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MGSFA-Net: Multiscale Global Scattering
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Abstract—Deep learning has offered new ideas in SAR ship
target recognition. Although many methods improve the recogni-
tion performance through the improvement of loss function and
migration of deep networks, scattering features as the important
intrinsic features of SAR targets, need to be considered in the SAR
ship recognition tasks. To introduce the scattering features into the
deep network and characterize the features of ship targets more
comprehensively, a multiscale global scattering feature association
network (MGSFA-Net) for SAR ship target recognition is proposed
in this article. In the network, the SAR ship target is first separated
from the background by fine target segmentation. Then, the scat-
tering centers (SCs) of ship targets are extracted and converted to
local graph structures based on the k-nearest neighbors algorithm.
The local graph structures are associated by the scattering center
feature association module and enhanced by the multiscale feature
enhancement module to produce the multiscale global scattering
features. Moreover, the deep features of the targets are extracted by
the multikernel deep feature extraction module to characterize the
high-dimensional information. Finally, the scattering features and
deep features are fused by weighted integration to enrich the diver-
sity of features. The experimental results on the FUSAR-Ship and
OpenSARShip dataset show that the MGSFA-Net can significantly
improve the recognition performance, even on a few-shot condition
with the accuracy increasing over 2 %-3 %. The feature distribution
and visualization show the effectiveness of the MGSFA-Net to
characterize the multiscale global scattering association features.

Index Terms—Deep learning, multiscale, scattering feature
association, ship recognition, synthetic aperture radar (SAR).

1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active microwave
S sensor with all-day, all-weather, and high-resolution char-
acteristics. SAR plays an important role in the military de-
fense and civil economy as an indispensable means of marine
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information acquisition and surveillance. SAR ship target recog-
nition is an important development prospect, especially in the
aspects of marine monitoring, target surveillance, ecological
protection, and disaster forecasting [1], [2], [3], [4], [5], [6].

In the past few years, the traditional SAR ship target recog-
nition methods were mainly centered on manual features and
classifier design. The common manual features for SAR ship
targets include texture structure, geometry, scattering intensity,
histogram of orientation gradients [7], HOG [8], SIFT [9], etc.
Many classifiers of machine learning are applied to the classifica-
tion of features, such as KNN [10], SVM [11], and random forest
[12]. Zhao et al. [13] used the hierarchical analysis method to se-
lect the most appropriate features from the feature set consisting
of geometric structural features, transformed features, and local
invariant features. The KNN method was applied to make the
final classification decision, which can achieve the classification
of TerraSAR-X images. Jiang et al. [14] divided the ship into
bow, mid, and stern sections, extracted the ultrastructural elec-
tromagnetic scattering features of each section, and used SVM
for the final classification. Lang et al. [15] designed a set of more
efficient geometric feature vectors, used multikernel learning to
learn the combination weights of the geometric features, and
made the final decision by the SVM method. Xu et al. [16]
used the distance metric learning (DML) approach to improve
the discriminative power of feature representation by retaining
supervised information about ship samples to maximize inter-
class differences and minimize intraclass differences. Although
the traditional handcrafted features have explicit meaning and
interpretable mathematical formulas, these types of features
are overly dependent on the accumulation of expert knowledge
and cannot lead to high recognition performance and excellent
generalization ability.

Currently, with the rapid development of deep learning, var-
ious excellent algorithms have emerged, such as ResNet, VG-
GNet, and Inception [17], [18], [19], which can achieve great
performance. Since Chen et al. [20] proposed an A-ConvNet net-
work that demonstrated more than 99% recognition rate on mov-
ing and stationary target acquisition and recognition (MSTAR)
dataset, deep learning methods have been gradually applied to
the SAR field, and have become the mainstream method for SAR
target recognition. Dechesne et al. [21] designed a multitask-
driven deep neural network for joint detection and geometric
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Fig. 1.

size estimation of ships in Sentinel-1 SAR images, which can
successfully distinguish between oil tankers, cargo ships, fishing
vessels, passenger ships, and trawlers. Zhang et al. [22] proposed
alightweight deep learning method combining the DML method
and the gradually balanced sampling to solve the problem of the
imbalance distribution of sample categories. Wang et al. [23]
used a large optical dataset model as the pretraining weights
and finetuned the training model to obtain high classification
accuracy on the SAR ship. Lu et al. [24] proposed a new data
augmentation method and combined it with transfer learning
to achieve high recognition accuracy. He et al. [25] proposed a
densely connected ternary CNN, and combined it with Fisher
discriminant vectors to expand the feature distance between dif-
ferent categories, which improved the ship recognition accuracy
in medium-resolution SAR images. Shang et al. [51] proposed a
novel ship augmented attention network. It can utilize the kernels
of different types combined with an attention mechanism to
extract the multiscale features and can improve the performance
of ship classification.

However, SAR ship targets have complex textures, shapes,
and structures, as shown in Fig. 1. The phenomenon of defocus-
ing and cross-highlighting spots also exist, which may lead to
the poor quality of sample images. In addition, the differences
in resolutions and imaging angles can also produce large feature
differences in SAR ship target slices. The above deep learning
methods mainly focus on the improvement of network structure,
the modification of training techniques, transfer learning, and
the expansion of training samples. To characterize the intrinsic
features of SAR ship targets more accurately and reach better
performance, researchers have focused on target recognition
methods combining deep networks with traditional features.
Zhang et al. [26] combined HOG features with deep features
and produced better recognition results. Zeng et al. [27] fused
polarization information and deep features to achieve SAR ship
recognition. Electromagnetic scattering features, as the intrinsic
feature of SAR targets, can better explain and characterize the
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(d

SAR ship samples and the corresponding optical image. (a)—(e) are the optical images of ship targets. (f)—(j) are the SAR images of ship targets.

electromagnetic scattering mechanism of the target by introduc-
ing them into deep networks, which has received wide attention
inrecent years. Ding et al. [31] combined the Attributed Scatter-
ing Centers (ASC) model and random projection features, which
was the first trial of integrating the ASC feature with other fea-
tures. Feng et al. [28] used the K-means clustering method to ex-
tract the features of different components of vehicle targets based
on the ASC model and introduced these features into the deep
network. Liu et al. [29] extracted different components of the tar-
get based on the ASC model and fused the different components
with multiple deep network layers. Zhang et al. [30] constructed
a visual bag-of-words from extracted the ASCs, transformed a
set of the extracted parameters into features, and fused them with
deep features. Zhang et al. [52] focused on the scattering point
topology based on the scattering key points. They introduced the
position information of the scattering key points and the distance
information between the scattering points into the deep network,
which can lead to an excellent recognition performance.

The ships have large sizes of targets and are mainly character-
ized by the combination of individual scattering structures with
complex feature information. It is essential to consider the global
structure of the target and the associations between different
scattering features, which can help to characterize the recog-
nition features of ship targets more accurately. In recent years,
graph convolutional network (GCN) [32] has made significant
progress in feature association and point cloud classification and
has been gradually applied to the field of SAR image interpre-
tation. Li et al. [33] proposed a graph learning method for SAR
target recognition to acquire metaknowledge with correlation.
Yang et al. [34] integrated GCN into deep networks to measure
the similarity of samples, thus realizing the few-shot learning
on SAR images. In addition, the graph convolution network
has achieved excellent recognition results on SAR vehicle and
aircraft targets. Li et al. [35] converted individual SCs into graph
nodes and fully utilized the scattering centers through GCN to
achieve local association of the scattering features. The extracted
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SCs can better characterize the structural features of the SAR ve-
hicle target by applying GCN to associate the scattering features.
Zhao et al. [36] applied GCN to SAR aircraft targets. They con-
verted the strong scattering points of the target into graph struc-
tures by GCN and combined the graph structure features of the
scattering points with the features of the image domain extracted
by improved VGGNet, which achieved effective classification
of aircraft targets. However, unlike aircraft and vehicle targets,
most ship targets have larger sizes with a relatively large aspect
ratio of the target. The pixel distributions of different samples
on the slices also vary considerably. In addition, ship targets are
more compact in structure. The structure of a ship is character-
ized by a combination of different local scattering structures.
Moreover, affected by the observation angle and imaging reso-
lution, similar ships usually exhibit different sizes on different
slices. Therefore, GCN cannot be directly used in SAR ship
target recognition and necessary improvements are needed.

To address the above challenges, the MGSFA-Net for SAR
ship target recognition is proposed in this article. First, the target
is split from the background by target fine segmentation to avoid
the background clutter. Then the SCs of ship targets are extracted
and converted to graph structures. The local graph structures are
associated to characterize the global structure of targets based on
the scattering center feature association (SCFA) module and en-
hanced by the multiscale feature enhancement (MSFE) module
to obtain the multiscale global scattering association features. In
addition, the deep features of ship targets are extracted based on
the multikernel deep feature extraction (MKDFE) module to get
the features of the high-dimensional layer. Finally, the scattering
features and deep features are fused to increase the diversity of
features and improve the recognition accuracy of the SAR ship.
The contributions of this article are summarized as follows.

1) A MGSFA-Net for SAR ship target recognition is pro-
posed to combine the deep network with the internal
scattering features of ship targets.

2) The SCFA module is designed to construct the local graph
structure of SCs and associate the local structure to charac-
terize the global topology structure feature of ship targets,
which can improve the ability to characterize the global
features and utilize the scattering information more fully.

3) The MSFE module is designed with a multiscale fusion
method to fit the difference in the sizes of ship targets and
reduce the loss of scattering information of high levels in
SCFA module.

4) Due to the multiscale characteristics of ship targets, the
MKDFE module is designed to better characterize the
deep features of the high-dimensional layer.

The remaining structure of this article is organized as follows.
In Section II, the details of the proposed MGSFA-Net are pre-
sented. In Section 11, the implementation details of experiments
are presented, and the results are shown. The conclusions of the
experiments are shown in Section IV.

II. PROPOSED METHODOLOGY

A multiscale global scattering feature association network
(MGSFA-Net) is proposed for SAR ship target recognition,
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the framework of which is shown in Fig. 2. It consists of five
modules:

1) Target fine segmentation;

2) SCFA module;

3) MSFE module;

4) MKDFE module;

5) Feature fusion module.

In this section, the details of the proposed network are pre-
sented.

A. Target Fine Segmentation

SAR sensor will produce azimuth and range blur in ship
target imaging. Azimuth blur is formed by the overlap of main
signals and the azimuth upwards side flap signals. Range blur is
formed by the overlap of echoes around the side of a ship and
the echoes in the distance. In addition, the wave motion of the
sea surface will make the larger ship target swing at a certain
angle, resulting in the jump phenomenon of scattering centers
in the range direction of the resolution unit. Also, there will be
a diffusion phenomenon on the ship target in the range direction
and azimuth direction, leading to outspread shadows and crossed
shadows at the edge of the target imaging area. Considering the
above situation, the target fine segmentation method is adopted
in this article to realize the separation of the SAR target and
background area.

First of all, the segmentation method based on the Radon
transform is used to separate the ship target and imaging inter-
ference region from the perspective of the frequency domain.
The threshold segmentation is performed on the separated ship
target slices, and morphological means are used to process the
segmented image to reduce the influence of side flaps and extract
the target main region accurately. Also, the target region is
refined based on ellipsoidal constraints to solve the regional
fracture phenomenon and obtain the image segmentation region
of the ship target. The specific process of refined segmentation
is shown in Fig. 3.

B. SCFA Module

This module can extract the SCs, convert the SCs into the local
graph structure, and associate the local structure to characterize
the global scattering structure of the ship target.

1) Scattering Centers Extraction: Due to the specific char-
acteristics of SAR target imaging, the SAR ship target region
can be approximated as the sum of the responses of multiple
independent scattering centers, which can be expressed as fol-
lows [35]:

k

E(f,0:0) =Y Ei(f,9;0;) (1)

i=1

where k denotes the total number of the SCs, f denotes the
frequency, and  denotes aspect angle. The backscattering model
can be expressed as follows:

—j4r

E; (f,;0;) = Si - exp < / (w;cosp +y; Sin@)) (2)
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Fig. 2. Overall structure of multiscale global scattering feature association network for SAR ship target recognition.

(d) (©

Fig. 4. Scattering centers extraction of ships with different categories.
(a) BulkCarrier. (b) Fishing. (c) GeneralCargo. (d) Containership. (e) Tanker.

center can be characterized as P; = [S;, X;, Y;], which contains
the scattering intensity and the position information. Then the
ship target can be characterized as the sum of n scattering centers
{P1,Ps,...,P,}. The extracted results are shown in Fig. 4.

2) Local Graph Structure Construction: The extracted SCs
can be regarded as nodes of the first layer of graph struc-

Fig. 3. Example of SAR ship target fine segmentation.

where S; denotes the backscattering coefficient, z; and y; denote

the position coordinates along the range dimension, and azimuth
dimension, respectively. These scattering parameters are esti-
mated by the GA algorithm [37], and each extracted scattering

ture input V; = [S;, x;, y;]. By using the k-nearest neighbors
(KNN) algorithm, the nodes are connected with the n neighbor-
ing nodes around them to generate the local graph structure.
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Algorithm 1: Scattering Center Feature Association
Module.
Input: SAR ship target with segmentation
Output: Scattering feature vector of different Layers
Initialization: Layers: n; KNN points: £;
1: Extract the scattering centers by GA algorithm [37],
each SC is represented as a set of three parameters:
=[S, 2,y
2: for(l—O l<nyl++)do
3:  Select the k nearest neighboring points of the
scattering centers and regard them as nodes:
- VO = {vgl), vgl) ...... 7v,(€l)}
4: Construct graph structure between scattering centers
and other neighboring points:

5: if{ = 0 then
6: — GY= (VO EO)
7: else
8: = G'= (VDO ED)
9: endif
10:  Calculate the edge feature by v; — v; and v; nodes

with the edgeconv operation:
— €jj = B@(Ui, v — ’UZ')
11:  Update and calculate the nodes of the next layer by the
edge of the previous layer:

1+l l
- 'U( = Z] (i,5)eEM hg))( ) ]( ))
12: end for

The set of distances between its vertices and the adjacent k
points can be regarded as edges E of the graph structure.
Therefore, the input graph structure can be regarded as G° =
(VO E©), The set of nodes at layer [ of graph structure is

v = {vgl), vél) v,L)} and the graph structure constructed
at [th layer is G! = (V(” EW).

3) Global Scattering Feature Association: The algorithm
mainly uses the convolution of edge (named as edgeconv) [44]
to calculate the relationship between the local graph structure,
associate the local graph structure of scattering centers, and
characterize the global structure of the targets.

Define the edge feature between nodes as e;; = ho(v;,v;),
where v; and v; are the ith and jth nodes, respectively. To com-
bine the global structure with the local neighborhood feature,
the edge features are calculated by the relative positions of
the neighbor points captured by v; — v; and the center points
captured by v;. This method of calculation can take into account
both the global structure and the local scattering features, which
can associate the local features to characterize the global struc-
ture. Therefore, the calculation formula of the edge features is
expressed as

he (vi,vj) = he (vi,vj —v;) . 3)

Thus, edge features can be calculated by local features and
global features as

=f(Om- (v —v;) + Om - ;) 4

€ijm
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where ¢;;,,, denotes the mth edge feature from node z; to node
zj,©={6,...... JOn, b1 , ®n } denotes the key weight
parameter for the convolution operation of the network, and f(-)
denotes the activation function.

The feature vectors of each node in the next graph structure
layer are obtained by aggregating and mapping the edge features
of the previous layer to achieve the update of the graph structure
network layer and iteration of the feature extraction. Therefore,
the next layer can be represented as

U§l+l) _ Z h(l ( v )’ j(z)) (5)
j:(i,j)GE(l)
where v( 1) denotes the ith node of layer (I + 1), vgl) denotes

the ith node of the layer [/, and vj(l) denotes the jth node of
layer [. The update of the node is completed by the iteration of
edgeconv operation. Therefore, the SCFA module consists of
several Layers, each of which is composed of a KNN layer and
a edgeconv. The details of SCFA module can be concluded as
Algorithm 1.

C. MSFE Module

In order to fit the great differences in the sizes of ship targets
and reduce the loss of scattering information in the SCFA
module, a MSFE module is designed to stitch the scattering
features extracted from different layers of the SCFA module.

This module can characterize the multiscale scattering fea-
tures and compensate for the loss of scattering information. First,
the different layers of the SCFA module are fused through the
concatenation operation. The fusion operation of different layers
can be expressed as

Fmuttilayer = Concat (F1,F2,... Fn) 6)
where F muitilayer T€presents the concatenated features of dif-
ferent layers and F; represents the features of the ith layer. Then,
the pooling operations are performed on Fuitilayer by using
MaxPooling and AvePooling operations in a parallel manner.
Finally, the multiscale features Fuitiscale are extracted by
concatenating the two features that pass through the two different
pooling layers. The framework of the module is shown in Fig. 5.

The multiscale features can better characterize the scattering
features of targets of different sizes and can characterize the
scattering structure of the targets more accurately and com-
prehensively. In addition, the increase in the number of layers
in the SCFA module can lead to the loss of scattering infor-
mation. Therefore, the features extracted from the last layer
cannot characterize the scattering information of the target
accurately. Multiscale features can utilize the features of the
low-dimensional layer to complement the detailed features of the
high-dimensional layer to reduce the loss of information in the
scattering features obtained from higher layers of the network.
The effects of different pooling operations on the recognition
performance of the algorithm will be analyzed in a detailed
comparison in the subsequent experimental section.
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Fig. 5. Framework of MSFE module.

D. MKDFE Module

The multikernel deep feature extraction module is designed
based on the fusion of multiple convolution kernels to address
the problem of large differences in the target size of ship slices
and to extract deep features of ships more comprehensively. In
the module, 3x3, 5x5, and 7x7 kernels are used to perform
convolution operations on the image respectively with the struc-
ture of the module shown in Fig. 6. The 3 x 3 kernel has a smaller
receptive field, which pays more attention to the local details and
texture information. Therefore, it can learn the information of
texture and details of the target, which is beneficial for extracting
the features of the targets with small sizes. The 55 kernel has
a larger receptive field than 3x3. It can capture the information
of a wider area and can learn the global structure and shape of
the image better. The 7x7 kernel has a larger receptive field,
which can learn the global structure and shape of the target
better. The 7x7 kernel has a larger receptive field and pays
more attention to the global information in the image, which
can extract the features of targets with large sizes. Then the
feature maps extracted from convolutional layers of different
kernel sizes are fused to extract the global structural features of
the target while preserving the detailed texture features of the
target and making the extracted features more complete. This
allows for better adaptation to the different sizes of the target. In
addition, the last pooling layer is designed with a size of 8x8,
which can highlight the high-dimensional features of the input
image and the global spatial framework of the target without
losing too much local information. Finally, the feature vector of
128 dimensions is produced through the linear layer to obtain
the deep features of the extracted ship target.

E. Feature Fusion Module

In this section, the electromagnetic scattering features are
combined with deep features at the output by weighted integra-
tion to combine the advantages of both features. Mathematically,
the fusion method can be expressed by

)

Ftusion = Wsr - Fsp +wpr - Fpr
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TABLE I
TRAINING-TEST DIVISION OF THREE-CATEGORY FUSAR-SHIP DATASET

Class | Train Test Total
BulkCarrier 150 82 232
Fishing 150 105 255
GeneralCargo 150 159 309
TABLE II

TRAINING-TEST DIVISION OF FIVE-CATEGORY FUSAR-SHIP DATASET

Class | Train Test Total
BulkCarrier 150 82 232
Fishing 150 105 255
GeneralCargo 150 159 309
ContainerShip 150 75 225
Tanker 150 150 300

where wgp and wpr are the weights of the scattering features
Fsr and deep features Fpp, respectively. Feysion denotes
the fusion features of both features. This fusion of features
can combine the scattering structure features of the target and
the high-dimensional semantic features extracted by the deep
network to achieve the complementary advantages of the two
features. In this article, the weight of scattering features wgp
and the weight of deep features wpp are selected as 0.6 and
0.4, respectively. The effect of different fusion weights on the
recognition performance will be analyzed in detail in Section I1I.

III. EXPERIMENTS AND RESULTS

A. Dataset Description

The effectiveness of our algorithm is verified on two SAR ship
datasets that is FUSAR-Ship dataset and OpenSARShip dataset.

1) FUSAR-Ship Dataset: The FUSAR-ship dataset is a SAR
ship dataset released by Hou et al. [6] in 2020, which is a
high-resolution SAR ship classification dataset acquired from
the quad polarization Gaofen-3 satellite. The dataset consists
of five main target categories: BulkCarrier, Fishing, General-
Cargo, ContainerShip, and Tanker. The Five-Category dataset is
constructed on these five categories. In addition, the categories
of BulkCarrier, Fishing, GeneralCargo are more representative.
Thus, the Three-Category experiment dataset is constructed
based on these three categories. The samples are expanded
by flipping and rotating operations. The specific compositions
of Three-Category and Five-Category datasets are shown in
Tables I and II, respectively. The examples of several SAR ship
samples from the FUSAR-Ship dataset are presented in Fig. 7.

2) OpenSARShip Dataset: The OpenSARShip dataset is a
SAR ship dataset released by Huang et al. [50] in 2018, which
is acquired from the dual-polarization SAR detected by the
Sentinel-1 satellite of European Space Agency, including both
VH and VV polarization channels. The sizes of the slices are not
the same. The dataset utilized in our experiment is ground range
detected (GRD) products. In order to verify the effectiveness of
our methods further, we select BulkCarrier, ContainerShip, and
Tanker to compose the three-category OpenSARShip dataset.
The specific compositions of the data are shown in Table III.



ZHANG et al.: MGSFA-NET: MULTISCALE GLOBAL SCATTERING FEATURE ASSOCIATION NETWORK FOR SAR SHIP TARGET RECOGNITION

II

Conv 5x5

II
II

Conv 5x5
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BN/ReLU
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Fig. 6.
SAR ship targets.

(a) (b)
(d)

Fig. 7. SAR ship samples in FUSAR-Ship. (a) BulkCarrier. (b) Fishing. (c)
GeneralCargo. (d) ContainerShip. (e) Tanker.

TABLE III
TRAINING-TEST DIVISION OF OPENSARSHIP DATASET

Class | Train Test Total
BulkCarrier 448 906 1354
ContainerShip 448 526 974
Tanker 448 193 641
(a) (b) ©

Fig. 8. SAR ship samples in OpenSARShip. (a) BulkCarrier. (b) Container-
Ship. (c¢) Tanker.

Fig. 8 presents several SAR ship samples from the OpenSAR-
Ship dataset.

B. Experimental Setup

In order to improve the computational efficiency, all samples
of FUSAR-Ship are cropped to 256 x 256 and then resized to
128 x 128 in this article. The samples of OpenSARShip are
cropped and padding to 128 x 128. The experimental learning
rate is set to 0.001 and the learning momentum is set to 0.9.
The updating method of the parameter is stochastic gradient
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Structure of MKDFE module. The module consists of several kernels of convolutional layers, which can extract complicated deep feature information of

descent, the training epoch is set to 150 and the batch size is set
to 16. All the experiments are carried out with both MATLAB
platform and the Pytorch deep learning framework on a NVIDIA
GeForce RTX 3090 GPU. We use the PyTorch 1.8 and Python 3.8
compilers run on Windows 10. Besides, CUDA 11.6is employed
for the algorithm acceleration of training and inference.

C. Evaluation Indicators

In this article, accuracy is used as the main indicator to eval-
uate the effect of experiment methods. In addition, other three
types of evaluation indexes are used, that is recall, precision,
and F1, to compare the experimental performance of different
methods and to verify the effectiveness of the proposed method
more completely and accurately.

Recall is defined by
N
Recall = ———. 8
T TP EN ©
Precision is defined by
TP
Precision = ————.
recision T 1 TP 9
F1 is defined by
Fl_9. Recall - preci.si.on ’ (10)
Recall + precision
Accuracy is defined by
TP + TN
A = 11
Y = TP Y TN + FP + FN ()

where TP denotes the true positives, FP denotes the false
positives, FN denotes the false negatives, and TN denotes the
true negatives. For the convenience of representation, recall is
abbreviated as “R,” precision is abbreviated as “P,” and accuracy
is abbreviated as “Acc.”

D. Model Analysis

In this section, the impact of different parameters of different
modules is analyzed. The ablation study of the proposed model
is conducted to select the optimal parameters and architecture
of the model.

1) Impact of Different Parameters in MGSFA-Net: The two
most important parameters in the network are the nearest neigh-
bor point k£ in KNN algorithm and the number of layers /N. The
recognition performance on different conditions of k£ and N are
analyzed, with the results shown in Fig. 9.
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Fig.9. Influence of nearest neighbor point &£ in KNN algorithm and the number
of layers V.

a) Nearest neighbor point k: As shown in Fig. 9, under
different k-nearest neighbor conditions, the accuracy rate shows
a trend of increasing and then decreasing as the value of k keeps
increasing. As the value of k increases, more nearest neighbor
points can be selected, which can help construct a closer and
more accurate topology association structure. However, if the
value of £ is too high, it will lead to an extremely complex
structure association and inaccurate association of features,
which can produce plenty of redundant association features, thus
having a negative impact on the recognition performance. The
optimal performance of the network can be achieved when the
value of k is equal to 12.

b) Number of layers N : It can be seen from the curve that the
recognition performance tends to get better and then worse with
the number of layers increasing, reaching the best accuracy of
84.24% when the number of layers is 4. The high-dimensional
layer has more dimension of the extracted features, which can
characterize more intrinsic associated features. However, too
many layers will cause some loss of scattering information
when extracting scattering features. This will result in some
feature redundancy in the fusion of features in the MSFE module,
leading to a decline in the recognition performance.

Therefore, the number of layers is set to 4 and the number of
KNN nearest neighbor points is set to 12 in this article to achieve
the best performance in our experiment.

2) Different Pooling Methods of MSFE Module: To enhance
scattering features better, we compare the effect of maximum
pooling, average pooling, adding of the two poolings, and con-
catenation of the two poolings, as the results shown in Table I'V.
From the analysis of the results, it can be concluded that concate-
nating the maximum pooling and the average pooling achieves
better results. Maximum pooling retains the most obvious and
salient information locally and pays more attention to texture de-
tails. Average pooling pays more attention to the global structure
and global feature distribution. Therefore concatenating the two
pooling methods can extract more accurate and comprehensive
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TABLE IV
DIFFERENT FUSION METHODS OF MSFE MODULE

Methods Recall(%)  Precision(%)  Accuracy(%)
Max(+) 78.64 78.97 78.63
Ave(-) 78.20 80.31 79.16

Add[Max(-), Ave(-)] 81.32 80.50 81.09
Cat[Max(-), Ave(-)] 84.94 83.79 84.24

The bold values represent the best result.
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The fusion weight of scattering features
Fig. 10. Influence of fusion weight of scattering features in MGSFA-Net.

scattering features, reduce the feature information loss caused
by an increase in the dimensions of the network, and enhance
the multiscale features better.

3) Weight Analysis of Feature Fusion Module: The recognition
performance of different fusion weight conditions under the ex-
perimental conditions of five-category is compared and analyzed
to select the optimal fusion weights for the fusion of scattering
features and deep features. The bar charts of the recognition
accuracy are shown in Fig. 10. The experimental results show
that the recognition accuracy is not high when the weights of
single features are too large or too small. For example, when
the weights of scattering features are 0.1 or 0.9, the recognition
accuracy is 81.45% and 82.13%, respectively, which is the worst
performance among all weights. When the weights of scattering
features and deep learning features are 0.6 and 0.4, respectively,
the recognition accuracy is the highest, which can reach 84.24%.
Therefore, the weights of scattering features and deep learning
features are selected as 0.6 and 0.4, respectively, to reach the
best results.

4) Ablation Experiment: The ablation experiments are con-
ducted on the five-category FUSAR-Ship dataset to compare
the effect of the MKDFE module, the SCFA module, and the
MSFE module. The results are summarized in Table V.

In Table IV, the “v"”” denotes that the module is involved while
the “x” denotes that the module is not involved. When only
the SCFA module is involved in the experiment, the extracted
scattering features are the features extracted from the last layer
in the SCFA module and the recognition rate can only reach
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TABLE VI
CONFUSION OF EXPERIMENT OF THREE-CATEGORY FUSAR-SHIP

MKDFE SCFA MSFE Feature Fusion Accuracy(%)
X v X X 64.57
X v v X 71.93
v X X X 80.45
v v X v 82.10
v v v v 84.24

The bold values represent the best result.

64.57%. This is because the simple scattering points cannot
represent all the useful information of the target recognition
network. In addition, there is scattering information loss in the
high-dimensional feature layer, which can lead to a low accuracy
of recognition. However, with the involvement of the MSFE
module, the accuracy can increase to 71.93%. This indicates
that the module fusing scattering features of different scales can
effectively solve the problem of the loss of scattering information
in high-dimensional layers, and can enhance the characterization
ability of the features, which is more conducive to improve the
target recognition performance. When only the MKDFE module
is used in the experiment, the accuracy is 80.45%. The feature
extraction in the image domain can acquire the high-dimensional
abstract features from the deep network through different con-
volutional kernels. With the integration of the SCFA, MSFE,
and MKDFE modules, the proposed method can combine the
advantages of deep network and scattering information. The
accuracy of MGSFA-Net can reach 84.24%. The results show
that the recognition performance is significantly improved by
fusing scattering features and deep features, and the SCFA
module can assist the deep learning network in characterizing
the features of the target more comprehensively.

E. Recognition Performance and Comparison

The classical target recognition methods are selected and
compared with the proposed method to verify the performance of
MGSFA-Net. The comparison methods include excellent deep
learning networks, such as Hou [6], GoogleNet [38], MobileNet
[41], DenseNet [39], Inceptionv3 [19], ShuffleNet [43], ResNet
[17], A-ConvNet [20], VGGNet [18], and InceptionNet [19].
The algorithms appearing in computer vision recently, such as
Swin Transformer [46], Vision Transformer [47], ConvNext
[48], and Internimage [49] are also compared. The methods
fusing deep features and other traditional features, such as
MSDF [29], FEC [30], SFSA [36], and HOG-ShipCLSNet [26],
are included as well. The experiments on FUSAR-Ship datasets
and OpenSARShip datasets are conducted, respectively, with
the results listed in Table IX.

1) Results of Experiments on Three-Category FUSAR-Ship:
Among the three-category experiments, the highest recognition
rate in the classical classification network of deep learning
can reach 83.24%. In the method of fusion of traditional fea-
tures and deep features, FEC can reach the highest recogni-
tion rate of 83.25%. The methods related to the Transformer
show bad performance on the SAR ship target recognition. The
accuracy of vision transformer can only reach 69.65% on the

True . .
Predici BulkCarrier Fishing GeneralCargo Recall(%)
BulkCarrier 77 0 5 93.90
Fishing 0 73 32 69.52
GeneralCargo 6 8 145 91.19
Precision (%) 92.77 90.12 79.67 _
F1(%) 9333 7849 8504  |Accuracy =85.26%
TABLE VII

CONFUSION OF EXPERIMENT OF FIVE-CATEGORY FUSAR-SHIP

NBulkCamer ContainerShip Fishing GeneralCargo Tanker Recall(%)
BulkCarrier 76 0 2 3 1 92.68
ContainerShip 0 83 19 1 2 79.04
Fishing 2 19 115 6 4 72.33
GeneralCargo 3 1 6 64 3 85.33
Tanker 1 2 5 1 143 95.33
Precision(%) 85.39 71.57 78.77 83.12 94.08 _
F1(%) 88.89 7830 7541 8421 9470 Accuracy = 84.24%

three-category FUSAR-Ship. Compared with these methods, the
recognition accuracy of the proposed MGSFA-Net can reach
85.26%. In terms of recall and precision, the method in this
article still achieves an excellent performance. The precision of
the proposed method reaches 87.52% and the recall rate reaches
84.87%, which is higher than the rest methods. The confusion
matrix for the three-category experiments is shown in Table VI.
In the confusion matrix, BulkCarrier and GeneralCargo have the
highest rates of recall, both of which are more than 90%. While
the fishing target recall is only 69.52%. Since the size of the
fishing target is too small, the number of extracted scattering
centers is small, and the scattering characteristics are not obvi-
ous, the fishing category may result in a low recognition rate. In
addition, BulkCarrier and GeneralCargo are prone to confusion
since the two types of targets are of similar size and have similar
features. The bar charts of accuracy under different methods on
three-category FUSAR-Ship are shown in Fig. 11.

2) Results of Experiments on Five-Category FUSAR-Ship:
In the five-category of target classification experiments, the
recognition rate of A-ConvNets, VGGNet, HOG-ShipCLSNet,
MSDEF, and FEC can exceed 80%, butit is still lower than
the result of MGSFA-Net, which is 84.24%. The accuracy of
swin transformer and vision transformer can only reach 62.52%
and 54.12%, respectively, much lower than other methods. In
addition, the ConvNext and Internimage methods can achieve
65.67% and 70.40%, respectively, which cannot classify the
SAR ship targets effectively. The confusion matrix of the five-
category experiments is shown in Table VII. The confusion
matrix shows that the larger the ship target size is, the better
the recognition performance is, reaching 92.68% and 95.33%
for BulkCarrier and Tank, respectively. This is because these
two categories of target sizes are large and the identifiable
features are prominent. Moreover, they contain more scatter-
ing information in the target and can reflect more significant
scattering characteristics. The network can learn richer features,
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experiment on five-category FUSAR-Ship.

TABLE VIII
CONFUSION OF EXPERIMENT OF OPENSARSHIP

True . . .
m BulkCarrier Containership Tanker Recall(%)
BulkCarrier 780 106 20 86.09
ContainerShip 65 443 18 84.22
Tanker 12 12 169 87.56
Precision(%) | 91.02 7897  81.64 _
F1(%) 88.49 8151  84.50 |Accuracy = 85.66%

and thus the recognition performance improvement is more
obvious. The target of the Tanker is chosen as an example to
analyze. The decks of the target have alternating horizontal and
vertical bulkheads with a very obvious structure. Therefore, the
extracted scattering features are more accurate and significant.
As a comparison, there is no prominent structure on the surface
of the fishing vessel, which means that it is difficult to extract the
distinctive scattering features of the fishing target. Through the
above experiments, the superior performance of MGSFA-Net
on the SAR ship target recognition task is verified. The bar
charts of accuracy under different methods on Five-Category
FUSAR-Ship are shown in Fig. 11.

3) Results of Experiments on OpenSARShip: In the exper-
iments of OpenSARShip, the confusion matrix is shown in
Table VIII. Compared with classical deep learning methods and
Transformer methods, the methods fusing traditional features
and deep features show excellent performance on SAR ship
target recognition. FEC and MSDF methods, the accuracy of
which achieve 81.48% and 83.36%, respectively, can combine
the scattering features and deep features to characterize the
features comprehensively. However, the methods related to the
transformer reach low accuracy, with the swin transformer and
vision transformer only reaching 72.80% and 72.92%, respec-
tively. The ConvNext and Internimage can lead to low accuracy
as well. The recognition of MGSFA-Net can reach 85.66%,
exceeding other methods significantly. The recall and precision
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Bar charts of accuracy under different methods on FUSAR-Ship dataset. (a) Accuracy of experiment on three-category FUSAR-Ship. (b) Accuracy of

can reach more than 80% for all three types of targets. Due to
the low resolution of OpenSARShip dataset, BulkCarrier, and
ContainerShip targets exhibit similar characterization on SAR
images with similar texture structure, making these two types
of targets easy to misclassify. The proposed method can better
characterize the global features of the ship target while extracting
the texture features. Combined with the scattering information,
MGSFA-Net can better demonstrate the intrinsic features of the
target and, thus, show better recognition performance on SAR
ship images.

4) Comparison of Running Time: In order to compare the
running time of the different network models, the training time
and inference time per epoch are calculated and plotted as curves.
The results of the running time are shown in Fig. 12. Since
the sample size of OpenSARship is larger in this experiment, it
shows longer training and inference time per epoch on Open-
SARship. The curves for training and inference time show that
the DenseNet and Inceptionv3 have the longest training and
inference time per epoch. In our training operation environment,
the training time per epoch of DenseNet and Inceptionv3 is more
than 20 s. In addition, the methods related to the transformer are
more complex, and most of them also show longer training and
inference time. Compared to these methods, the MGSFA-Net
method proposed in this article shows better performance in
terms of time efficiency of training and inference. The results
show that the training time per epoch of the MGSFA-Net is about
2 s and the inference time is about 1 s. Also, the methods fusing
traditional features and deep features may not have a burden on
running time. In conclusion, the proposed method can improve
the accuracy of recognition without reducing the time efficiency
too much.

F. Recognition Performance on Few-Shot Condition

Due to the uneven distribution of the number of different cate-
gories in the SAR ship target dataset and the frequent occurrence
of an insufficient amount of sample data, the few-shot conditions
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TABLE IX
EXPERIMENTAL RESULTS OF DIFFERENT METHODOLOGY ON FUSAR-SHIP AND OPENSARSHIP DATASETS

Method | Three-Category FUSAR-Ship | Five-Category FUSAR-Ship | OpenSARShip
ethods
| P(%) R(%)  FL(%)  Acc(%) | P(%) R(%)  F1(%)  Acc(%) | P(%) R(%)  F1(%)  Acc(%)
GoogleNet [38] 82.57 80.41 81.48 80.06 7942  77.90 78.65 78.32 77.83  77.17 77.50 80.12
DenseNet-161 [39] 80.45 80.25 80.35 79.47 78.58  78.07 78.32 77.41 77.50  82.70 80.02 80.01
DenseNet-169 [39] 82.61 80.49 81.54 80.34 79.54  77.29 78.40 77.05 80.73 82.67 81.68 82.46
Inceptionv3 [19] 80.78 80.53 80.64 79.19 76.28  75.70 75.99 76.01 71.90 7590 73.85 74.58
Xception [40] 79.95 80.15 80.05 78.90 78.37  79.80 79.08 78.28 77.13 81.53 79.27 80.62
MobileNet [41] 78.37 7830 78.34 77.46 74.15  71.70 7291 74.08 72.80  77.99 75.31 76.61
MobileNetv2 [42] 82.79  80.02 81.38 80.35 7522 75.96 75.59 75.83 80.10  76.67 78.35 78.83
ResNet-50 [17] 8334  76.17 79.60 78.32 7334 7590 74.60 74.43 76.47  77.26 76.86 78.03
ResNet-101 [17] 79.44 7877 79.10 77.45 7286  74.45 73.65 73.73 78.93  76.70 77.80 78.58
VGG-16 [18] 84.57 83.79 84.17 83.24 81.07  82.23 81.65 81.78 7597  79.77 77.82 79.63
VGG-19 [18] 82.69  81.99 82.34 81.50 81.24  81.57 81.41 80.91 7543 79.63 77.48 78.76
ShuffleNet [43] 81.90  81.92 81.91 80.64 79.24  78.11 78.67 79.16 7237 78.10 75.12 76.55
Swin Transformer [46] 76.80  74.27 75.51 74.27 6222 6194 62.08 62.52 7023  72.67 71.14 72.80
Vision Transformer [47] 69.65  70.60 70.20 69.65 5530  57.54 56.39 54.12 70.53  73.77 72.11 72.92
ConvNext [48] 7743 75.70 76.56 75.14 6528  64.70 64.99 65.67 67.43  69.83 68.61 70.89
Internimage[49] 76.07 7173 76.89 75.72 69.16  69.98 69.57 70.40 76.77  73.80 75.25 75.63
A-ConvNet [20] 8297  82.60 82.78 81.79 80.56  81.28 80.92 80.39 73.80  78.10 75.89 76.98
Hou [6] 78.08  76.59 77.32 75.72 7447  69.09 71.67 71.45 7239 70.50 71.43 71.07

MSDF [29] 84.27  83.70 83.98 82.95 80.06  80.88 80.47 81.09 7770 82.03 79.81 81.48

FEC [30] 8470  84.23 84.47 83.25 81.60  84.60 82.81 82.84 81.30  83.53 82.40 83.36

SFSA [36] 82.38 81.42 81.89 80.35 78.77  80.23 79.49 78.98 78.30  83.06 80.61 81.78
HOG-ShipCLSNet [26] 83.63 83.36 83.49 82.08 80.42  79.95 80.18 80.39 7890  83.26 81.02 82.27

MGSFA-Net 87.52  84.87 86.17 85.26 83.79 84.94 84.36 84.24 83.86  85.97 84.90 85.66
The bold values represent the best result.
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Fig. 12.

time of different methods.

on five-category FUSAR-ship are designed to analyze the per-
formance of the algorithm on condition of few-shot. The number
of training samples is set to 10, 20, 30, 40, 50, 80, and 100, and
the remaining samples are used as the test set. The results are
shown in Table X.

When the number of target samples is 10 and 20, the recog-
nition rates obtained by MGSFA-Net can reach 62.05% and
69.78%, respectively, which are significantly higher than other
methods. As the number of samples gradually increases, the
recognition accuracy also increases, but the growth rate gradu-
ally becomes slower. When the number of samples is 100, the
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Curves of running time under different methods on FUSAR-Ship dataset and OpenSARShip dataset. (a) Training time of different methods. (b) Testing

recognition accuracy of the proposed method can reach 81.15%,
while most of the other methods are less than 80%. Compared
to pure deep learning methods, introducing scattering features
into deep learning networks can better characterize the intrinsic
essential features of the target and extract more comprehensive
features. The experimental results show that under the condition
of fewer samples, the recognition performance of the method
proposed in this article has a significant advantage over clas-
sical deep learning methods and other feature fusion methods.
Scattering features contain richer feature information. In the case
of the few-shot tasks, the feature representation can be enhanced
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TABLE X

ACCURACY OF DIFFERENT TRAINING SAMPLES ON FIVE-CATEGORY FUSAR-SHIP

Accuracy of different training samples(% )

Methods
10 20 30 40 50 80 100
GoogleNet [38] 57.91 66.17 67.29 68.86 73.72 74.97 77.95
DenseNet-161 [39] 60.97 65.27 67.86 68.82 73.02 75.87 76.31
DenseNet-169 [39] 59.12 64.84 67.25 69.14 73.26 75.34 76.79
Inceptionv3 [19] 58.44 62.15 66.42 68.51 71.86 74.23 74.87
Xception [40] 57.98 65.43 68.83 71.07 75.63 76.65 77.96
MobileNet [41] 56.25 61.34 65.83 67.38 66.19 71.01 72.47
MobileNetv2 [42] 55.78 63.72 69.17 70.38 69.75 72.86 74.54
ResNet-50 [17] 52.55 61.59 66.18 62.44 67.31 72.34 72.63
ResNet-101 [17] 51.25 61.47 68.53 69.01 70.33 72.36 73.83
VGG-16 [18] 61.68 66.83 71.05 72.79 75.87 78.37 80.51
VGG-19 [18] 57.74 64.21 70.37 73.42 76.19 78.17 79.84
ShuffleNet [43] 59.32 67.22 72.14 74.22 75.91 76.55 77.34
A-ConvNet [20] 55.61 62.57 67.29 68.51 72.27 76.33 78.56
Hou [6] 52.18 55.62 59.37 62.53 64.28 67.46 69.32
MSDF [29] 60.26 68.92 69.34 72.44 75.99 77.62 79.27
FEC [30] 61.77 68.14 71.68 74.91 76.01 78.01 79.11
SFSA [36] 57.29 64.72 68.01 71.38 72.27 75.64 76.28
HOG-ShipCLSNet [26] 59.81 66.25 70.18 72.05 73.26 76.04 77.16
MGSFA-Net 62.05 69.78 72.35 74.30 76.37 78.94 81.15

The bold values represent the best result.
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Fig. 13. Visualization of the features extracted by different methods.

(a) A-ConvNet. (b) VGG-16. (c) SFSA. (d) MGSFA-Net.

to complement the features in the deep networks, preventing the
overfitting phenomenon caused by the small size of training data.

G. T-SNE Feature Visualization

The t-distributed stochastic neighborhood embedding
(t-SNE) visualization method is used to further prove the
effectiveness of our proposed method. The method can narrow
down the features to two dimensions, and the results of the
feature distribution on five-category FUSAR-Ship are shown
in Fig. 13. From the figure, it can be seen that the distances
of features extracted by classical deep networks such as

A-ConvNet and VGGNet are similar, which means that the
features are hard to be separated and are easily confused. The
results show that although the features extracted by the deep
network can achieve a high recognition rate, the 2-D feature
distribution of the deep features is similar and cannot be well
distinguished. Compared with the two classical methods, the
SFSA method can expand the difference of features between
the categories, indicating that the separability of features is
expanded with the introduction of scattering features. However,
some categories of features extracted by SFSA can be confused
to some extent. Compared with these methods, the features
extracted by MGSFA-Net have the best feature separability
with more obvious interclass differences and smaller intraclass
differences. Therefore, the features extracted by the proposed
method can reflect the intrinsic characteristics of the target
better and are more conducive to target recognition.

H. Grad-CAM Map Visualization

To analyze and validate the specific regions of interest of the
network in this article further, Grad-CAM maps [45] are used to
visualize the regions of interest of different methods, as shown
in Fig. 14. The region of interest of the network is analyzed
by comparing the methods of VGGNet, A-ConvNet, SFSA, and
MGSFA-Net. From the visualization of Grad-CAM maps, it can
be seen that the compared methods, such as VGGNet, have a
larger region of heat map and a wider area of interest, which
cannot learn the internal features of the target region in a targeted
way. These methods cannot focus on the target region and will
be affected by the background region. In addition, these methods
may increase the redundant features in the network, which is not
conducive to the feature expression and will seriously affect the
feature generalization ability. In contrast, the Grad-CAM map
of MGSFA-Net in this article has a smaller area of interest and
the area of interest of MGSFA-Net has a better fit to the contour
of the target. Moreover, the network can pay more attention to
the global structure of the target, focus more on the target area,
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Fig. 14.  Visualization of interest region of different categories under different
methods. (a)—(d) BulkCarrier. (e)—(h) ContainerShip. (i)—(1) GeneralCargo. (a),
(e), (i) visualization of A-ConvNets. (b), (f), (j) visualization of VGGNet. (c),
(g), (k) visualization of SFSA. (d), (h), (1) visualization of MGSFA-Net.

(@ (b)

Fig. 15. Feature map of MGSFA-Net of different layers. (a) Convolution
layer3. (b) Convolution layer4.

and characterize the target structural features, which can reduce
the influence of the large difference in the size of the target. For
targets with different sizes, such as BulkCarrier, ContainerShip,
and GeneralCargo, the networks proposed in this article can
efficiently and accurately focus on the target area, demonstrating
better multiscale characteristics. Furthermore, it also shows
that the method in this article can associate the extracted SCs
to produce more efficient recognition features to characterize
the global scattering structure, which can combine the scat-
tering features effectively and verify the effectiveness of the
proposed method.

1. Feature Map Visualization

This section shows the feature map produced by the MKDFE
module of the MGSFA-Net in Fig. 15. The BulkCarrier category
in FUSAR-Ship is taken as an example to analyze the results
of the convolution layer 3 and convolution layer 4. From the
results of the feature map, it can be seen that the target region is

4623

represented in the network as pixel dots with different bright-
nesses, where brighter colors indicate higher weights and impor-
tance in the network, and darker colors indicate lower weights
in the network. The global structure of the target is composed of
different pixel points. The feature map of MGSFA-Net shows
that the algorithm can completely separate the target region from
the background region so that the internal features of the target
can be better learned. In addition, it shows that the MKDFE
module can characterize the global features of the target in a
better way, and the global structural features of the target can also
be learned even in the high-dimensional convolution layer. As
can be seen from the feature map, the method in this article can
separate the ship target from the background region and highlight
the global structure of the target more obviously. Moreover, the
design of the module can reduce the effect of different target
sizes and minimize the negative impact of a single convolution
kernel when extracting targets with large sizes.

IV. CONCLUSION

Considering the complexity of the scattering structure of SAR
ship targets and the large difference in target sizes, a multiscale
global scattering feature association network for SAR ship target
recognition is proposed. First, the ship target is separated from
the background interference by fine segmentation. Then, the
SCs are extracted and converted to graph structures, which are
associated by the SCFA module and enhanced by the MSFE
module to produce the multiscale global scattering features. In
addition, the high-dimensional deep features of the targets are
extracted by the MKDFE module. Finally, the scattering features
and the deep features are fused to enhance the feature diver-
sity. The results of recognition show that the MGSFA-Net can
achieve excellent performance on the three-category experiment
dataset and five-category experiment dataset, even on a few-shot
condition. In addition, the results of t-SNE visualization show
that the MGSFA-Net can characterize the intrinsic features of
targets more accurately and expand the distance of features with
different categories. Moreover, the results of the feature map
and Grad-CAM visualization explain that the MGSFA-Net can
associate the local structure to characterize the global features
of targets and focus more on the region of targets. The research
in this article can support the interpretability of deep learning
studies and the analysis of target characteristics. In the future, we
will be more committed to studying the scattering characteristics
of various types of targets, and further investigate more robust
target recognition algorithms combined with diverse features of
SAR targets.
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