSIM values for most of
bands.
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TABLE I
INDEXES RESULTS OF ALL METHODS ON THE ICVL DATASET WITH CASES 1 AT DIFFERENT NOISE LEVELS

o | Indexes [ Noisy | BM4D [ TDL [ ITSReg | LLRT | LRTV [ NMoG [ LRTDTV [ HDCNN [ QRNN [ SQAD [ GRN | FastHyMix | T3SC [ Ours
PSNR 1859 | 38.11 | 4059 | 4131 41.62 | 3432 32.81 38.13 40.43 4227 4201 | 4213 41.78 4335 | 43.02
30 [ SSIM | 0.106 | 0937 | 0958 | 0.962 0968 | 0902 | 0.738 0.939 0.955 0.971 0.969 | 0.974 0.967 0.977 | 0.976
SAM 0.702 | 0.103 | 0.056 | 0.071 0.052 | 0.068 0.141 0.077 0.064 0.059 0.063 | 0.058 0.064 0.053 | 0.044
PSNR 14.15 | 3534 | 38.19 | 3896 3836 | 32.51 29.54 36.14 38.68 40.01 39.52 | 40.06 38.93 40.85 | 4073
50 [ SSIM | 0.044 | 0.895 | 0936 | 0.944 0941 | 0.881 0.578 0.918 0.939 0.958 0.955 | 0.962 0.944 0.963 | 0.964
SAM 0.887 | 0.136 | 0.071 0.076 0.074 | 0.086 0.18 0.096 0.077 0.067 0.066 | 0.062 0.088 0.063 | 0.053
PSNR 1123 | 3353 | 36.62 | 3731 3678 | 3119 | 2735 34.60 37.41 37.95 37.67 | 38.82 36.93 38.98 | 39.14
70 [ SSIM | 0.023 | 0857 | 0914 | 0.931 0925 | 0.864 | 0471 0.899 0.928 0.938 0.941 | 0953 0.921 0.951 | 0.954
SAM 1.011 0.164 | 0.083 | 0.084 0.085 | 0.106 | 0213 0.112 0.085 0.083 0.073 | 0.065 0.110 0.073 | 0.058

The best and second best results are shown in boldface and underline, respectively.

TABLE II
INDEXES RESULTS OF ALL METHODS ON THE ICVL DATASET WITH CASES 2-6

Case | Indexes | Noisy | BM4D | TDL [ ITSReg | LLRT | LRTV | NMoG | LRTDTV | HDCNN [ QRNN [ SQAD | GRN [ FastHyMix | T3SC | Ours
PSNR | 1454 | 3517 | 3071 37.47 3459 | 3271 30.53 36.49 38.92 40.04 39.04 | 39.65 38.98 40.76 | 40.79
2 SSIM | 0.057 | 0885 | 0616 | 0.922 0.821 | 0.884 | 0.626 0.923 0.941 0.957 0951 | 0.959 0.945 0.963 | 0.965
SAM 0908 | 0.143 | 0298 | 0.101 0.171 | 0.087 | 0.174 0.093 0.075 0.071 0.081 | 0.066 0.097 0.065 | 0.055
PSNR | 14.63 | 3479 | 3007 | 37.23 3358 | 3276 | 30.11 36.38 38.74 39.84 3938 | 39.72 37.97 40.36 | 40.52
3 SSIM | 0.057 | 0876 | 0588 | 0918 0.783 | 0.884 | 0.614 0.922 0.938 0.958 0.955 | 0.961 0.928 0.962 | 0.965
SAM 0903 | 0.154 | 0313 | 0.106 0.195 | 0.088 | 0.252 0.097 0.078 0.072 0.071 | 0.065 0.116 0.072 | 0.055
PSNR | 14.58 | 3232 | 27.81 33.76 3125 | 3136 | 2951 34.42 38.63 39.81 39.06 | 38.87 3432 39.89 | 40.93
4 SSIM | 0.057 | 0831 | 0537 | 0.868 0.737 | 0869 | 0.617 0.903 0.938 0.958 0953 | 0.956 0.853 0.960 | 0.967
SAM 0916 | 0173 | 0351 0.145 0209 | 0129 | 0.251 0.120 0.078 0.069 | 0.066 | 0.071 0.141 0.080 | 0.053
PSNR 1266 | 2876 | 24.08 | 29.54 2771 | 3128 | 2595 35.28 36.91 38.13 38.03 | 35.05 31.76 33.40 | 39.46
5 SSIM | 0.044 | 0713 | 0368 | 0.779 0.629 | 0.853 | 0.492 0.909 0.918 0.941 0.945 | 0915 0.836 0.855 | 0.958
SAM 0.905 | 0435 | 0541 0.417 0.422 | 0228 | 0.483 0.121 0.120 0.091 0.084 | 0.145 0.450 0.315 | 0.071
PSNR | 1245 | 2626 | 21.12 | 2694 2535 | 2976 | 24.62 33.02 35.67 37.64 36.57 | 33.83 26.82 3131 | 39.29
6 SSIM | 0.041 | 0653 | 0283 | 0.739 0541 | 0.831 0.465 0.891 0.905 0.941 0.931 | 0.898 0.695 0.832 | 0.957
SAM 0922 | 0472 | 0591 0.453 0.461 | 0296 | 0.496 0.137 0.125 0.092 | 0.085 | 0.147 0.485 0357 | 0.071

The best and second best results are shown in boldface and underline, respectively.

TABLE III
COMPUTATIONAL COMPLEXITIES OF ALL METHODS ON THE ICVL DATASET WITH CASE 1

BM4D TDL ITSReg LLRT LRTV NMoG | LRTDTV | HDCNN | QRNN | SQAD | GRN | FastHyMix | T3SC | Ours
Time [s] 236.555 | 47.265 | 2812.476 | 2921.458 | 461.247 | 115796 | 250.549 0.894 0.446 0.705 | 0.063 2.544 3.162 | 1.638
#Params [M] — — — — — — — 0.40 0.86 0.31 0.38 — 1.06 0.45

The inference times of BM4D, TDL, ITSREG, LLRT, LRTV, NMOG, LRTDTYV, and FASTHYMIX are cpu times. The inference times of HDCNN, QRNN, SQAD, GRN, T3SC and our

method are GPU times.

Table III presents the computational complexity comparisons.
BM4D, TDL, ITSReg, LLRT, LRTV, NMoG, LRTDTYV, and
FastHyMix are implemented by MATLAB, so the CPU times
are reported. HDCNN, QRNN, SQAD, GRN, T3SC, and our
method are executed using Python and running on GPU. Thus,
the inference times are measured as the GPU times. Our method
needs a few more inference time than other DL-based methods.
Due to the considerable performance improvement over DL-
based methods, such computational complexity of our method
is acceptable.

C. Simulated Noise Experiment on Remote Sensing Dataset

In this section, the performance evaluation is conducted on
the simulated noisy remote sensing images at the most severe
noise Case 6. The OHS-3C dataset' is tested, which is acquired
by the Zhuhai-1 OHS-3C hyperspectral satellite. First, we se-
lect two HSIs from OHS-3C dataset, that is, OHS-3C-UZ and

15[Online]. Available: https://www.obtdata.com/#/dataExpress

OHS-3C-X]J, which are captured at Surxondaryo Bandikhan,
Uzbekistan, and Xinjiang Uygur Autonomous Region, China,
respectively. Each dataset is with the size 5057 x 5056 x 32.
Then, we crop one subimage of size 500 x 500 x 32 from each
dataset for testing. Besides, 2000 overlapped patches with size
of 50 x 50 x 32 are sampled from the rest parts to fine-tune
the pretrained network for the OHS-3C-UZ and OHS-3C-XJ
datasets, respectively. During fine-tuning, the epoch is set as 20.
The learning rate starts from 2 x 10~* and descends a factor of
0.1 after 5 epoches. GRN is not used in this experiment, since it
cannot restore the HSI with different bands.

Figs. 7 and 8 show the false-color denoised results and spa-
tial/spectral residual maps of different methods on the OHS-
3C-UZ dataset at Case 6. BM4D [see Fig. 7(c)] introduce
some artifacts and lose some spectral information. LLRT [see
Fig. 7(d)], TDL [see Fig. 7(g)], and ITSReg [see Fig. 7(h)] fail to
remove the severe complex noise. LRTV [see Fig. 7(f)] removes
most of the noise, but produces blurring. The inconsistent color
of Fig. 7(m) with ground truth [see Fig. 7(a)] indicates that T3SC
generates apparent spectral distortion. In contrast, HDCNN,


https://www.obtdata.com/#/dataExpress

YIN AND CHEN: DEEP CONTENT-DEPENDENT 3-D CONVOLUTIONAL SPARSE CODING FOR HYPERSPECTRAL IMAGE DENOISING 4133
TABLE IV
INDEXES RESULTS OF ALL METHODS ON THE OHS-3C-UZ AND OHS-3C-XJ DATASETS WITH CASE 6

Dataset Indexes | Noisy | BM4D | TDL [ ITSReg | LLRT | LRTV | NMoG [ LRTDTV | HDCNN [ QRNN [ SQAD [ FastHyMix | T3SC [ Ours
PSNR 1179 | 2535 | 21.30 24.85 2476 | 27.20 25.22 27.64 30.54 26.39 26.76 25.85 27.50 | 32.44

OHS-3C-UZ | SSIM 0.047 | 0607 | 0315 0.604 0.503 | 0.686 0.516 0.745 0.801 0.796 0.805 0.565 0.789 | 0.854
SAM 0.556 | 0.142 | 0213 0.150 0.147 | 0.062 0.159 0.105 0.170 0.195 0.163 0.133 0.089 | 0.049

PSNR 1258 | 2436 | 17.62 23.36 2273 | 2671 2375 27.89 28.43 26.48 26.99 24.41 2581 | 31.54

OHS-3C-XJ SSIM 0.069 | 0558 | 0.197 0.522 0.407 | 0.662 0.462 0.712 0.738 0.759 0.758 0.497 0.702 | 0.825
SAM 0552 | 0.172 | 0.358 0.187 0.209 | 0.085 0.140 0.087 0.226 0.209 0.163 0.176 0.115 | 0.056

The best and second best results are shown in boldface and underline, respectively.
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Fig. 6.  PSNR and SSIM of the different methods results for each band on the
ICVL dataset for Case 1 at o = 50. (a) PSNR for each band. (b) SSIM for each
band.

QRNN, SQAD, and our method obtain better visual effects.
The detailed comparisons on the closeups show that our method
generates the sharpest edges. Moreover, the visual comparisons
on residual maps in Fig. 8 also verify that the denoised HSI
obtained by our method is closest to ground truth in terms of
spatial and spectral preservations.

Figs. 9 and 10 display the false-color composite of denoised
results and the related residual maps for the OHS-3C-X1J dataset,
respectively. Fig. 9(d) and (g) indicate that LLRT and TDL
is unable to remove the complex noise. BM4D and ITSReg
remove most Gaussian noise, but still contain some stripe noise,
evidenced by the blue stripes in the top buildings region of
Fig. 9(c) and (h). LRTDTYV [see Fig. 9(e)], LRTV [see Fig. 9(f)],
HDCNN [see Fig. 9()], QRNN [see Fig. 9(j)], FastHyMix
[see Fig. 9(1)] and T3SC [see Fig. 9(m)] generate oversmooth
edges, and lose some spatial details. Fig. 9(k) shows that SQAD
introduces some artifacts. In contrast, our method [see Fig. 9(n)]
can more effectively preserve the spatial structure and spectral
information. This statement can also be proved by Fig. 10(1),
obtained by our method, has the fewer highlighted regions than
other residual maps.

Table IV reports the objective performance comparisons of
all methods on the OHS-3C-UZ and OHS-3C-XJ datasets with
complex noise Case 6. It can be seen that our method achieves
remarkable gains over compared methods in terms of PSNR,
SSIM, and SAM indexes.

D. Real Noise Experiment on Remote Sensing Dataset

In this section, we assess the performance of our method on
the real noisy HSI. The real noise experiment not only verifies the
practical application, but also evaluates the generalization of HSI
denoising methods. The Shanghai dataset'® is employed as the
testing image, which is with the size of 300 x 300 x 155. The
Shanghai dataset is obtained by GaoFen-5 sensor, containing
dense stripes and deadlines. Due to lack of ground truth, the net-
work model trained on the ICVL dataset is directly transferred to
the Shanghai dataset without additional fine-tuning. In addition,
we adopt the first 155 bands of Washington DC Mall dataset'” to
train T3SC, and then it is used to restore the Shanghai dataset.
Fig. 11 depicts the denoised results (composite of bands 152,
96, and 43) of all methods. The visual comparisons of closeups
demonstrate that our method achieves the comparable visual
quality to popular DL-based methods in terms of noise reduction
and edge sharpness.

E. Ablation Studies

In this section, the ablations studies are given to investigate
the effects of major hyperparameters in our method, including
the unfolding number 7', the channel number N in C;¥*(C3"%),
and the ratio r = N/ K. The experiments are conducted on the
ICVL dataset with Case 1 (o = 50).

1) Unfolding number T': T represents the number of J%
t=0,1,...,7 — 1) used in CD-CSCNet, which controls the
depth of network. We consider 7' = {2, 4, 6,8, 10,12}, and the
ablation results are presented in Table V. It can be observed
that the performance is improved with increasing 7'. Such im-
provement is waning with larger T'. Specifically, 7" = 10 obtains
0.17 dB PSNR gain over T'= 8. The comparison between
T =12 and T' = 10 indicates that PSNR is only improved by
0.02 dB, and the improvements of SSIM and SAM are negligible,
but the inference time increases 17.3%. For a tradeoff between
denoising performance and computational cost, 7"is set to 10 in
the experiments.

16[Online]. Available: http://hipag.whu.edu.cn/resourcesdownload.html
7[Online].  Available: https:/engineering.purdue.edu/biehl/MultiSpec/
hyperspectral.html
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Fig. 7. Denoised results of different methods on the OHS-3C-UZ dataset for Case 6 (composite of bands 30, 16, and 6). (a) Ground truth. (b) Noisy HSI.
(c) BM4D. (d) LLRT. (e) LRTDTV. (f) LRTV. (g) TDL. (h) ITSReg. (i) HDCNN. (j) QRNN. (k) SQAD. (1) FastHyMix. (m) T3SC. (n) Ours.
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Fig. 8. Residual maps of different methods on the OHS-3C-UZ dataset for Case 6 (left: spatial residual map, right: spectral residual map). (a) BM4D. (b) LLRT.
(c) LRTDTV. (d) LRTV. (e) TDL. (f) ITSReg. (g) HDCNN. (h) QRNN. (i) SQAD. (j) FastHyMix. (k) T3SC. (1) Ours.
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TABLE V
ABLATION STUDY ON THE UNFOLDING NUMBER 1" TABLE VI
ABLATION STUDY ON THE CHANNEL NUMBER N
T | PSNR | SSIM | SAM | Time [s]
2 [ 3941 [ 0954 | 0071 | 0521 N_| PSNR | SSIM [ SAM [ Time [s] | #Params [M]
4 40.04 | 0.959 | 0.061 0.798 32 4029 | 0961 | 0.058 0.798 0.21
6 4034 | 0961 | 0.057 1.079 64 40.73 | 0964 | 0.053 1.638 0.45
8 40.56 | 0.963 | 0.053 1.361 128 | 41.07 | 0966 | 0.05 3.969 1.36
10 40.73 0.964 0.053 1.638
12 | 40.75 | 0.964 | 0.052 1.922

on V. It can be seen that the PSNR, SSIM, and SAM scores
are better when N is larger, but with cost of larger model
complexity. Specifically, N = 128 obtains significant improve-
2) Channel number N in C{"*(C3’"): The channel num- ments over N = 64, but the inference time increase 142.3%,
bers in C{P* and C3’* determine the size of convolution and the number of parameters is more than three times. To
kernels, which also correspond to the size of convolutional guarantee the computation efficiency, we set N = 64 in the
sparse dictionaries. Without loss of generality, we assume experiments.
that C7¥* and C3P* have the same channels. We choose N 3) Ratior = N/K: r aims to adjust the size of W € RV*K
among {32,64,128}. Table VI presents the ablation results and determines the channel number in B}"“(B5"") through
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(b)

Denoised results of different methods on the OHS-3C-X1J dataset for Case 6 (composite of bands 16, 8, and 2). (a) Ground truth. (b) Noisy HSI. (c) BM4D.
(d) LLRT. (e) LRTDTV. (f) LRTV. (g) TDL. (h) ITSReg. (i) HDCNN. (j) QRNN. (k) SQAD. (1) FastHyMix. (m) T3SC. (n) Ours.
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Residual maps of different methods on the OHS-3C-XJ dataset for Case 6 (left: spatial residual map, right: spectral residual map). (a) BM4D. (b) LLRT.

(¢) LRTDTV. (d) LRTV. (e) TDL. (f) ITSReg. (g) HDCNN. (h) QRNN. (i) SQAD. (j) FastHyMix. (k) T3SC. (1) Ours.

TABLE VII
ABLATION STUDY ON THE RATIO r

r | PSNR | SSIM | SAM | Time [s] | #Params [M]
2 [ 4085 | 0965 | 0051 | 1642 0.72
4 | 4073 | 0964 [ 0053 | 1638 045
6 | 4043 | 0962 | 0054 | 1635 034

CiP" = B x5 W1 (C3P" = B3P x5 Wa). In this perspec-
tive, 7 can also be called as compression ratio. Larger  implies
bigger compression ratio, and can generate smaller size of
B (B5P"). It can be found in Table VII that larger r yields
smaller computational complexity, but causes a certain perfor-
mance reduction. Specifically, comparing with r =2, r =4
reduces the PSNR by 0.12 dB and saves number of parame-
ters by 37.5%. Although r = 6 reduces by half the number of
parameters, the PSNR score descends 0.42 dB. Therefore, r is
set to 4 in our experiments.

TABLE VIII
ABLATION STUDY ON THE TYPE OF CONVOLUTION

Type of Conv. | PSNR | SSIM | SAM [ Time [s] | #Params [M]

Normal 3D Conv 39.76 0.959 | 0.063 1.702 0.12
CD-Conv 40.67 0.963 0.054 2.162 0.49
SCD-Conv 40.73 0.964 | 0.053 1.638 0.45

4) SCD-Conv: To study the effectiveness of SCD-Conv, we
carry out other two variants of CD-CSCNet, that is, the SCD-
Conv is replaced as normal 3-D Conv and CD-Conv, respec-
tively. The training and testing of these two variants are the
same as the above experiments. Table VIII gives the comparisons
among the normal 3-D Conv, CD-Conv, and SCD-Conv. The
comparison between normal 3-D Conv and CD-Conv indicates
that the content dependent approach can obtain 0.91 dB PSNR
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Denoised results of different methods on the Shanghai dataset for real noise (composite of bands 152, 96, and 43). (a) Noisy HSI. (b) BM4D. (c) LLRT.

(d) LRTDTV. (e) LRTV. (f) TDL. (g) ITSReg. (h) NMoG. (i) HDCNN. (j) QRNN. (k) SQAD. (1) FastHyMix. (m) T3SC. (n) Ours.

gains. The comparison between CD-Conv and SCD-Conv ver-
ifies that the separable approach offers 0.06 dB PSNR gains
further and reduces the inference time by 24.2%.

V. CONCLUSION

In this article, we proposed the CD-CSCNet, a novel DU
based HSI denoising method, which exploits the interpretability
of 3-D CSC and the power of DL. Specifically, we first de-
veloped the CD-CSC model, which expresses any HSI using
the content-dependent 3-D filters. The unique 3-D filters can
improve the accuracy and adaptivity of joint spatial-spectral
representation. Then, we proposed an end-to-end CD-CSCNet
by integrating three implicit deep modules (head feature ex-
traction network, weight generator network and reconstruction
network) into the deeply unfolded 3-D CSC network. Moreover,
we designed a CD-Conv operation in CD-CSCNet using the
insight of content-dependent, which is then extended into its
separable version SCD-Conv. Extensive simulated noise and
real noise experiments on benchmark datasets demonstrated the
superiority of our method. In the future work, we will study
lightweight approach to shorten the inference time of our method
further.
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