4176

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

DHRNet: A Dual-Branch Hybrid Reinforcement
Network for Semantic Segmentation of Remote
Sensing Images

Qinyan Bai ", Xiaobo Luo

Abstract—In the field of remote sensing image processing, se-
mantic segmentation has always been a hot research topic. Cur-
rently, deep convolutional neural networks (DCNNs) are the main-
stream methods for the semantic segmentation of remote sensing
image (RSI). There are two commonly used semantic segmentation
methods based on DCNNs: multiscale feature extraction based on
deep-level features, and global modeling. The former can better
extract object features of different scales in complex scenes. How-
ever, this method lacks sufficient spatial information, resulting in
poor edge segmentation ability. The latter can effectively solve the
problem of limited receptive field in DCNNs obtaining more com-
prehensive feature extraction results. Unfortunately, this method
is prone to misclassification, resulting in incorrect predictions of
local pixels. To address these issues, we propose the dual-branch
hybrid reinforcement network (DHRNet) for more precise semantic
segmentation of RSI. This model is a dual-branch parallel structure
with a multiscale feature extraction branch and a global context and
detail enhancement branch. This structure decomposes the com-
plex semantic segmentation task, allowing each branch to extract
features with different emphases while retaining sufficient spatial
information. The results of both branches are fused to obtain a
more comprehensive segmentation result. After conducting exten-
sive experiments on three publicly available RSI datasets, ISPRS
Potsdam, ISPRS Vaihingen, and LoveDA, DHRNet demonstrates
excellent results with the mean intersection over union of 86.97 %,
83.53%, and 54.48 % on the three datasets, respectively.

Index Terms—Global context modeling, multiscale feature
extraction, remote sensing, semantic segmentation.

I. INTRODUCTION

EMOTE sensing technology [1] is an essential tech-
Rnique widely applied in various fields. With the rapid
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development of remote sensing imaging technology, very high-
resolution remote sensing image (RSI) [2], [3] can be easily
acquired. Semantic segmentation of RSI[4] is aresearch hotspot
and finds practical applications in various tasks, such as urban
planning [5], land cover mapping [6], change detection [7],
[8], building and road extraction [9], [10], [11], vegetation
extraction [12], and water body extraction [13], [14]. Semantic
segmentation of RSI refers to the classification of each pixel
in RSI, which is a dense classification task. When facing many
very high-resolution RSI, fine semantic segmentation tasks still
remain highly challenging. In the past, image segmentation
was often based on features such as gray scale [15], color
[16], spatial texture [17], [18], [19], geometry, and shape [20].
Subsequently, some works have proposed classical unsupervised
learning algorithms such as FCM [21] and watershed [22].
Soon after, with the rapid growth in machine learning, more
and better algorithms have been proposed, including support
vector machines [23], Markov random fields [24], maximum
likelihood [25], conditional random fields [26], and random
forests [27]. However, most of these algorithms require manual
preprocessing, postprocessing, and feature engineering, which
can be complicated for nonprofessionals.

Inrecent years, deep convolutional neural networks (DCNNs)
[28] have demonstrated significant superiority in image process-
ing. They process images in an end-to-end [29] manner without
the need for manual intervention, simplifying the operation for
nonspecialists. DCNNs have shown superior performance across
various fields. With the proposal of fully convolutional network
(FCN) [30], a historic breakthrough was made in the semantic
segmentation task. FCN presents a simple end-to-end approach
for the semantic segmentation of images, with accuracy surpass-
ing other concurrent methods, laying the foundation for the later
development of DCNNSs in the field of semantic segmentation.
However, FCN simultaneously exposed two limitations of DC-
NNs: limited receptive field [31] and lack of spatial information.
Subsequently, U-net [32], which was proposed, fuses the feature
information by concatenating the low-level features and high-
level features layer by layer through upsampling, restoring the
lost spatial information during the downsampling layers. Unsat-
isfactorily, this approach weakens the contribution of deep-level
features to the final segmentation result, and indiscriminately
introduces low-level features which also introduces the noise
information carried by them, affecting the final segmentation
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Fig. 1. Example of edge information loss caused by multiscale module.
(a) Original image. (b) Segmentation result based on the multiscale model.
(c) Ground truth.

result. This is not conducive to segmentation tasks involving
multiple categories and large-scale objects. FPN [33] extracts
image pyramid feature maps and performs multiscale feature
fusion through element-wise addition. Due to differences in
feature scales between different layers, they may not align at the
pixel level. Therefore, element-wise addition directly may result
innegative impacts. Also, similar to U-net, this approach reduces
the significance of deep-level features in contributing to the final
segmentation result. As for DeepLabv3+- [34], it utilizes dilated
convolutions with different dilation rates to obtain multiscale
information. However, excessive use of dilated convolution may
bring about gridding effect. Worse still, DeepLabv3+ connects
and fuses deep-level features with only one low-level feature,
leading to the loss of detailed spatial information (an illustration
example of this phenomenon is given in Fig. 1), which is dis-
advantageous for tasks requiring precise edges such as building
extraction.

Due to the constraints of convolution kernels, the contextual
information that DCNNs can accept is limited. Contrastively,
models based on attention mechanisms are capable of providing
a global receptive field. As a remedy, to further address the
issue of receptive field, many works have introduced attention
mechanism into semantic segmentation tasks for global contex-
tual modeling. DANet [35] embeds both spatial and channel
attention mechanisms to enhance its ability to extract global
context information. Nonlocal neural network [36] incorporates
self-attention mechanism into semantic segmentation tasks to
obtain global semantic information. The experimental results of
these works have demonstrated that the attention mechanism can
effectively alleviate the limited receptive field issue of DCNNSs to
some extent. However, modules based on self-attention mecha-
nisms often demand significant computational resources, which
is highly unfavorable for designing lightweight modules. There-
fore, many studies have conducted research on simplifying the
attention mechanism. For example, the COAT [37] reduces the
complexity of the attention mechanism to linear through factor-
ization, and the MANet [38] maps the self-attention mechanism
using the method of kernel functions, also reducing its com-
plexity to linear. These methods lighten the cost of using self-
attention modules, allowing more lightweight networks to use
self-attention mechanisms for global context modeling, thereby
improving the final segmentation accuracy. Insufficiently, the
use of attention mechanism also brings another problem. The
self-attention mechanism possesses a strong global modeling
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Fig. 2. Illustration of misclassification caused by the self-attention mech-
anism. (a) Original image. (b) Segmentation result from the self-attention
mechanism based model. (c) Ground truth.

capability, enabling each pixel in the feature map to acquire
global context information. However, the self-attention module
typically begins with randomly initialized weights and it does not
have the strong inductive bias [39] of convolution. The weight
distribution of the attention matrix obtained in the early training
stages is not ideal, and the model requires longer training time
to converge. Therefore, models based on self-attention mech-
anism require longer training time and larger training dataset
compared to CNNs to achieve better segmentation results. For
some smaller datasets or during the early stages of training, the
self-attention module may generate incorrect attention matrix
weight distribution due to insufficient training samples, leading
to misclassification in the final results (Fig. 2 gives an illustration
of this phenomenon).

To address the issues in current models based on multiscale
and global modeling methods and obtain better segmentation
results, we propose dual-branch hybrid reinforcement network
(DHRNet), a dual-branch parallel network. The main purpose of
the network design is to achieve higher segmentation accuracy
with a minimal number of model parameters and computational
complexity. Our main contributions are as follows.

1) Proposing a novel multiscale feature extraction branch

(MFEB), which eliminates redundant channels through
a channel selection module (CSM), providing the most
suitable feature maps for each multiscale branch while
reducing the model’s parameter. Furthermore, three sets
of strip convolutions with varying sizes are utilized to
extract multiscale features of objects. Finally, deformable
convolutions are employed to further fit the real shape
of objects, enhancing the accuracy of feature extraction
results.

2) Presenting a novel global context and detail enhancement
branch (GEB), utilizing a cross-layer attention module
(CAM) to enhance the model’s global modeling capabil-
ities, reduce lower level feature noise, and enhance the
effectiveness of multilayer feature fusion. In addition, a
class ratio extraction module (CREM) is employed to su-
pervise this branch, accelerating the model’s convergence
speed and yielding smoother prediction results.

3) Introducing a novel lightweight end-to-end network called
DHRNet to process segmentation tasks with different
focus through a dual-branch parallel architecture. We
compared our method with other widely used methods on
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three public datasets and achieved excellent results with a
parameter size of only 6.6 M.

The rest of this article is organized as follows. Section II
presents the related works. Section III describes the proposed
network. Section IV gives the experimental details. Section V
concludes this article.

II. RELATED WORKS

In this section, we reviewed some works related to DHRNet
and discussed some limitations of the existing work.

A. Encoder-Decoder Architecture

The encoder—decoder architecture [40] has been widely ap-
plied in the field of semantic segmentation since the advent of
FCN. In the DCNNs based encoder—decoder architecture, the
encoder serves as the backbone feature extraction network, using
stacked convolution layers and downsampling layers to extract
features of the image to be segmented. The decoder processes the
features obtained from the encoder to obtain deep-level features
rich in semantic information. The output result of the encoder is
restored to the original image resolution in the decoder through
relevant upsampling techniques. Finally, the pixel-level object
classification task is completed through the dense classification
layer. In U-net, a symmetrical “encoder—decoder” architecture
design was proposed, which obtains more spatial information by
successively upsampling deep-level features and merging with
the features from each layer’s output of the encoder. SegNet
[41] adopts the pooling indices method to recover the spatial
information lost in downsampling layers. In these structures,
the ability of the encoder to extract features determines the
quality of the features obtained by the decoder, and the degree
of the decoder utilizing the features extracted by the encoder
determines the quality of the final segmentation results. The
advantage of the encoder—decoder structure is that the decoder
can obtain more spatial information to optimize the final results
by combining the features of different layers in the encoder.
Howeyver, this structure has also introduced some issues. First,
deep-level and low-level features may not be aligned, whereas
using an upsampling method with element-wise addition may
have a negative impact on spatial information. Second, this struc-
ture ignores global context information, which is not ideal for
segmenting large-scale objects. Furthermore, low-level features
often contain more noise. So, directly incorporating low-level
features may introduce their noise and have a negative impact
on the final prediction result. Finally, in this layer-by-layer up-
sampling process, the contribution of deep-level features to the
final prediction result is actually being weakened. Considering
that the rich semantic information is contained in deep-level fea-
tures, this structure may not effectively harness this information.
Consequently, it may not be well-suited for addressing complex
scene segmentation problems.

B. Multiscale Architecture

In many images, the size of the objects to be segmented is
not the same, especially in RSI, where the scenes are often
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more complex and the target size differences are huge. It is
often difficult to extract or segment all targets through a single
scale. Therefore, many works have proposed multiscale feature
extraction methods to optimize the final segmentation results.
PSPNet [42] adopts spatial pyramid pooling to obtain multiscale
features, which not only merges the context information of dif-
ferent scales but also improves the expression of global feature
information. However, introducing too much global average
pooling also loses more spatial and edge information, and the
effect is often not satisfactory when faced with tasks that re-
quire fine edge segmentation. DeepL.abV3+- extracts multiscale
features through dilated convolution with different dilation rates
and has a strong segmentation ability for complex scenes and
multicategory tasks. However, DeepLabv3+ connects and fuses
deep-level features with only one low-level feature, lacking suf-
ficient spatial information, and therefore lacks sufficient object
edge segmentation ability. Moreover, deep-level features have
huge differences from low-level features after going through its
multiscale module, and direct fusion cannot effectively improve
the final segmentation results. Although the multibranch dilated
convolution used in its multiscale module atrous spatial pyramid
pooling (ASPP) can obtain different-sized receptive fields while
reducing the number of parameters, it may also bring about
gridding effects, resulting in the loss of local information and a
decrease in the correlation of distant information [43].

C. Global Context Information

The self-attention module is the core component of the trans-
former model [44]. Originally, the transformer was used to solve
sequence-to-sequence machine translation tasks in the natural
language processing field and is widely used and improved.
Subsequent studies have shown that this model can be transferred
to computer vision tasks [45]. The VIT model [46] only uses the
encoder of the transformer to construct a network model for
image classification, and it can be transferred to other down-
stream vision tasks. Afterward, a series of models based on
the improvement of VIT (such as DeiT [47], PVT [48], Swin-
transformer [49], MPVIT [50], etc.) achieved excellent results
in a large number of tasks such as image classification [51],
semantic segmentation, human pose estimation [52], and object
detection [53]. Due to the self-attention mechanism’s ability to
aggregate global context information, which is lacking in DC-
NNs, many subsequent works have combined this mechanism
with DCNNs to improve the final prediction performance of the
model. For example, the nonlocal module [36] is an improved
plug-and-play module based on the self-attention mechanism,
designed to enhance the global receptive field. Although the
attention mechanism can aggregate global context information,
it also brings a significant increase in computational cost, with
its computational complexity proportional to the square of the
spatial resolution. For images with high spatial resolution, es-
pecially for RSI, directly using such a module would result
in a significant additional computational cost. Therefore, many
subsequent works have proposed improved attention formulas
to reduce the enormous computational cost increase brought
by the attention mechanism. In the COAT model, the authors
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Fig. 3. Overall architecture of the DHRNet.

used two mapping functions to factorize the original formula of
attention mechanism, reducing the original O(N?) complexity to
linear O(N). SENet [54] constructed a simple and lightweight
attention module by using max pooling downsampling and fully
connected layers. CBAM [55] combined spatial attention and
channel attention in a lightweight manner. These works have
made it possible to apply the attention mechanism in lightweight
models. Another problem is self-attention mechanism lacks
the strong inductive biases of convolution, resulting in slow
convergence speed and difficulty in obtaining satisfactory results
with a scarcity of training data. Though approaches have been
proposed to accelerate the convergence speed of self-attention-
based models using model distillation techniques [47], those
approaches also introduce computational overhead.

D. Design of Convolution Kernel

In prior works, the receptive field is often enlarged by stack-
ing convolutional layers. As a remedy, many works split one
large convolution kernel into several smaller ones to reduce the
number of parameters and speed up the computation efficiency.
However, recent work [56] has shown that such methods may
have some problems. Some works have proposed the concept
of “effective receptive field” [57], which represents the actual

Class Ratio Extration Module

CAM  Cross-Layer Attention Module

LSAM Linear Self-Attention Module

Deformable Convolution
= Vertical Strip Convolution

= Horizontal Strip Convolution

effect size of the receptive field of the model. According to
the theory of effective receptive field, the size of the receptive
field is proportional to the size of the convolution kernel and
proportional to the square root of the number of convolutional
layers. Increasing the receptive field by directly enlarging the
convolution kernel is more effective than adding the depth of
the convolutional layer. Through comparative experiments, it
was found that although the theoretical receptive field size of the
model remains consistent after decomposing the large convolu-
tion kernel into several small ones, the actual effective receptive
field is reduced. This indicates that several small convolution
kernels cannot completely replace the role of large ones.

III. METHODOLOGY
A. Overall Architecture of DHRNet

The overall architecture of our proposed DHRNet shown
in Fig. 3 is a network composed of two branches: GEB and
MFEB. This architecture separates the originally complex se-
mantic segmentation task, allowing each branch to perform
focused feature extraction tasks. MFEB emphasizes the scale
differences of objects and has a stronger segmentation ability for
multicategories and complex scenes. GEB contains rich spatial
information and stronger global modeling ability, resulting in
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segmentation results with higher edge and global accuracy.
The use of a parallel architecture also avoids the problem of a
sequential architecture in which the contribution of a preceding
module is weakened by subsequent modules. Finally, the results
of the two parallel branches are fused at a higher resolution,
ensuring that both branches contribute equally to the final result.

B. Multiscale Feature Extraction Branch

To enhance the multiscale feature extraction ability of the pro-
posed model, we designed the MFEB. The overall architecture
of this branch is illustrated in Fig. 4. This branch consists of
two parts: a CSM and a multiscale feature extraction module
(MFEM). Then, We will provide design rationales and detailed
explanations for these two modules.

1) Channel Selection Module: To reduce the model’s pa-
rameter count, we designed the CSM to choose the most suit-
able feature map channels for each branch in the MFEM, and
eliminate redundant information. The inspiration for the design
of this module comes from self-attention mechanism. The key
distinction from SENet is that the former derives channel atten-
tion scores through pooling downsampling and fully connected
layers. Our proposed CSM calculates the final channel attention
scores based on the feature maps themselves, and optimizes by
training the mapping matrix. This approach allows for better
integration with the feature maps themselves, resulting in im-
proved selection outcomes.

Fig. 5 illustrates the detailed design of the CSM. Given a fea-
ture map Fj, € REXHXW “this module first reconstructs it into
amatrix Fr, € REV(L = H x W) through 1 x 1 convolution,
transpose and reshape operations. Similarly, 1 x 1 convolution
and reshape operations are utilized to map the feature map
F,, into matrix Fo € R*L. Then, matrix multiplication is
performed between F 1, and F ¢, followed by a reshape operation
to obtain channel attention score vector Ay,p € RE*1x1 After
that, 1 x 1 convolution, layer normalization, sigmoid operation,
and element-wise multiplication is performed between the input
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feature map Fi, and the obtained feature score vector A, along
the channel dimension to enhance certain channels, resulting in
the enhanced feature map E € RE*7*W_ Finally, the enhanced
feature map E and the input feature map Fj, are connected
with a residual connection, and then a 1 x 1 convolution is
used to perform channel scaling, resulting in the final feature
map X € REVH*W The resulting feature map X is the most
suitable feature map selected by this module for the current
branch, which has more relevant feature channels compared to
the original input feature map Fj,. The feature selection process
can be described as follows:

Amap = S(LN(f,(F, © Fo) % )) ()
X = ((Amap®En) @En) *f (2)

wherein, F';, and F ¢ are two feature mapping matrices obtained
through 1 x 1 convolution and reshape; ® denotes matrix mul-
tiplication; * denotes convolution operation; f;- denotes reshape
operation; fdenotes 1 x 1 convolution kernel; LN denotes layer
normalization; ¢ denotes sigmoid function; Ay, denotes the
score vector; Fi, denotes input feature map; X denotes the output
feature map.

2) Multiscale Feature Extraction Module: In previous
works, the ASPP module was widely used and improved. This
module performs multiscale feature extraction using dilated con-
volutions of different dilation rates. However, this method may
cause gridding effect, resulting in the loss of local information
and a decrease in the correlation of distant information [43].
Subsequently, some works [56] used large kernel convolutions
instead of dilated convolution to avoid the potential problems
of gridding effect and maintain the module’s ability to extract
multiscale features, but this method also increased the number
of parameters and computational complexity. In our work, we
designed a novel MFEM for multiscale feature extraction, which
replaces large kernel convolutions with three groups of strip
convolutions of varied sizes. This approach reduces the number
of parameters and computational complexity for each branch.
In addition, more flexible deformable convolutions are used in
this module after each group of strip convolutions to accurately
fit the real shape of the object.

As shown in Fig. 4, we employ a multibranch approach for
multiscale feature extraction. For each branch, the input feature
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is Fi(i =1,2,3,4) € RO*H>*W _MFEM uses three groups of
strip convolution of different kernel sizes (7 x 1 and 1 x 7,
13 x 1 and 1 x 13,25 x 1 and 1 x 25) to extract features at
different scales. Then, deformable convolution is used for more
flexible shape fitting. Finally, the result feature maps of the three
branches are concatenated and fused with the input feature map
F; to obtain the final result. The entire process can be expressed
as follows:

M; = o(BN(F; * fo * frn* fa)) (3)

Fou = o(BN(Concat(My, Ma, M3, Fy)  f)) “)

wherein, F; (i = 1, 2, 3, 4) denotes the four output feature
maps obtained through CSM; M; (i = 1, 2, 3) denotes the
feature map obtained after strip convolution and deformable
convolution; * denotes the convolution operation; f,, f3, and
fa denotes the vertical strip convolution, horizontal strip convo-
lution, and deformable convolution, respectively; BN denotes
batch normalization; o denotes the ReLLU activation function;
f denotes the 1 x 1 convolution kernel; F,; denotes the final
output feature map, and Concat denotes concatenating features
along the channel dimension.

C. Global Context and Detail Enhancement Branch

The overall structure of the GEB is shown in Fig. 6. In this
branch, we adopt the U-Net architecture as the basic structure,
which can effectively combine low-level and deep-level features,
enabling the model to obtain rich semantic information while
retaining sufficient spatial information. In this branch, feature
fusion module serves as a transitional module, used for feature
fusion after concatenation of different layers. The module first
employs a depth-wise separable convolution, which extracts
spatial features on each channel. Subsequently, a point-wise
convolution is performed to integrate features from different
channels. This approach is more suitable for fusing features from
multiple layers, and compared to regular convolutions, it has
fewer parameters and computational complexity, making it more
suitable for lightweight model. In addition, we introduce a linear
self-attention module (LSM) to enhance the global modeling
capability of the network with lower complexity compared to
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self-attention module. To reduce noise carried by low-level fea-
tures and enhance the fusion effect of feature maps, we propose
a novel CAM. This module utilizes deep-level feature map to
guide the low-level feature map to remove noise and increase
the similarity between the two feature maps, thereby enhancing
the effect of subsequent feature fusion. Then, we will provide a
more detailed explanation of the two modules.

1) Linear Self-Attention Module: The self-attention module
requires high computational complexity, typically O(N?), where
N is the total number of pixels in a single channel of the input
feature map. This high computational complexity overhead is
evidently unfriendly for designing a lightweight and efficient
network. Thus, many works have proposed methods for reducing
the computational complexity of the self-attention module or
proposed new lightweight attention modules. In COAT, the
authors use two mapping functions to factorize the original
formula of the attention mechanism and reduce the original
O(N?) complexity to linear O(N). The module’s effectiveness
is equivalent to the original self-attention module. The attention
formula in COAT is as follows:

FactorAtt(Q, K, V) = &(Q)(¥(K) ™ V). 5)

Inspired by the attention formula in COAT, our proposed
linear attention formula uses the identity function to map &, and
a softplus function is implemented to map ¢/, which eliminates
the impact of negative values and results in numbers that are
greater than zero. The linear attention formula can be expressed
as follows:

Q T

LA(Q,K,V) ﬁ(softplus(K) V). 6)

Based on the expression of the linear attention formula, we
further proposed the LSM, as shown in Fig. 7. For feature map
Fi, ERCH>W four 1 x 1 convolutions are used to map it into
query matrix Q, key matrix K, value matrix V, and residual matrix
R. Attention computation is performed using the linear attention
formula on Q, K, and V, and the result is added element-wisely
with the residual matrix R, then through a 1 x 1 convolution
operation to map it back to the original feature space. The entire
computation process of the linear self-attention formula can be
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described as follows:

LSA(EH):((En * fl) 2] LA(En * f2; En * f3; En * f4)) * f5

(N
wherein, Fi, denotes the input feature map; f; 1=1,2,3,4,5)is
the convolution kernel with size 1 x 1; % denotes the convolution
operation; and @ denotes the element-wise addition.

2) Cross-Layer Attention Module: Low-level features usu-
ally contain more noise, directly enhancing them with a self-
attention module may not be the most appropriate method.
In addition, in the process of layer-by-layer up-sampling sim-
ilar to the U-net, the difference between high-level features
and low-level features may be too large, and the enhance-
ment brought by direct concatenation and fusion is limited.
Therefore, we have designed a novel CAM to solve the above
problems. This module eliminates noise from low-level features
through the guidance of deep-level features, simultaneously
enhancing the similarity among different layers of features,
thus improving the effectiveness of feature fusion. The overall
structure of CAM is shown in Fig. 8. The processes of this
module are as follows: Initially, for the deep-level feature map
Fhigh € REVH*W s global context information is enhanced
by the linear self-attention module. Then, the deep-level feature
map Fyjgy i concatenated with the low-level feature map Fioy, €
RE?*HXW For the concatenated feature map F., we employ
a receptive field enhancement module (RFEM) for first feature
fusion. This module utilizes two sets of large kernel convolutions
for feature alignment, allowing the aligned features to better
guide low-level features. Afterward, a residual connection is per-
formed between the fused result and the low-level feature map
Flow to obtain an enhanced feature map Fjgon € REZ*H*W
that contains more semantic information. Through the guidance
of large kernel convolution in RFEM, the impact of some noise
is also eliminated. Subsequently, the fused feature map Ffusion
and the original low-level feature map F.y, are used as inputs
of the linear attention formula. In this module, the fused feature
map Feysion 1S mapped through a 1 x 1 convolution to form a
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query matrix Q, while the original low-level feature map Fioy, is
mapped through two 1 x 1 convolutions to form the key matrix
K and value matrix V. Through the linear attention formula,
the final output is a feature map F,,, € RC>*H*W that is more
semantically similar to the deep-level feature map Fg and
eliminates noise to some extent. Finally, the feature map F,, is
concatenated and fused with the deep-level feature map Fhjgh.
Because of the high semantic similarity between the two feature
maps, the effect of fusion has been further improved compared
with before. The entire process can be expressed as follows:

Fiusion = RFE(Concat(Fhigh, Fiow)) ® Flow (®)
CA(Flusion, Fiow) = ((Flow * f1)&®

LA(Flusion * f2, Flow * f3, Flow * f1)) * f5 ©)
Fou = o(BN(Concat(Up(Fhigh), CA(Fusion, Flow)) * f )()10)

wherein, RFE denotes the receptive field enhancement module;
Fhign, and Fi,y, denote the deep-level and low-level feature
maps, respectively; f; i = 1, 2, 3, 4, 5) and f denote 1 x 1
convolution kernel; * denotes the convolution operation; @
denotes element-wise addition; LA denotes the linear attention
module; BN denotes batch normalization; o denotes the ReLU
activation function and Up denotes upsampling.

D. Class Ratio Extraction Module

Using attention mechanism can effectively improve the global
modeling capability of the model, avoid negative impacts on the
model’s final performance caused by limited receptive fields, and
enhance the generalization ability. What is more, many works
have pointed out that another reason why attention mechanism
can perform so well is that attention mechanism has fewer induc-
tive biases [39] compared to convolution operation. Although
these inductive biases can speed up the convergence speed of
the model in the early training stages and achieve good results
in small sample scenarios, in the later training stages, overly
strong inductive biases will in turn limit its further optimiza-
tion. Therefore, although attention-based models demonstrate
excellent performance with sufficient training data and training
time, they also suffer from slow training convergence speed,
require larger training datasets and longer training times to fit
properly. In scenarios where training data or time is limited, the
effectiveness of attention mechanisms may not be ideal. To speed
up the convergence and fitting speed of attention mechanism,
we propose a novel CREM to supervise GEB. The details of
the module are illustrated in Fig. 9. This module can make the
output of the branch more similar to the ground truth label at the
macro level, reducing the occurrence of misclassification in the
early training stages.

In this module, a 1 x 1 convolution is employed to map feature
map channels to the number of classification categories. Then,
layer normalization and the ReLLU activation function are used to
suppress the influence of noise and negative number. Finally, we
use another 1 x 1 convolution for the fusion of category infor-
mation and global average pooling is applied to obtain the output
vector, which stands for the proportion of each category in the
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Fig.9. Overall architecture of the CREM. Conv1 x 1-Down denotes the chan-
nel reduction performed through a 1 x 1 convolution operation. NUM_Classes
refers to the final segmentation categories in the segmentation task.
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Fig. 10. Visualization of the original images and corresponding labels of
Potsdam, Vaihingen, and LoveDA. (a) Postdam image. (b) Ground truth.
(c) Vaihingen image. (d) Ground truth. (e) LoveDA dataset.

original image. Then, the binary cross-entropy loss is calculated
between the module’s output and the true category proportion
to optimize GEB. It is worth noting that this module is only
used in the training phase and will not affect the running speed
during the prediction phase. Therefore, this module does not
incur any additional computational overhead during inference
phase. When coupled with a rational weight-loading strategy, it
would not introduce any upsurge in the model’s parameter count.
The specific formula for the loss function can be expressed as
follows:

M = Poolyye (0 (LN(Fy % f1)) * f2) (11)

4183
N
CRELoss = — Z(p(Xi) log(6(M;))
+ (1 = p(X;)) log(1 — 6(M;)) (12)

wherein, Fj, denotes the input feature map; LN denotes layer
normalization; o denotes the ReLU activation function; Pool,¢
denotes global average pooling; f; and f5 denote the 1 x 1
convolution kernel; * denotes the convolution operation; M
denotes the output proportion vector, and M; denotes the value
of the ith channel of M; § denotes sigmoid function; N denotes
the number of the classification categories, and p(X) represents
the proportion value of the ith category in the ground truth label.

E. Loss Function

Like most prior works, we employ the multiclass cross-
entropy loss as the main loss function. It calculates the similarity
between each pixel value of the network’s output and the ground
truth label, where a smaller loss indicates a closer similarity
between the two distributions. Multiclass cross-entropy loss has
been widely used in various dense prediction tasks, and can be
expressed as follows:

HxW N

CELoss = — Z Zp(Xij) log(q(Xi5))

i=1 j=1

13)

wherein, H and W denote the spatial resolution of the input
image, N denotes the number of categories, g(X;;) denotes the
probability that pixel / in the image is predicted to be of category
J» and p(X;;) denotes the true probability that pixel 7 in the image
belongs to category j. To address the issue of imbalanced samples
(i.e., when the frequency of occurrence for each category is not
balanced), we use the dice loss as the auxiliary loss. The dice loss
is a metric for evaluating the similarity between two samples,
with a value ranging from zero to one. The larger the value is,
the more similar the samples are. The dice loss can be expressed
as follows:

2|X NY|+ Smooth

DiceLoss =1 —
1eetoss 1 X| + Y| + Smooth

(14)

wherein, Y denotes the pixel label of the ground truth image,
and X denotes the pixel category of the model’s predicted
segmentation image. Smooth is the smoothing factor, and we
setitto I x 1072 in our experiments. Therefore, when using all
modules, the final loss function of the proposed network is as
follows:

Loss = CELoss 4 ADicelLoss + ©CRELoss. (15)

A, (v are the proportional coefficients, we take 0.7 and 0.3 in our
experiments, respectively.

IV. EXPERIMENTS
A. Datasets

We select ISPRS Potsdam, ISPRS Vaihingen and LoveDA
[58] as our experimental datasets.
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(a) (b)
Fig. 11.  Diagram of sequential structure and parallel structure. (a) Parallel structure and (b) sequential structure.
TABLE I
ABLATION EXPERIMENTS ON OUR PROPOSED MODULES AND ARCHITECTURES ON THE POTSDAM DATASET
Method MultiScale Global Context Sequential Parallel OA mF1 mloU Params

90.5 92.0 85.4 4.2M
\ 91.14 92.51 86.26 6.8M
DHRNet \ 91.12 92.50 86.31 5.4M
v x/ v 9120  92.55  86.47 8.2M
v V V 91.51  92.94  86.97 6.6M

The bold values represent the highest accuracy or best performance under a specific evaluation metric in the current comparative experiment.

Global Context Multi-Scale

| §
%Q

Ground Truth

Parallel

Sequential

Fig. 12.  Results of the ablation experiments for several of our proposed
modules using the Potsdam dataset. Where, without using any of our proposed
modules, the architecture is FCN with a van-tiny backbone.

TABLE I
ABLATION EXPERIMENTS FOR CLASS RATIO EXTRACTION MODULES

Class Ratio

Method . OA mF1 mloU Params
Extraction

91.51 9294 86.97 6.6 M

DHRNet N 91.62 92.96 86.97 6.8 M

The bold values represent the highest accuracy or best performance under a
specific evaluation metric in the current comparative experiment.

ISPRS Potsdam dataset provides 38 high-resolution aerial im-
ages with aresolution of 6000 x 6000. The data covers an area of
3.42 km?2, and each image contains four channels, near-infrared,
red, green, and blue. In addition, each image has data from
DSM and six labeling categories including impervious surfaces,
buildings, low vegetation, trees, cars, and background/clutter.
All the categories are manually labeled at the pixel level. To
facilitate comparison with other works, we follow the same
dataset split method as many previous works, using IDs: 2_13,
2_14,3_13,3_14,4_13,4_14,4_15,5_13,5_14,5_15, 6_13,

6_14,6_15, and 7_13 for testing, using ID: 2_10 for validation,
and the remaining 22 images, except for the one with erroneous
annotation named 7_10, for training. In our experiments, only
the red, green, and blue channels are used. Sample images and
labels are shown in Fig. 10.

ISPRS Vaihingen dataset provides 33 high-resolution aerial
images, each with different specific resolutions and an aver-
age size of 2494 x 2064. Similar to the Potsdam dataset, the
Vaihingen images include near-infrared, red, green, and blue
channels, as well as corresponding DSM data, with the same
six labeling categories including impervious surfaces, buildings,
low vegetation, trees, cars, and background/clutter. We used area
IDs 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29,31, 33, 35,
and 38 for testing, area ID 30 for validation, and the remaining
15 images for training. We only used the red, green, and blue
channels in our experiments. Sample images and labels are
shown in Fig. 10.

LoveDA dataset is a remote sensing image semantic segmen-
tation dataset provided by the RSIDEA team at Wuhan Univer-
sity. The dataset contains 5987 images with a spatial resolution of
0.3 m and 166 768 annotated semantic objects. LoveDA dataset
covers urban and rural areas with significant differences in scene
characteristics, making it a challenging dataset. Each image has
seven labeling categories including building, road, water, barren,
forest, agriculture, and background. The dataset has been divided
into training, validation, and test sets by the authors. It is worth
noting that the test set of the dataset uses online validation to
ensure fairness and authenticity. Sample images and labels are
shown in Fig. 10.

B. Training Setting

We trained our model using the PyTorch framework, and all
experiments were conducted on an NVIDIA RTX A5000 GPU
with 24 GB of memory. We used the AdamW optimizer for
network optimization, with an initial learning rate of 0.0003, and
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prediction results. (c) Prediction results after using CREM. (d) Ground truth.
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Fig. 14.  Visualization of the main training loss (cross-entropy loss) reduction
speed before and after adding the class ratio extraction module.
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Fig. 15.  Visualization of the accuracy of various metrics for eight different
loss coefficient sets.

the yolox_warm_cos_Ir formula [59] for learning rate updates.
We set the batch size to 16 for the Potsdam and LoveDA
dataset, and 8 for the Vaihingen dataset. In order to speed
up model training, like other works, we cropped the datasets
and their corresponding labels into patch size of 512 x 512.
During the training process, we employed random horizontal
and vertical flipping, random scaling, and random cropping for
data augmentation. Since the introduction of CREM aims to
address the issues associated with self-attention mechanisms, it
may not be suitable for all models. Therefore, to ensure a fair
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Comparison of prediction results at an early stage of training (fifth epoch) for a model constructed solely using GEB. (a) Origin image. (b) Original
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Fig. 16.  Comparison of computational complexity for two attention modules

at different feature map sizes (with a constant channel count of 256).

comparison, we only utilized cross-entropy loss and dice loss
when comparing with other networks. Instead, we demonstrated
the effectiveness of this module and loss through ablation exper-
iments. The maximum number of epochs for Potsdam, LoveDA
and Vaihingen were 60, 80, and 100, respectively.

C. Evaluation Metrics

We evaluate the performance of these models using over-
all accuracy (OA), mean intersection over union (mloU, usu-
ally the mean of IoU of all categories), and mean F1 score
(usually the mean of F1 score of all categories). OA is used
to measure the proportion of correctly classified results in the
total samples, with a maximum value of one and a minimum
value of zero, defined by the following equation:

i TP

OA = —& .
S>K TP, + FP; + TN, + FN;,

(16)

Intersection over Union (IoU) is a standard performance
metric for object category segmentation problems. Given a set of
images, loU measures the similarity between predicted regions
of the objects and the ground truth regions in the image set. It is
defined by the following equation:

TP
U= 5 N FP (7
K K
1 1 TP,
IoU = — IoU = — ‘ . 18
mo K;O K;TPZ-+FNZ-+FP1- (18)
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Depiction of the inference speed-mloU tradeoff and the FLOPs-OA tradeoff of different semantic segmentation methods generated on the 512 x 512

pixel-sized ISPRS Potsdam dataset using the RTX A5000 GPU. The red star-shaped dot represents our proposed method, while other colored dots correspond to
different networks. A higher FPS (frames per second) indicates faster prediction speed of the model. FLOPs (floating point operations) here are different from
FLOPS (floating point operations per second). It is worth noting that the size of the corresponding dots is positively correlated with their parameters, where larger

dots indicate a larger number of parameters for the network.

TABLE III
COMPARISON OF TWO SELF-ATTENTION MODULES

Method SAM LSM mloU OA  GFLOPs FPS
\ 86.39 91.17 14.06 67

GEB
V 86.31 91.12 11.55 74

The bold values represent the highest accuracy or best performance under a
specific evaluation metric in the current comparative experiment.

The F1 score is a metric in statistics used to measure the
accuracy of a model. It takes into account both the precision and
recall of a classification model. It can be seen as a harmonic mean
of a model’s precision and recall, with a maximum value of one
and a minimum value of zero, and is defined by the following
equation:

TP

precision = TP - 7P (19)
TP

l=——— 20

At T TP Y EN 20)

Fl—9x precision x recall @1

precision + recall

1 & 1 &
mFl:?;FIZEZQX

i=1

precision; x recall;

precision; + recall;
(22)

It is worth noting that in the above equations, TP, TN, FP,
and FN represent the counts of true positive, true negative,
false positive, and false negative, respectively, and K represents
the number of classification categories. In our experiments, the

calculation scope of OA includes all categories, including the
background/clutter. We follow the same test method as many
previous works, for the Potsdam and Vaihingen datasets, we
conducted all experiments using eroded labels during testing
and employed multiscale augmentation.

D. Experimental Results

1) Ablation Experiments: In order to verify the effectiveness
of the individual modules of our proposed model and the ra-
tionality of the parallel architecture we ultimately chose, we
conducted ablation experiments. In Fig. 11, a brief overview of
the connection process between sequential and parallel struc-
tures is presented. As shown in Table I, we selected the FCN
architecture with Van-tiny [68] backbone as the baseline for
comparison. We tested the effectiveness of the proposed MFEB,
GEB and compared the evaluation metrics of sequential and
parallel architectures. It is evident that our proposed MFEB
and GEB can effectively enhance the accuracy of segmentation
results even when used individually. But, when the two branches
are combined in a sequential way, in the process of layer-by-layer
upsampling, concatenation, and fusion, this sequential structure
introduces a large number of low-level features, resulting in a
reduction in the contribution of deep-level features to the final
prediction, which reduces the effectiveness of MFEB. Therefore,
the improvement of the sequential structure is limited. In con-
trast, using the parallel structure, compared with the sequential
structure, the OA was increased by 0.31%, the mF1 score was
increased by 0.39%, and the mIoU was increased by 0.5%. It is
worth noting that the parallel architecture separates the semantic
segmentation tasks that each branch needs to process, allowing
us to reduce the number of feature map channels while main-
taining high accuracy. Therefore, compared with the sequential
architecture, the parallel architecture also reduces the parameter
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TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART NETWORKS ON THE POTSDAM DATASET

Method Backbone Imp. Building Low Tree Car mloU mF1 OA Params
Surf. Veg.

BiSeNetV2[60] / 91.30 94.77 87.21 88.50 95.51 84.44 9146 89.75 52M
FCN-8s [30] ResNet101[61] 91.81 95.66 8723 88.51 9596 8494 9186 90.02 49.83M
GCNet [62] ResNetl01 [61]  92.79 96.10 87.37 8882 96.06 8579 9223 90.74 43.0M
DANet [35] ResNet101 92.55 96.43 87.88 89.26 9497 8573 9222 90.83 68.5M
UperNet [63] ResNet101 93.38 96.66 87.89 89.02 96.01 86.41 9259 91.21 48.4M

DeeplabV3+ [34] Xception [64] 92.98 96.65 88.17 89.73 9591 86.56  92.69 91.22 547M

HRNetV2 [65] HRNetV2-W48 93.33 96.89 88.03 89.50 96.09 86.71 92.76  91.39 659M

EdgeNext[66] EdgeNext-Base 93.27 96.75 88.28 89.52 96.08 86.73 92.78 91.33 18.51 M

Segformer [67] MiT-B2 93.45 96.83 88.48 8998 9575 8691 9290 9148 27.4M
COAT [37] COAT-Small 93.45 97.07 88.01 8991 9633 86.85 9291 9140 22.02M
MPVIT [50] MPVIT-Small 93.37 97.09 8798 8933 96.49 86.88 92.86 9138 23.07M

Ours Van-tiny 93.36 97.01 88.53 89.48 96.38 86.97 92.94 91.51 6.6 M
The bold values represent the highest accuracy or best performance under a specific evaluation metric in the current comparative experiment.
TABLE V
COMPARISON WITH THE STATE-OF-THE-ART NETWORKS ON THE VAIHINGEN DATASET
Method Backbone Imp. Building Low Tree Car mloU mF1 OA Params
Surf. Veg.

BiSeNetV2 / 92.55 95.27 83.73 88.65 88.79 82.05 90.01 90.54 SS5M
FCN-8s ResNet101 92.37 95.41 83.44 88779 89.35 8230 8999 90.18 49.83M
GCNet ResNet101 93.12 95.84 85.06 90.13 88.20 82.52 9047 90.90 43.0M
DANet ResNet101 92.83 95.82 84.69 90.03 88.25 82.58 90.32  91.00 68.5M
UperNet ResNet101 93.30 95.74 84.67 90.01 8896 8293 90.54 91.15 48.4M

DeeplabV3+ Xception 93.41 96.01 84.43 90.17 8891 83.04 90.59 91.25 547 M

HRNetV2 HRNetV2-W48 93.01 95.92 83.82 89.92 89.69 82.85 9047 90.94 65.9M
EdgeNext EdgeNext-Base ~ 93.05 95.77 84.50 8992 88.73 82.70 9039 91.02 18.51M

Segformer MiT-B2 93.32 95.99 84.58 90.16 89.27 83.16 90.67 91.23 274M
COAT COAT-Small 93..25 96.08 84.62 90.11 89.77 83.32 90.77 91.25 22.02M
MPVIT MPVIT-Small 93.30 96.19 84.46 89.87 89.71 83.27 90.70 91.21 23.07M

Ours Van-tiny 93.34 96.17 85.27 90.25 89.20 83.53 9091 91.36 6.6 M

The bold values represent the highest accuracy or best performance under a specific evaluation metric in the current comparative experiment.

count by 22%. Fig. 12 shows the visualization results of the
five different network architectures listed in Table I. We can
observe a significant improvement in the segmentation results
of elongated objects after adding MFEB (refer to the left pink
box in Fig. 12), which demonstrates that the proposed MFEB
possesses strong feature capturing capabilities.

With the use of our proposed parallel architecture, the fi-
nal segmentation results are significantly better than the other
four architectures. According to Table II, the model’s overall
accuracy and mean F1 score were both improved after incor-
porating CREM. During the training process, as the module
simultaneously serves as a form of deep supervision, it converges
faster. It is worth noting that our proposed CREM is designed
to provide an additional inductive bias to GEB, accelerating its
convergence, and it can be used in the early stages of training.
Therefore, while the accuracy improvement from CREM may
not be as impressive as other modules, this module can be dis-
abled during the inference phase without affecting the model’s
prediction speed and parameter count.

To further demonstrate that the CREM can accelerate the
convergence speed of the model, we conducted experiments to
analyze the contrast in model predictions during the early stages

of training before and after adding this module, as well as to
observe the changes in the main training loss (cross-entropy
loss). Fig. 13 illustrates the impact of using CREM on the
early-stage predictions of a model constructed solely using GEB.
It is evident from the figure that after employing CREM, the
model can fit more rapidly and yield a more refined segmentation
result. From Fig. 14, we can observe that, even though CREM is
applied only to GEB, adding this module still results in a faster
decrease in the training cross-entropy loss of the entire network.
To select the appropriate loss coefficient, we conducted com-
parative test on eight sets of different loss coefficients, and the
results are shown in Fig. 15. In the case of A = 0.8 and p =
0.2, the model achieved the highest OA of 91.67%. In the case
of A = 0.7 and p = 0.3, the model achieved the highest mIOU
of 86.97% and mF1 of 92.96% simultaneously. Therefore, we
finally selected this set of coefficients as the loss coefficients.
2) Comparison Between the Improved Linear Self-Attention
Module and the Original Self-Attention Module: Fig. 16 pro-
vides a computational complexity comparison between the orig-
inal self-attention module (SAM) and the linear self-attention
module (LSM) at different image sizes. As the image size
increases, the disparity in complexity between the two modules
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART NETWORKS ON THE LOVEDA DATASET
Method Backbone  Background Building Road Water Barren Forest Agriculture mIOU Params
FCN-8s ResNet101 44.68 53.76 52.03 76.92 16.96 45.35 57.67 49.63 49.83M
GCNet ResNet101 46.35 58.58 58.94 81.5 19.15 46.69 62.70 53.42 43.0M
DANet ResNet101 45.75 56.96 5691 8l1.11 18.60 47.88 63.19 52.91 68.5M
UperNet ResNet101 48.02 59.06 60.34 80.23 16.86 47.07 64.99 53.80 48.4M
Deeplabv3+ Xception 46.54 57.45 5731  79.87 18.26 47.91 64.36 53.10 68.5M
HRNetV2 HR\I;I/Z?Q_ 46.09 59.61 59.39 80.35 18.06 47.23 62.55 53.33 659M
EdgeNext Ed%e;j:’“' 4571 5807 5645 81.00 16.17  47.26 61.62 5243 1851M
Segformer MiT-B2 47.09 58.66 57.39 81.30 18.84 45.74 65.10 53.45 27.4M
COAT COAT-Small 47.45 60.57 58.63  80.97 18.95 46.60 64.54 5426 22.02M
MPVIT I\/ISIJH\;I{]F- 47.93 61.21 59.59 81.03 18.10 46.92 65.12 5440 23.07M
Ours Van-tiny 47.18 60.21 59.92  81.60 20.38 46.69 64.14 54.48 6.6 M
The bold values represent the highest accuracy or best performance under a specific evaluation metric in the current comparative experiment.
TABLE VII
COMPARISON OF OUR PROPOSED NETWORK WITH OTHER COMMONLY USED SEGMENTATION NETWORKS USING THE SAME BACKBONE ON THE POTSDAM
DATASET
Method Backbone [mp. Building Low Tree Car mloU mF1 OA Params
Surf. Veg.
FCN-8s Van-tiny[68] 92.89 96.29 87.50 89.14 9567 8598 9230 90.83 45M
PSPNet [42] Van-tiny 92.70 96.33 87.73 89.33 9528 85.77 9227 9091 43M
GCNet Van-tiny 92.03 96.19 86.96 88.01 9450 85.03 91.57 90.27 39M
DANet Van-tiny 92.95 96.57 87.92 89.25 9534 86.07 9241 91.04 42M
FPNet[33] Van-tiny 92.90 96.46 87.80 89.40 9544 86.06 9240 91.03 5.6M
UperNet Van-tiny 93.33 96.60 87.59 89.23 9529 86.09 9241 O9I1.11 7.0M
DeeplabV3+ Van-tiny 92.55 96.43 87.88 89.26 9497 8573 9222 90.83 7.4 M
Ours Van-tiny 93.36 97.01 88.53 89.48 96.38 86.97 92.94 91.51 6.6 M
The bold values represent the highest accuracy or best performance under a specific evaluation metric in the current comparative experiment.
TABLE VIII
COMPARISON OF OUR PROPOSED NETWORK WITH OTHER COMMONLY USED SEGMENTATION NETWORKS USING THE SAME BACKBONE ON THE VAIHINGEN
DATASET
Method Backbone Imp. Building Low Tree Car mloU mF1 OA Params
Surf. Veg.
FCN-8s Van-tiny 93.00 95.46 84.23 89.85 87.51 82.02 90.16 90.79 45M
PSPNet Van-tiny 92.96 95.69 85.03 90.00 86.68 82.17 90.07 91.05 43M
GCNet Van-tiny 93.17 95.57 84.17 89.69 87.49 82.09 90.02 90.85 39M
DANet Van-tiny 92.99 95.68 8444 89.89 86.73 81.98 8994 90.94 42M
FPNet Van-tiny 93.19 95.65 84.28 89.80 88.56 82.54 9030 90.96 5.6M
UperNet Van-tiny 93.33 95.64 84.50 89.90 88.03 82.52 90.28 91.06 7.0M
DeeplabV3+ Van-tiny 93.06 95.36 83.95 89.96 88.51 82.33  90.17 90.82 7.4M
Ours Van-tiny 93.34 96.17 85.27 90.25 89.20 83.53 90.91 91.36 6.6 M

The bold values represent the highest accuracy or best performance under a specific evaluation metric in the current comparative experiment.

becomes more pronounced. Particularly, when the input size
reaches 128 x 128, the computational complexity gap between
them reaches several times, and this gap continues to widen as
the output size increases. In Table III, we present a quantitative
comparison of the two self-attention modules. LSM is capable
of achieving higher FPS while maintaining nearly the same level
of accuracy as SAM.

3) Quantitative Comparison With State-of-the-Art Methods:
To further verify the effectiveness of our proposed network,

we compared it with several widely used semantic segmenta-
tion networks, including Segformer, FCN-8S, HRNet, Upernet,
GCNet, DANet, Deeplabv3+, BiSeNetV2, EdgeNext, COAT,
and MPVIT (COAT, MPVIT, and EdgeNext utilized UperNet
for decoding). It is worth noting that we compared the networks
using the most suitable backbone among all the backbones used
in our experiment. Tables IV-VI report the final prediction
results on three datasets. The results show that the proposed
DHRNet achieved the best performance in multiple metrics
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Fig. 18. Predicted segmentation maps of the most commonly used or best-
performing networks at the original patch size (512 x 512) on the Potsdam
dataset.

compared with the other networks. The average metrics (mloU,
mF1, and OA) reached the highest while achieving the highest F1
score among multiple categories on both Potsdam and Vaihingen
datasets. In the LoveDA dataset, the proposed DHRNet achieved
the highest IOU in both water and barren, and it also had the high-
est mIOU. The number of parameters in our proposed network
DHRNet (6.6 M) is significantly lower than other state-of-the-art
networks.

4) Compared With Other Networks Using the Same Back-
bone: To verify the superiority of our proposed network over
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Image FCN PSPNet DANet
BiSeNetV2 GCNet FPN UperNet
DeeplabV3+ HRNet EdgeNext Segformer

MPVIT

COAT

Ground Truth

Fig. 19. Predicted segmentation maps of the most commonly used or best-
performing networks at the original patch size (512 x 512) on the Vaihingen
dataset.

other networks with the same backbone, we compared DHRNet
with several commonly used segmentation networks on the same
backbone (Van-tiny), and our model achieved the best results.
Tables VII and VIII report the results of various networks on
the Potsdam and Vaihingen datasets with the same backbone
(Van-tiny). It can be seen that with the same Van-tiny backbone,
our proposed network outperformed any other network in all
metrics on both datasets. Compared to other networks, the mean
F1 score, mean Intersection over Union, overall accuracy, and
the F1 score of each category have been significantly improved.
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Fig. 20. Predicted segmentation maps of most commonly used or best-

performing networks at the original patch size (1024 x 1024) on the LoveDA
dataset.

These superior results suggest that the superior segmentation
performance of DHRNet is not solely attributed to the choice of
backbone.

5) Visualization of Experimental Results: We selected ten
networks and compared them with our proposed DHRNet in
terms of the speed-mloU tradeoff and the complexity-OA trade-
off. The visualization results are shown in Fig. 17. It can be
seen that our proposed DHRNet has the smallest number of
parameters (6.6 M) and the lowest computational complexity
(20 GFLOPs), while achieving the highest OA of 91.51% and
mloU of 86.97%.

To better illustrate the differences between our proposed net-
work and other networks, we also visualized the final experimen-
tal results. We selected widely used networks (FCN-8s, PSPNet,
BiseNetV2, and FPN) as well as networks that performed well in
the experiments (DANet, GCN, UperNet, DeeplabV3+-, HRNet,
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Fig. 21. Larger size prediction images of the most widely used or best-
performing networks on the Potsdam and Vaihingen dataset.

Segformer, EdgeNext, COAT, and MPVIT) and our proposed
network DHRNet for visualizing partial test results on the Pots-
dam, Vaihingen and LoveDA datasets, as shown in Figs. 18-20.
The displayed image size for Potsdam and Vaihingen datasets
is 512 x 512, which is the size we used when splitting the
dataset, while the displayed image size for LoveDA dataset is
1024 x 1024 which corresponds to the size in the provided
datasets. To better compare the segmentation results of these
models, we outlined some key regions. It is worth noting that all
visualized results of the compared networks are predicted us-
ing the best-performing backbone in our experiments. LoveDA
employs online verification to ensure the authenticity and fair-
ness of the results. As a result, the test set does not provide
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Fig. 22.  Visualization result of the grad-CAM by using the final classification

layer of some networks. We present the visual attention results for the categories
of building (bottom) and car (top) on the Potsdam dataset. Areas with higher
attention values, indicated by warmer colors, represent greater confidence in
network classification.

ground truth labels. So, the visualizations we present are based
on the validation set. From the visualization results, we can
see that our proposed network exhibits stronger edge and small
object segmentation capabilities. The misclassification rate is
significantly reduced compared with other networks and the
overall predicted image is smoother with fewer noise points,
which is closer to the ground truth label.
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RST typically have high pixel resolutions, which often contain
a diverse range of complex scenes with numerous categories.
Directly performing pixel-level classification on such high-
resolution RSI is considered a challenging task, which places
higher demands on the segmentation capabilities of the network.
Therefore, we visualized the results of some networks at larger
sizes for comparison. Fig. 21 shows the higher resolution visual
results of some networks on the Potsdam and Vaihingen datasets.
It can be seen that our proposed network has higher classification
accuracy and edge segmentation capability compared with other
networks at the macro level, and the overall details are closer to
the ground truth label which demonstrates that our proposed
network exhibits strong classification ability even in complex
scenes.

To demonstrate the superior classification and edge extraction
capabilities of our proposed network for various objects, we
employed Grad-CAM [69] visualization to examine the attention
maps of the final classification layer of some networks on the
Potsdam dataset. The visual results of Grad-CAM in Fig. 22
demonstrate our network’s high confidence in target classifica-
tion and strong edge segmentation capabilities.

V. CONCLUSION

In this article, we propose a DHRNet for semantic segmenta-
tion of large-scale RSI. We strike a balance between inference
speed and final accuracy. The proposed model can perform
predictions at a faster speed under the premise of high-precision
results. In this proposed network, the multiscale feature extrac-
tion branch can extract more comprehensive feature information
from different scales of features in RSI, while the global context
detail enhancement branch can overcome the limitation of recep-
tive fields, perform more comprehensive feature extraction, and
reduce the impact of low-level features while obtaining richer
spatial information. To reduce the misclassification caused by
attention mechanisms, a class ratio extraction module is de-
signed to supervise the network, which reduces misclassifica-
tion errors and speeds up the convergence speed of network
training. The results of a series of experiments conducted on
the Potsdam, Vaihingen, and LoveDA datasets demonstrate that
DHRNet is capable of achieving high-precision segmentation
tasks while maintaining a small number of parameters (6.6
M) and computational complexity (20 GFLOPs). In the field
of RSI semantic segmentation, DHRNet can effectively handle
complex scenes, as well as small and elongated objects, and
edge information. These findings highlight the robustness and
generalizability of our approach, underscoring its potential as
a valuable tool in the field of remote sensing. The series of
remarkable experimental results demonstrate the effectiveness
of our employed dual-branch parallel network architecture in
handling RSI semantic segmentation tasks.

REFERENCES

[1] C.Tothand G.Jozkow, “Remote sensing platforms and sensors: A survey,”
ISPRS J. Photogrammetry Remote Sens., vol. 115, pp. 22-36, May 2016.

[2] T. Adao et al., “Hyperspectral imaging: A review on UAV-based sensors,
data processing and applications for agriculture and forestry,” Remote
Sens., vol. 9, no. 11, Nov. 2017, Art. no. 1110.



4192

[3]

[4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

J. A. Benediktsson, J. Chanussot, and W. Moon, “Very high-resolution
remote sensing: Challenges and opportunities,” Proc. [EEE, vol. 100, no. 6,
pp. 1907-1910, Jun. 2012.

V. Dey, Y. Zhang, and M. Zhong, “A review on image segmentation tech-
niques with remote sensing perspective,” in Proc. ISPRS Tech. Commission
VII Symp. — 100 Years ISPRS, vol. 38, Jan. 2010.

D. S. Lu and Q. H. Weng, “Use of impervious surface in urban land-
use classification,” Remote Sens. Environ., vol. 102, no. 1/2, pp. 146-160,
May 2006.

V. Maus, G. Cimara, R. Cartaxo, A. Sanchez, F. M. Ramos, and G. R. de
Queiroz, “A time-weighted dynamic time warping method for land-use
and land-cover mapping,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 9, no. 8, pp. 3729-3739, Aug. 2016.

R. Liu, D. Jiang, L. Zhang, and Z. Zhang, “Deep depthwise separable
convolutional network for change detection in optical aerial images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 1109-1118,
2020.

P. Du, S. Liu, P. Gamba, K. Tan, and J. Xia, “Fusion of difference images
for change detection over urban areas,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 5, no. 4, pp. 1076-1086, Aug. 2012.

Q. Bi, K. Qin, H. Zhang, Y. Zhang, Z. L. Li, and K. Xu, “A multi-scale
filtering building index for building extraction in very high-resolution
satellite imagery,” Remote Sens., vol. 11, no. 5, p. 482, Mar. 2019.

Z. Chen, C. Wang, J. Li, N. Xie, Y. Han, and J. Du, “Reconstruction bias
U-net for road extraction from optical remote sensing images,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 2284-2294,
2021.

Y. Xu, L. Wu, Z. Xie, and Z. Chen, “Building extraction in very high
resolution remote sensing imagery using deep learning and guided filters,”
Remote Sens., vol. 10, no. 1, p. 144, 2018.

L. Zeng, B. D. Wardlow, D. Xiang, S. Hu, and D. Li, “A review of
vegetation phenological metrics extraction using time-series, multispectral
satellite data,” Remote Sens. Environ.,vol. 237, Feb. 2020, Art.no. 111511.
S. Toure, O. Diop, K. Kpalma, and A. S. Maiga, “Shoreline detection
using optical remote sensing: A review,” ISPRS Int. J. Geo-Inf., vol. 8,
no. 2, Feb. 2019, Art. no. 75.

Y. Zhou, J. Luo, Z. Shen, X. Hu, and H. Yang, “Multiscale water body
extraction in urban environments from satellite images,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 10, pp. 4301-4312,
Oct. 2014.

K. Parvati, P. Rao, and M. M. Das, “Image segmentation using gray-scale
morphology and marker-controlled watershed transformation,” Discrete
Dyn. Nature Soc., vol. 2008, 2008.

T. Horiuchi, “Grayscale image segmentation using color space,” Inst.
Elect., Inf. Commun. Engineers Trans. Inf. Syst., vol. 89, no. 3,
pp. 1231-1237, 2006.

A. Lucieer, A. Stein, and P. J. Fisher, “Multivariate texture-based seg-
mentation of remotely sensed imagery for extraction of objects and their
uncertainty,” Int. J. Remote Sens., vol. 26, no. 14, pp. 2917-2936, 2005.
R. Trias-Sanz, G. Stamon, and J. Louchet, “Using colour, texture, and
hierarchial segmentation for high-resolution remote sensing,” ISPRS J.
Photogrammetry Remote Sens., vol. 63, no. 2, pp. 156-168, 2008.

J. Yuan, D. Wang, and R. Li, “Remote sensing image segmentation by
combining spectral and texture features,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, pp. 16-24, Jan. 2014.

A. Shamir, “A survey on mesh segmentation techniques,” in Com-
puter Graphics Forum, vol. 27. Hoboken, NJ, USA: Wiley, 2008,
pp. 1539-1556.

K. H. Memon, S. Memon, M. A. Qureshi, M. B. Alvi, D. Kumar, and
R. A. Shah, “Kernel possibilistic fuzzy c-means clustering with local
information for image segmentation,” Int. J. Fuzzy Syst., vol. 21, no. 1,
pp. 321-332, Feb. 2019.

S. Haag, D. Schwartz, B. Shakibajahromi, M. Campagna, and A. Shoko-
ufandeh, “A fast algorithm to delineate watershed boundaries for simple
geometries,” Environ. Model. Softw., vol. 134, Dec. 2020, Art. no. 104842.
H. Shi, Y. Yu, and Y. Wang, “Early warning method for sea typhoons
using remote-sensing imagery based on improved support vector machines
(SVMs),” J. Coastal Res., vol. 82, pp. 180—185, 2018.

J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspectral
image segmentation using subspace multinomial logistic regression and
Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3,
pp. 809-823, Mar. 2012.

J. Peng, L. Li, and Y. Y. Tang, “Maximum likelihood estimation-based
joint sparse representation for the classification of hyperspectral remote

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

sensing images,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 6,
pp. 1790-1802, Jun. 2019.

G. Cao, X. Li, and L. Zhou, “Unsupervised change detection in high spatial
resolution remote sensing images based on a conditional random field
model,” Eur. J. Remote Sens., vol. 49, pp. 225-237, 2016.

L. Dong et al., “Very high resolution remote sensing imagery classification
using a fusion of random forest and deep learning technique-subtropical
area for example,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 113-128, 2020.

W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural Comput., vol. 29, no. 9,
pp. 2352-2449, 2017.

Y.Ning, S. He, Z. Wu, C. Xing, and L.-J. Zhang, “A review of deep learning
based speech synthesis,” Appl. Sci., vol. 9, no. 19, 2019, Art. no. 4050.
E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640-651, Apr. 2017.

A. Coates and A. Ng, “Selecting receptive fields in deep networks,” in
Proc. 24th Int. Conf. Neural Inf. Process. Syst., 2011, pp. 2528-2536.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Proc. Med. Image Comput.
Comput.-Assist. Interv.: 18th Int. Conf., 2015, pp. 234-241.

T.-Y. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis Pattern Recognit., 2017, pp. 2117-2125.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801-818.

J. Fuetal., “Dual attention network for scene segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3146-3154.

X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7794-7803.
W. Xu, Y. Xu, T. Chang, and Z. Tu, “Co-scale conv-attentional image
transformers,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021,
pp- 9981-9990.

R. Li et al., “Multiattention network for semantic segmentation of fine-
resolution remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5607713.

J. Baxter, “A model of inductive bias learning,” J. Artif. Intell. Res., vol. 12,
pp. 149-198, 2000.

J. C. Ye and W. K. Sung, “Understanding geometry of encoder-decoder
CNNSs,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 7064-7073.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” /[EEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495, Dec. 2017.
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 2881-2890.

P. Wang et al., “Understanding convolution for semantic segmentation,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2018, pp. 1451-1460.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998-6008.

Z.Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999-7019, Dec. 2022.

A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in Proc. Int. Conf. Learn. Representation,
2021, pp. 1-11.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H.
Jégou, “Training data-efficient image transformers & distillation through
attention,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 10347-10357.

W. Wang et al., “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in Proc. IEEE Int. Conf. Comput.
Vis., 2021, pp. 568-578.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer us-
ing shifted windows,” in Proc. IEEE Int. Conf. Comput. Vis., 2021,
pp. 10012-10022.

Y. Lee, J. Kim, J. Willette, and S. J. Hwang, “Mpvit: Multi-path vision
transformer for dense prediction,” in Proc. IEEE Int. Conf. Comput. Vis.,
2022, pp. 7287-7296.

S.Li, W.Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep
learning for hyperspectral image classification: An overview,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 6690-6709, Sep. 2019.



BAI et al.: DHRNET: A DUAL-BRANCH HYBRID REINFORCEMENT NETWORK FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES 4193

[52]

[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Q. Dang, J. Yin, B. Wang, and W. Zheng, “Deep learning based 2d
human pose estimation: A survey,” Tsinghua Sci. Technol., vol. 24, no. 6,
pp. 663-676, 2019.

L. Liu et al., “Deep learning for generic object detection: A survey,” Int.
J. Comput. Vis., vol. 128, pp. 261-318, 2020.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132-7141.

S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3—19.
X.Ding, X. Zhang, J. Han, and G. Ding, “Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2022, pp. 11963-11975.

W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 29, 2016, pp. 4905—4913.

J. Wang, Z. Zheng, A. Ma, X. Lu, and Y. J. Zhong, “LoveDA: A remote
sensing land-cover dataset for domain adaptive semantic segmentation,”
in Proc. Neural Inf. Process. Syst., vol. 1, 2021, pp. 1-16.

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” 2021, arXiv:2107.08430.

C.Yu, C.Gao,J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet v2: Bilateral
network with guided aggregation for real-time semantic segmentation,”
Int. J. Comput. Vis., vol. 129, pp. 3051-3068, 2021.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp- 770-778.

C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters—
improve semantic segmentation by global convolutional network,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4353-4361.

T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 418-434.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 1251-1258.

J. Wang et al., “Deep high-resolution representation learning for visual
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10,
pp. 3349-3364, Oct. 2021.

M. Maaz et al.,, “Edgenext: Efficiently amalgamated cnn-transformer
architecture for mobile vision applications,” in Proc. Eur. Conf. Comput.
Vis., 2022, pp. 3-20.

E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“SegFormer: Simple and efficient design for semantic segmentation with
transformers,” Adv. Neural Inf. Process. Syst., vol. 34, pp. 12077-12090,
2021.

M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu, “Visual
attention network,” Comput. Vis. Media, vol. 9, no. 4, pp. 733-752, 2023.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 618-626.

Qinyan Bai received the B.E. degree in computer sci-
ence and technology from the Chongqing University
of Posts and Telecommunications, Chongqing, China,
in 2022. He is currently working toward the master’s
degree in computer science and technology with the
Chongqing Engineering Research Center of Spatial
Big Data Intelligence Technology, Chongqing, China.

His research interests include the processing of
remote sensing images and deep learning.

Xiaobo Luo received the B.S. degree in GIS from the
Institute of Geophysics and Geomatics, China Uni-
versity of Geosciences, Wuhan, China, in 1999, the
M.S. degree in GIS from the School of Information
Engineering, Chinese Academy of Sciences, Wuhan,
in 2004, and the Ph.D. degree in cartography and GIS
from the Institute of Remote Sensing Applications,
Chinese Academy of Sciences, Beijing, China, in
2010.

He is a Professor with the Chongqing Univer-
sity of Posts and Telecommunications, Chongging,

China. His research interests include urban thermal infrared remote sensing,
remote sensing image processing, and ecological environment monitoring and

Yaxu Wang received the B.E. degree in computer
science from the Chongqing University of Posts and
Telecommunications, Chongqing, China, in 2018,
and the M.S. degree in GIS from the University of
Queensland, Brisbane, QLD, Australia, in 2020. She
is currently working toward the doctoral degree in
computer science and technology with the Chongqing
University of Posts and Telecommunications.

Tengfei Wei received the B.E. degree in software
engineering from the Guilin University of Electronic
Technology, Guilin, China, in 2021. He is currently
working toward the master’s degree in computer sci-
ence and technology with the Chongqing Engineer-
ing Research Center of Spatial Big Data Intelligence
Technology, Chongqing, China.

His research interests include remote sensing im-
age field extraction and instance segmentation.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


