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Optimizing Rice Field Mapping in the Northern
Region of China: An Asynchronous Flooding Signal
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Long Li , Daoqin Zhou , Kai Liu , Tian Shi , Chou Xie , Shudong Wang , Hang Li , Guannan Dong ,
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Abstract—Accurate delineation of paddy fields holds importance
in ensuring food security, efficient water resource management, and
precise evaluation of greenhouse gas emissions. Here we propose an
innovative approach, the asynchronous flooding and object-based
(AF-OB) model, aimed at optimizing phenology-based paddy field
mapping. The AF-OB model capitalizes on the asynchronous flood-
ing phenomenon observed between paddy fields and nonpaddy
fields, along with the seasonal variations in the normalized dif-
ference vegetation index. The simple noniterative clustering algo-
rithm is integrated to mitigate the common issue of the “pretzel
effect” encountered in paddy field mapping. Evaluation through
independent samples yields compelling results, with the paddy
field map generated by the AF-OB method achieving an overall
accuracy of 94.28%. The paddy fields extracted using the AF-OB
method exhibit alignment with statistical data, surpassing compa-
rable algorithms relying on alternative land use products in terms
of visual quality. Furthermore, the AF-OB model exhibits stability
across time, space, and sensors, thus enhancing its applicability and
robustness. The outputs of the AF-OB method offer reference data
for informed agricultural production planning and the effective
management of water resources.
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I. INTRODUCTION

PADDY rice is one of the world’s most important food crops,
feeding a quarter of the world’s population while occupying

only about 12% of the world’s arable land [3], [4]. Due to its
unique growing conditions and high food production, paddy
fields play an important role in water security and food security
issues [6]. Rice consumes a significant amount of water during its
growth, with water consumption being 2–3 times higher than that
of other grains such as wheat or corn [8]. The rapid population
growth and intensifying competition for nonagricultural water
resources will impose challenges on regional water management
[10], [11], particularly concerning rice production [12], [13]. In
the Northern Region of China, where water scarcity is already
a critical issue, the pressure on water management will be
further exacerbated by the demands of rice cultivation [14],
[15]. Consequently, it is crucial to develop timely and effective
mapping methods for paddy fields that can provide accurate
spatial information. This spatial data are essential for effective
agricultural [16] and water resources management [17], [18].

Remote sensing technology offers several advantages over
traditional field survey methods, including wide coverage, sim-
plicity, and speed [19], [20], [21]. It enables the rapid mapping of
the spatial pattern of paddy fields in both current and historical
regions [19], [22]. Machine learning methods have consistently
demonstrated high accuracy in paddy field mapping, primarily
attributed to their capacity to effectively leverage multisource
and multiseasonal remote sensing data concurrently [23], [24],
[25], [26]. Machine learning enables the incorporation of fea-
tures from synthetic aperture radar (SAR) data, mitigating the
impact of cloud cover, and facilitates the utilization of multisea-
sonal data in conjunction with phenological information, thereby
enhancing classification accuracy [23], [27], [28]. Nevertheless,
machine learning often falls short in adequately addressing
classification mechanisms. The lack of transparency poses chal-
lenges in comprehending the individual features’ contributions
to the final classification result [29], [30], particularly when
dealing with a large number of features [31].

Hence, phenological models that analyze the dynamics of
“bare soil-water-vegetation” during the rice reproductive period
have been utilized in paddy field mapping studies [32]. This
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model type heavily depends on detecting flood signals during
the rice transplanting period [18], [33]. While some new models
have emerged for paddy field mapping in recent years, such as
those based on the “V” shaped time-series characteristics of VH
backscattering from SAR data [2], [34] and models that consider
greater LSWI variability in rice fields compared to drylands [35].
Most of these models has not been verified in large-scale paddy
mapping studies. In the realm of optical remote sensing data, the
most widely recognized algorithms for mapping paddy fields
are the subtraction algorithms, developed by comparing the
difference between the normalized difference vegetation index
(NDVI) or enhanced vegetation index (EVI) and the land surface
water index (LSWI) [32], [36].

This algorithm defines pixels with LSWI + α > NDVI
(or EVI) during transplanting as paddy fields, where α is a
threshold value determined based on the specific conditions of
the study area [5], [37], [38]. The model’s simplicity and ease
of implementation have contributed to its widespread valida-
tion in large-scale paddy field mapping efforts [33]. However,
the model is susceptible to wetlands and thin clouds, leading
many studies to utilize cropland masks to exclude noncropland
pixels and minimize commission errors [39]. These cropland
masks commonly rely on pre-existing land-use products or
period-specific vegetation index thresholds, as well as slope
thresholds [4], [7], [9]. Nonetheless, the reliance on land-use
products and the regional specificity of the thresholds limit the
method’s generalizability and applicability [9]. At the same time,
almost all phenology-based rule algorithms are pixel-based,
resulting in a pronounced “pretzel effect” in the results of paddy
field mapping, especially when using high-resolution remotely
sensed imagery [9], [33].

In light of these considerations, this study aims to optimize
the determination of cropland masks and flooding pixels. The
seasonal dynamics of NDVI and flooding frequency of paddy
fields are leveraged on GEE to propose an effective model
for paddy field mapping based on dense satellite images. This
model takes into account factors such as data accessibility and
capitalizes on the benefits of optical image data in regions
with limited cloud cover. The integration of phenology-based
techniques with the capabilities of GEE harnesses the power of
cloud computing to process vast amounts of data, thus paving
the way for a more efficient and accurate approach to paddy field
remote sensing mapping. The efficacy of the proposed model is
evaluated within the Northern Region of China, a large-scale
region characterized by its expansive landscape diversity and
varied climatic conditions. The geographical context of the
Northern Region of China offers a setting for the validation and
testing of our model, allowing for insights into its efficacy within
a region characterized by its agricultural landscape and dynamic
climatic shifts. The objectives of this research are as follows:

1) to optimize the determination of cropland masks and
flooded pixels;

2) to introduce object-based ideas into unsupervised regular
phenology algorithms to reduce the “pretzel effect” in the
results of paddy field mapping;

3) to validate the precision and reliability of the developed
method through multiple datasets, ensuring its robustness
across diverse landscapes and scenarios;

4) to evaluate the method’s performance across varying tem-
poral intervals, spatial extents, and sensor types, thereby
establishing its adaptability and applicability under differ-
ent circumstances.

II. MATERIALS AND METHODS

A. Study Area

The study area for this research is situated in the Northern
Region of China, which is the primary region for one-season
rice production in the country. As per the 2020 statistics, rice
production in the Northern Region of China accounted for
approximately 19.93% of the total production [see Fig. 1(a)].
The study area is expansive, covering approximately five million
square kilometers, and necessitates a minimum of 312 views
of Landsat data to achieve complete coverage [see Fig. 1(b)].
Notably, the study area exhibits variations in topography and
climate from east to west [40], [41]. The topography is domi-
nated by plateaus, plains, and basins, with a higher elevation in
the western part and lower elevation in the eastern part. Similarly,
there is a general increase in regional annual precipitation and
mean annual temperature from west to east [42], with most
areas experiencing annual precipitation levels below 450 mm
[43], [44], [45]. We mapped paddy fields in arid and semi-arid
regions, including northwest China, that are often overlooked in
many studies. Our study aims to validate the effectiveness and
reliability of extraction methods for large paddy fields, with the
objective of addressing food and water security issues in arid
and semi-arid regions of China.

B. Dataset

The dataset available in this study can be divided into four
categories: optical remote sensing data, sample data, statistical
data, and other paddy field map products.

1) Landsat-8 OLI/TIRS: Atmospherically corrected Landsat
8 OLI/TIRS Collection 2 surface reflectance data were used for
this study. It is worth noting that Landsat 8 operates on a 16-day
repeat cycle, resulting in the possibility of acquiring the data up
to 22 or 23 times per year [46]. To ensure the inclusion of flood-
ing signals in paddy fields and minimize missed detections due
to long repeat periods, a total of 5 years of data were collected.

To optimize the utilization of Landsat-8 OLI/TIRS observa-
tions and minimize the influence of cloud cover, only data with
cloud cover less than 70% were included in this study. Cloud-
covered areas within each image were identified and eliminated
using bit masks. It is worth mentioning that the majority of data
in the GEE platform is scaled for efficient storage. Therefore,
the reflectance values of the images were converted using the
scale and offset provided by the platform.

2) Samples of Paddy and Nonpaddy Fields: In this study,
paddy samples and nonpaddy samples were collected using the
GEE platform. The platform enables the filtering of Landsat-8
observations within a specified time period and provides ac-
cess to Google high definition (HD) imagery, which assists in
distinguishing between paddy fields and drylands. Particularly
during specific periods like transplanting and harvesting, the
differentiation between paddy fields and drylands in remote
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Fig. 1. (a) Location of the study area in China and rice production in Chinese provinces. (b) Study area topography and Landsat WRS-2 path/row.

sensing images tends to be clear. Landsat-8 images taken during
these periods can indicate whether a pixel represents a paddy
field or not [see Fig. 2(d)–(g)].

The determination and collection process of paddy field
samples in this study was designed [see Fig. 2(a)]. Between
approximately 110–130 days, paddy field pixels appear dark
blue when displayed using the short-wave infrared, green, and
blue bands for RGB visualization [see Fig. 2(d) and (e)]. This
is because paddy fields exhibit similar characteristics to wa-
ter bodies during the transplanting period, and the short-wave
infrared band is highly sensitive to moisture signals [47]. At
around 240–270 days, paddy pixels appear yellow-green when
displayed in true color [see Fig. 2(f) and (g)]. This change in
color is due to the maturation of rice, and the green-to-yellow
transition is a commonly used characteristic in paddy mapping
studies [48], [49], [50]. Band reflectance can also assist us in
determining paddy field pixels, especially for flooding signals
on days 110–130. Some of the Google HD images also exhibit
these characteristics during the harvest period. In addition, in
Google HD images, the paddy fields are typically divided into
numerous small grids [see Fig. 2(b) and (c)]. This division is a
result of rice cultivation being confined to flooded fields, and it
is easier to manage and irrigate smaller fields [32].

A total of 1079 paddy field samples and 1007 nonpaddy
field samples were collected using the above judgmental rules
[see Fig. 2(j)]. The nonpaddy field samples included wetland,
forest, and dryland areas. Out of these samples, 200 paddy
field samples and 400 nonpaddy field samples were selected to
generate frequency histograms for determining threshold values.
The frequency histograms were used to establish thresholds that
can effectively discriminate between paddy fields and nonpaddy
fields. These thresholds were determined based on the charac-
teristics observed in the histograms.

The remaining samples, which were not used for generating
frequency histograms, were employed to validate the accuracy
of the paddy field mapping. While the validation samples were
not directly obtained from field surveys, we conducted on-site

validation of a subset of paddy field samples. In addition, high-
definition imagery from Google Earth was utilized to validate
the accuracy of the samples. All samples underwent examination
by two researchers, with any instances of inconsistent inter-
pretations leading to the exclusion of the respective samples,
thus ensuring the highest possible reliability. These validation
samples allowed for an assessment of the mapping results and
indicated the overall accuracy of the classification technique
used in the study. By using separate subsets of samples for
histogram analysis and accuracy validation, the study ensured
an unbiased evaluation of the paddy field mapping approach
and provided reliable results regarding the effectiveness of the
discriminant rules and threshold values.

3) Agricultural Statistics: Statistical data from the China
Statistical Yearbook and the Third National Land Resources
Survey (NLRS) were collected to validate the mapping results of
paddy fields. The China Statistical Yearbook is an annual publi-
cation that is compiled and published by local statistical bureaus
in China. It acts as a repository of extensive statistics across
multiple sectors, encompassing areas such as agriculture and
industry. These statistics, accessible at http://www.stats.gov.cn/,
find broad utilization within remote sensing applications for
validating and monitoring crop cultivation areas [51], [52], [53].

The Third NLRS harnessed high-resolution satellite remote
sensing imagery to generate foundational survey maps. More-
over, a three-year campaign of on-site investigations and metic-
ulous manual analysis was undertaken, involving a workforce
of 219 000 surveyors. This concerted endeavor culminated in
the aggregation of data from a staggering 295 million survey
patches, yielding an insight into China’s land-use landscape [54].
To ensure the currency and precision of the survey outcomes,
the Ministry of Natural Resources of China orchestrates annual
assessments of land-use changes. These assessments serve to re-
fresh the amassed data (https://gtdc.mnr.gov.cn/shareportal#/).
However, it is important to note that these data do not include
raster data with geographic coordinates, but rather includes area
statistical tables and PDF-format maps.

http://www.stats.gov.cn/
https://gtdc.mnr.gov.cn/shareportal#/
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Fig. 2. Process and rules for determining paddy field samples. (a) Process for the determination of paddy field samples. (b), (c) Paddy fields in Google HD
images. (d), (e) Landsat-8 image displayed as a composite of short-wave infrared, green, and blue bands during days 110–130. (f), (g) Landsat-8 images displayed
in true color during 240–270 days. (h) Spatial distribution of samples.

4) Existing Rice Map: The NESEA-Rice10 database is a
integration of data from MODIS, Sentinel-2, and Sentinel-1
satellites, along with various land cover products. This integra-
tion enables the construction of a detailed 10 m spatial resolution
database of rice maps for Southeast Asia and Northeast Asia,
covering the years 2017 to 2019. The NESEA-Rice10 database
aligns with agricultural statistical data and provides detailed
spatial information regarding the distribution of paddy fields
[33]. For access to the NESEA-Rice10 data, you can download
it from the following link: (https://zenodo.org/record/5645344).

C. Methods

This study employs a flooding pixel determination rule that
takes into account the absolute reflectance of the band. Using
this rule, paddy fields in the study area are mapped by utilizing
asynchronous flooding frequency with simple noniterative clus-
tering (SNIC). The unique flooding signal exhibited by paddy
fields compared to dry land is attributed to the fact that rice is the
only crop that requires transplantation in a mixed soil and water
environment [55]. As a result, the detection of flooding signals

has become widely adopted in paddy field mapping studies [2],
[33], [34], [36], [37].

This study aims to detecting flooding signals to map paddy
fields and proposes a new rule to define flooding pixels without
other land cover products. The paddy field index, wetland index,
and cropland index were calculated by the difference in seasonal
dynamics of flooding frequency and NDVI between paddy fields
and other land types in different periods. The three indices were
superimposed and segmented using SNIC. Finally, thresholds
were determined from a small number of samples to generate the
paddy field mapping results. The results of paddy field mapping
were validated by independent samples and compared with other
paddy field mapping products.

1) Paddy Field Phenology Analysis: We analyzed time series
curves of NDVI, LSWI, and each band through the paddy fields
in the Northern Region of China. LSWI gradually decreases and
is lower than NDVI around days 0–100, then increases rapidly
and exceeds NDVI around 150. NDVI keeps increasing after
day 160 and again exceeds LSWI, peaks between days 190 and
260, and then gradually decreases. On both day 50 and day 150,
LSWI was higher than NDVI [see Fig. 3(a)], however on day

https://zenodo.org/record/5645344
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Fig. 3. Time series plots of paddy field vegetation indices and various bands. (a) NDVI and LSWI time series curve of the paddy field. (b) Time series curve of
each band of the paddy field. (c) Band characteristics when the paddy field was flooded on day 150.

150 reflectance was very low in all bands and moisture-sensitive
SWIR reached its lowest point of the year [see Fig. 3(b) and (c)].

It is shown that the bare soil of the cropland is gradually
flooded with water and is in the transplanting period on days
100–150. NDVI reached its peak and was in the growing period
on days 190—260. At days 270–340, NDVI gradually decreased
to the lowest and was in the harvesting period [see Fig. 3(a) and
(b)]. In determining these three periods, there is a transition of
“bare soil-water body-vegetation-bare soil” in the state of the
paddy field. The characteristics of these three periods allow to
distinguish paddy fields from other land cover types.

2) Defining Flooded Pixels: The classical LSWI-NDVI>0
subtraction model was used for the definition of flooded pixels.
However, due to the difficulty of removing cloud and snow edges
using “QA_PIXEL” in GEE, averaging in the visible band was
used to further minimize the effects of clouds and snow. The
model only detects pixels with NDVI < 0.3 to avoid anomalies
caused by high water content in the vegetation canopy. The
flooded pixels are defined by the following equation:

Flooded Pixel ={
1 Mean (R,G,B)<0.1,LSWI−NDVI > 0,NDVI < 0.3
0 Other values

(1)

where Mean (R, G, B) denotes the mean of the red band, the
green band, and the blue band.

3) Cropland Index for Identification of Cropland Pixels: Due
to the transplanting period of rice, the NDVI of paddy fields has
the ability to vary greatly between the transplanting and growing

periods. The cropland index in the study was designed by the
seasonal dynamic characteristics of NDVI in paddy fields with
reference to the seasonal dynamic index [56]. The study used a
designed cropland index to separate cropland from noncropland

Cropland index =
NDVI (Growing)− NDVI (Transplanting)
NDVI (Growing) + NDVI (Transplanting)

.

(2)
4) Asynchronous Flooding Characteristics: The study used

the Paddy index (flooding frequency of the transplanting period)
for separating paddy fields from drylands and the Wetland index
(flooding frequency of the harvesting period) for separating
paddy fields from wetlands

F (t) =

∑
Flooded Pixel (t)∑
Total −∑

Bad
. (3)

F (t) denotes the frequency of flooding of a pixel in time period
t,
∑

Flooded Pixel (t) denotes the total number of times the pixel
was observed to be flooded in time period t,

∑
Total denotes the

number of times the pixel was observed, and
∑

Bad denotes the
number of times the pixel was unavailable (mainly obscured by
clouds).

The paddy index and wetland index were defined as
F (Transplanting) and F (Harvesting), respectively. During the
transplanting period, cropland that is not planted with rice
is typically not flooded. Therefore, the frequency of flooding
during this period can be used as a criterion to differentiate
between paddy fields and drylands. Conversely, rice is gathered
and the cropland does not require flooding during the harvesting
period. As a result, the frequency of flooding during this period
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is significantly lower. Aquatic vegetation gradually deterio-
rates, and mudflats continue to experience frequent flooding,
resulting in a higher frequency of flooding. By considering the
asynchronous flooding patterns between the transplanting and
harvesting periods, it is feasible to distinguish between paddy
fields and wetlands.

5) Simple Noniterative Clustering and Paddy Field Map
Generation: The SNIC algorithm is improved by simple linear
iterative clustering algorithm [57], which is a superpixel image
segmentation method that can be used for segmenting homo-
geneous objects. The SNIC algorithm can effectively reduce
the “pretzel effect” in pixel classification and is widely used
in large-scale land cover classification [58], [59]. The SNIC
algorithm has the properties of high computational efficiency,
ease of implementation, controllable number of superpixels and
compactness for large-scale image segmentation tasks.

This study stacked the paddy index, wetland index, and crop-
land index, and then segmented them using SNIC. Statistical
analysis thresholds of 100 samples each for paddy fields, dry-
lands, wetlands, and forests were used to generate a final map
of paddy fields in the Northern Region of China. Thresholds
were initially determined by analyzing the distribution of the
land samples on the three indices and calculating the percentiles
for the paddy field samples. The thresholds were then adjusted
according to the purpose of the designed indexes to make the
thresholds more acceptable (detailed steps are described in
section of the Appendix).

D. Evaluation Analysis

Multiple validation and comparison methods were used to as-
sess the accuracy of the asynchronous flooding and object-based
(AF-OB) paddy field maps. Confusion matrices were derived
from independent validation samples, and four metrics were
calculated to gauge the precision of the paddy field maps: user’s
accuracy (UA), producer’s accuracy (PA), as well as overall
accuracy (OA), complemented by the Matthews correlation
coefficient (MCC). These metrics, UA, PA, and OA, each range
between 0 and 1, with values approaching 1 denoting enhanced
performance. The MCC is a correlation coefficient that measures
the relationship between observed and predicted binary classi-
fications. It provides more information compared to the Kappa
coefficient, especially on unbalanced datasets, and is considered
highly reliable [60]. MCC returns a value between –1 and +1.
A coefficient of +1 indicates perfect prediction, 0 indicates
no better than random prediction, and –1 indicates complete
disagreement between prediction and observation. Indicators are
calculated as follows:

PA =
TP

TP + FN
(4)

UA =
TP

TP + FP
(5)

OA =
TP+ TN

TP + FP + TN+ FN
(6)

MCC = (TP×TN)−(FP×FN)√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

. (7)

Fig. 4. Flowchart of AF-OB paddy field mapping methods. The AF-OB paddy
field mapping method includes three processes: data preprocessing, paddy field
map generation and accuracy validation, and a legend showing the meaning of
the different boxes.

Here, TP represents true positives, FP stands for false posi-
tives, TN corresponds to true negatives, and FN signifies false
negatives.

In addition, the China Statistical Yearbook and the third NLRS
data were used to validate the area of paddy field maps at the
municipal level. Two statistics are used to avoid discrepancies
due to statistical methods or human factors [61]. Other paddy
field maps were used for visualization in contrast to the AF-OB
paddy field maps. Visual comparisons can offer a more intuitive
depiction of how data or methodological variances can influence
mapping outcomes.

In this study, we first developed paddy index, wetland index,
and cropland index based on paddy field phenology information.
By utilizing SNIC segmentation and frequency histogram tech-
niques, we generated accurate paddy field maps for the Northern
Region of China. The accuracy of our AF-OB paddy map was
assessed through the use of confusion matrix, statistical data,
and comparison with other existing paddy maps. In addition, we
analyzed the distribution characteristics of paddy fields in the
Northern Region of China (see Fig. 4).

III. RESULTS

A. Paddy Field Map Generation and Threshold Determination

Fig. 5 shows the role of the designed paddy index, wetland
index, and cropland index on image segmentation as well as
the results of paddy field mapping. By stacking and segment-
ing the three indices derived from phenological knowledge,
the resulting map showed paddy field patches highlighted in
red. Similarly, glaciers, densely forested areas, and wetlands
appeared predominantly in green, while perennial water bodies
were depicted in yellow. Other land types were represented in
blue [see Fig. 5(a)]. These color-coded regions demonstrate the
efficacy of AF-OB’s paddy field mapping technique in highlight-
ing paddy field information. The boundaries of paddy plots are
clear, indicating that these three indices combined with SNIC
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Fig. 5. SNIC segmentation results and detail maps of paddy index, wetland index, and cropland index. (a) SNIC segmentation results were synthesized using the
paddy index, wetland index, and cropland index as RGB bands, respectively. (b) Detailed map of SNIC segmentation results. (c)–(e) Paddy index, wetland index,
and cropland index before SNIC segmentation. (f)–(h) Histogram of the frequency distribution of each land cover type in the three indices, The black dashed line
is the initial threshold obtained by percentile and the red dashed line indicates the adjusted threshold.

can highlight paddy information very well while maintaining
spatial integrity and reducing “pretzel noise” [see Fig. 5(b)].

When considering the paddy index alone, it becomes apparent
that the frequency of flooding varies apparently from one pixel
to another within each paddy field. This variability leads to a
lack of precision in the paddy index. The presence of wetlands
(including water bodies, floating plants, and mudflats) influences
the results [see Fig. 5(c)]. On the other hand, the wetland index
effectively highlights the characteristics of wetland areas [see
Fig. 5(d)]. The cropland index exhibits a finer texture compared
to the other two indices. This characteristic is beneficial in two
ways. First, it effectively highlights the information related to
cultivated land through its high value. This allows for better
identification and distinction of cropland areas in the image
analysis. Second, the delicate texture of the cropland index
plays a crucial role in preserving the integrity of the patches
during the process of image segmentation [see Fig. 5(e)]. By
maintaining the fine texture, the boundaries and details of the
cropland patches can be preserved, resulting in more precise
mapping and analysis.

The frequency distributions of paddy index, wetland index,
and cropland index were generated from 100 samples each of
paddy, dryland, forest, and wetland in the Northern Region of
China. The study used adjusted thresholds of 0.1 for paddy
index, 0.1 for wetland index, and 0.35 for cropland index. When

the paddy index > 0.1, almost all dry land and forest land
are excluded, while paddy fields are retained [see Fig. 5(f)].
When the wetland index < 0.1, most of the wetlands can be
excluded [see Fig. 5(g)]. Similarly, when the cropland index >
0.35, cropland is separated from almost all forested land and
most wetlands are excluded [see Fig. 5(h)]. The three indices
designed for this study allowed us to exclude patches of other
land classes while retaining patches of paddy fields as much as
possible.

B. Validation Using Confusion Matrix

The results of the confusion matrix calculation show that the
OA of the paddy field map obtained by the AF-OB method
reaches 94.28%, and the PA and UA are around 90%, while
the MCC is 0.88. These acquire indicate that the paddy field
map has a high degree of consistency with the actual paddy
field distribution (see Table I). From the confusion matrix of
subregions, the PA and UA in the more humid Northeast China
are both greater than 95%, and the overall accuracy is even
98.25%, which is very high in consistency with the real samples.
However, the precision in arid and semi-arid North China is
relatively low, with an overall precision of only 88.82%. Such
low accuracy is due to the fact that crop cultivation in arid and
semi-arid regions is limited by water resources, which leads
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TABLE I
CONFUSION MATRIX FOR AF-OB PADDY FIELD MAPPING RESULTS

Fig. 6. Comparison of AF-OB paddy field map with the municipal paddy field
area in the statistics. (a) Comparison of the results of AF-OB mapping of paddy
fields with statistics from the Chinese Statistical Yearbook. (b) Comparison of
the results of AF-OB mapping of paddy fields with statistics from the Third
NLRS data of China.

to the instability of rice cultivation in this region [62], [63].
The results obtained by the AF-OB method in this study were
aggregated from five years of Landsat-8 data, which affected the
accuracy of the paddy mapping results. This is why we discuss in
Section IV-B the portability of the AF-OB method on Sentinel-2
data in order to address this issue through higher spatiotemporal
resolution.

From the results of the confusion matrix, it is seen that the map
of paddy fields obtained by the AF-OB method is more inclined
to omit some paddy fields and less likely to misclassify nonpaddy
fields as paddy fields. It is possible that some paddy fields lacked
sufficient valid observations during the transplanting period or
were influenced by heavy rainfall during the harvesting period
[32]. A threshold was implemented to exclude directly those
paddy fields affected by such extreme conditions. We discovered
that the AF-OB method exhibited instances of classifying certain
wetlands as paddy fields, a common phenomenon observed
in many paddy field mapping investigations [9]. However, the
AF-OB method markedly mitigates this error, thus enhancing
its performance. Considering the design of the paddy index, the
wetland index, and the cropland index show an approximately
normal or skewed distribution, respectively (see Fig. 6). A

threshold can be used to control the source of error, giving these
three indices the potential for automatic generation of paddy
samples [64]. With automatically generated samples, the use of
machine learning that incorporates more features is expected to
reduce the errors mentioned above [39].

C. Validation Using Statistical Data

The comparison between the AF-OB paddy map and statis-
tical data from the National Bureau of Statistics of China, as
well as data from the Third NLRS data, was conducted across
41 cities in the Northern Region of China.

When comparing the AF-OB paddy map with the statistical
data, it was found that the map slightly overestimated the extent
of paddy fields. The relationship between the two datasets can be
represented by a linear regression equation with a slope of 0.82
and an R2 value of 0.95 [see Fig. 6(a)]. Such discrepancy could
be attributed to the differences in the data generation processes
between the statistical data and the AF-OB paddy map. The
statistical data rely on local management reporting, which may
involve human interference and potential reporting errors. The
agreement between the AF-OB paddy map and the Third NLRS
data was high with a slope of 1.06 and an R2 value of 0.99 [see
Fig. 6(b)]. This suggests that the spatial data used in both the
AF-OB paddy map and the Third NLRS data provide relatively
objective and consistent results.

D. Comparison With Other Maps

Three sites were selected to compare the performance of
different rice maps. Site 1 was located at the junction of paddy
fields and dry land with flat terrain [see Fig. 7(a)–(c)]. Site 2 is
located in an area with a more complex topography and striped
paddy fields [see Fig. 7(d) and (f)]. Site 3 is distributed with
large wetlands and was used to compare the performance of the
rice maps in areas where rice and wetlands coexist [see Fig. 7(g)
and (i)].

From the comparison between Site 1 and Site 2, the roads
between the fields are obvious as NESEA-Rice 10 portrays
more details in the flat terrain and densely distributed areas of
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Fig. 7. AF-OB paddy map compared with NESEA-Rice 10 on three sites. (a)–(c) Comparison of paddy field maps in the plains area. (d)–(f) Comparison of
paddy field maps in hilly areas. (g)–(i) Comparison of paddy field maps in areas where paddy fields coexist with wetlands.

paddy fields [see Fig. 7(b) and (e)]. This is due to the higher
spatial resolution of the Sentinel-2 data used in NESEA-Rice
10. The production of NESEA-Rice 10 uses more other land
cover products for masking, resulting in lower accuracy in areas
with complex topography or where paddy fields are interspersed
with drylands [see Fig. 7(b) and (c)]. In contrast, the AF-OB
paddy field map does not use other land cover products as
masks and accurately obtains the spatial distribution of paddy
fields while retaining most of the details [see Fig. 7(c)–(f)]. The
visual performance of the AF-OB paddy map is higher than
that of NESEA-Rice 10 in the coexistence area of paddy and
wetland, again due to the use of mask data in NESEA-Rice 10
[see Fig. 7(h)–(i)]. Collectively, NESEA-Rice 10 generated a
larger area of paddy field maps, but AF-OB paddy field maps
were more effective in the Northern Region of China.

E. Temporal Expansion of AF-OB Paddy Filed Map

The area of paddy fields in the Northern Region of China
accounts for only 1.54% of the total area, but paddy fields are
distributed throughout the study area and show the distribution
characteristics of more in the east and less in the west [see
Fig. 8(a)–(d)], which is directly related to the climate and
topography of the region.

Climatically, wet areas with average annual precipitation
greater than 600 mm are distributed with 92.04% paddy fields
[see Fig. 8(e)]. In terms of topography, 97% of the paddy fields
are located in plains with an elevation of less than 500 m above
elevation [see Fig. 8(f)], while the paddy fields tend to be located
on the banks of rivers or alluvial plains. Precipitation and runoff
bring a lot of organic matter to the paddy fields, providing
soil conditions for the paddy fields. The river’s abundant water
resources provide irrigation conditions for the paddy fields. This
is the main reason affecting the spatial distribution of paddy
fields in the Northern Region of China. The distribution of rice
along rivers is susceptible to river pollution [65], [66], which
further exacerbates water stress in arid and semi-arid regions
[67]. Our paddy field map also holds the potential to contribute
to addressing this issue.

IV. DISCUSSION

A. Improvement of Phenology Algorithm by AF-OB Method

Our model considers not only the relative relationship be-
tween bands, but also the fact that increased soil moisture
reduces the band reflectance, and limits the average value of
the visible band [68], [69]. Unlike most studies that directly
use cropland pixels from land use products or use vegetation
indices for cropland masks [5], [7], the Cropland index based
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Fig. 8. Map of the spatial distribution of paddy fields in the Northern Region of China. (a)-(d) Detailed map of the spatial distribution of paddy fields; (e) Plot
of paddy field area as a function of longitude and precipitation; (f) Distribution of paddy fields about elevation.

Fig. 9. Effectiveness of mapping paddy fields based on the object method and
at combined bands.

on NDVI dynamics was designed to separate croplands in this
study. The three indices designed according to the phenological
characteristics of the paddy fields in the study area allow us
to map the paddy fields more intuitively and to understand the
uncertainties in the process of paddy field mapping. The AF-OB
method’s improved accuracy from 0.12% to 8.25% over the
same type of phenology-based rules method and allowed for
a larger study area to map the paddy fields, approaching the
overall accuracy of the machine learning method in some areas
(see Table II). Despite the satisfactory accuracy of the AF-OB
method in the north region of China, it is still difficult for the
rule-based methods of phenology to achieve a very high accuracy

Fig. 10. Stability and applicability tests of the AF-OB paddy field mapping
method. (a)–(c) Testing of the AF-OB method in arid and humid regions. (d)–
(f) Testing of the AF-OB method at different times; (g)–(i) Testing the use
of Landsat-5 for historical paddy field mapping. (j)–(l) Testing of the AF-OB
method for spatiotemporal resolution sensors.
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Fig. 11. Sources of uncertainty in the AF-OB method. (a) Number of valid observations during the rice transplanting period in five years of Landsat-8 data.
(b) Sensitivity of paddy area to paddy index thresholds in the northern region of China. (c) Sensitivity of paddy area to paddy index thresholds in the southern
region of China under different combinations of data and partitioning parameters.

TABLE II
COMPARISON OF THIS STUDY WITH PREVIOUS LITERATURE
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over the whole large region using a uniform threshold [9]. The
overall accuracy of the AF-OB method varies by almost 10%
between the northeast and northwest of China, which is in line
with the shortcomings of the same type algorithms (see Table II).

Segmentation algorithms such as SNIC and other superpixels
are very important in paddy field mapping work [70], especially
for unsupervised classification of phenology algorithms. Ho-
mogeneous objects can be very discrete in some of the features
due to mixed pixels or outliers. This can exacerbate the “pretzel
effect” caused by pixel-based classification [71], whereas su-
perpixel segmentation algorithms can consider multiple bands
or features at the same time to minimize the impact of partially
discrete features [72]. Supplementary experiment 2 shows that
the mapping results based on paddy field objects segmented by
the SNIC algorithm effectively eliminates the “pretzel effect”
compared to the pixel-based results. The object based approach
also loses some details such as field roads during image seg-
mentation, whereas combining more bands and features during
image segmentation can recover some of the details (see Fig. 9).

Overall, the AF-OB method does not introduce existing land
use products, but rather the three indices designed with image
segmentation to get better results for mapping paddy fields.

B. Stability of the AF-OB Method Across Spatiotemporal and
Sensors

The study employed the designed paddy index, wetland index,
and cropland index to assess the stability of thresholds in the
AF-OB method across different temporal and sensor variations.
The frequency distributions of the three indices in the AF-OB
method exhibited similar patterns in both arid and humid regions
[see Fig. 10(a)–(c)]. However, specifically for the paddy index,
the frequency distribution was found to be flatter in humid
regions compared to arid regions. This observation suggests
that there is a tendency for rice replanting to occur during a
more concentrated period in arid regions, while the period of rice
replanting tends to be more spread out or decentralized in humid
regions. Under the condition that Landsat-8 is used in both 2015
and 2020, there is essentially no difference in the distribution of
the paddy field samples on the three indices [see Fig. 10(d)–(f)].
This is due to the fact that the change in time does not change the
flooding dynamics and NDVI dynamics of the paddy fields. The
potential of the AF-OB paddy mapping method for past paddy
mapping using Landsat-5 TM was evaluated in the same way.
It was shown that the change of sensor and time did not change
the frequency distribution of paddy field objects on the paddy
index and wetland index [see Fig. 10(g) and (h)]. However, the
Cropland index was shifted [see Fig. 10(i)], probably due to
differences in NDVI calculated by different sensors [73], [74].

The potential of Sentinel-2 for paddy mapping using the
AF-OB method was validated as Sentinel-2 has the potential for
annual rice mapping due to its shorter revisit period [33]. Except
for a mild shift in the Cropland index due to sensor differences,
Sentinel-2’s frequency distributions at the three indices are
essentially the same [see Fig. 10(j)–(l)]. This demonstrates that
the AF-OB method is applicable to Sentinel-2 despite the fact

that Sentinel-2 differs from Landsat-8 in terms of revisit period
and spatial resolution.

The test results confirm the stability of the AF-OB method
across various spatial, temporal, and sensor conditions. It is
important to note that while the threshold value of the AF-OB
method remains relatively stable, adjustments may be necessary
when changing sensors due to potential offset issues in the
cropland index. By appropriately calibrating and adapting the
threshold value, accurate results for paddy field mapping can be
achieved.

C. Limitations of the AF-OB Method

Unsupervised classification algorithms based on phenology
are effective in paddy mapping depending on how the key phe-
nological periods are defined. The three periods defined by the
AF-OB method are limited to single-season rice in the Northern
Region of China because they are designed for single-season
rice. Therefore, it is challenging to attain the desired results in
regions of the south where double-cropped rice is extensively
grown. The concept of the AF-OB method deserves recognition
due to the variations in “soil-water-vegetation” observed in
both double-season rice and single-season rice [6]. It remains
feasible to apply similar principles in identifying paddy fields
by establishing the relevant phenological period.

Supplementary experiments 1 showed that the sources of
uncertainty of the AF-OB method when used in southern China
are mainly the reduction of effective satellite observations due
to cloud shading [see Fig. 11(a)]. Parameter tuning of the image
segmentation algorithm due to differences in paddy patch size
also leads to uncertainty [see Fig. 11(b) and (c)].

The accuracy of the AF-OB rice mapping method depends
largely on the monitoring of flood signals during rice planting.
Flood signals in rice fields can be effectively captured by com-
bining data from multiple sources for a wider range of spatial
and temporal observations [23], [75], [76]. This also helps to
extend the AF-OB method or its idea to areas with humid, cloudy,
and rainy climates. The parameters of the image segmentation
algorithm also need to be adjusted in this process by taking into
account the differences in shape and size of paddy field patches
between different regions [see Fig. 11(c)].

V. CONCLUSION

This study proposes a robust asynchronous flood and object-
based remote sensing mapping framework for paddy fields using
dense Landsat-8 satellite imagery within Google Earth Engine,
eliminating the need for external land cover product masks.
By delineating critical periods for paddy field mapping and
using three specific indices grounded in inundation patterns
and NDVI dynamics during these periods, our model offers
an innovative strategy. Superpixel segmentation technique was
introduced and effectively mitigated the “pretzel effect.” The
efficacy of our model is evaluated within Northern Region of
China, a vast and climatically diverse area. Our results show that
the distribution of paddy fields in the northern region of China is
highly correlated with the topography and water system, which
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is consistent with the real situation. The proposed paddy map-
ping model substantially enhances accuracy by 0.12% to 8.25%
compared to the two conventional models. The resulting paddy
field mappings consistently exhibit high R2 values, ranging from
0.95 to 0.99, when contrasted with statistical data. Furthermore,
our model demonstrates consistent thresholds across time, space,
and sensors, ensuring method portability.

The AF-OB method has limitations for applications in areas
with cloudy climates or small patches of paddy fields. Despite
this, the AF-OB method exhibits potential for expansion into
national mapping of paddy fields by incorporating joint multi-
source data.

REFERENCES

[1] R. Ni et al., “An enhanced pixel-based phenological feature for accurate
paddy rice mapping with Sentinel-2 imagery in Google Earth Engine,” IS-
PRS J. Photogrammetry Remote Sens., vol. 178, pp. 282–296, Aug. 2021.

[2] S. Xu et al., “A robust index to extract paddy fields in cloudy regions from
SAR time series,” Remote Sens. Environ., vol. 285, 2023, Art. no. 113374.

[3] Joint FAO, OIE, WHO, and WTO Statement on Influenza A (H1N1) and
the Safety of Pork, FAO, Rome, Italy, 2009.

[4] H. Wu et al., “AsiaRiceYield4km: Seasonal rice yield in Asia from 1995
to 2015,” Earth System Sci. Data, vol. 15, no. 2, pp. 791–808, 2023.

[5] Y. Qin et al., “Mapping paddy rice planting area in cold temperate climate
region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+)
and MODIS imagery,” ISPRS J. Photogrammetry Remote Sens., vol. 105,
pp. 220–233, 2015.

[6] J. Dong and X. Xiao, “Evolution of regional to global paddy rice mapping
methods: A review,” ISPRS J. Photogrammetry Remote Sens., vol. 119,
pp. 214–227, 2016.

[7] J. Wei, Y. Cui, W. Luo, and Y. Luo, “Mapping paddy rice distribution
and cropping intensity in China from 2014 to 2019 with Landsat images,
effective flood signals, and Google Earth Engine,” Remote Sens., vol. 14,
no. 3, 2022, Art. no. 759.

[8] Y. Wang, L. Zhou, Q. Jia, and W. Yu, “Water use efficiency of a rice paddy
field in Liaohe Delta, Northeast China,” Agricultural Water Manage.,
vol. 187, pp. 222–231, 2017.

[9] L. Carrasco, G. Fujita, K. Kito, and T. Miyashita, “Historical mapping
of rice fields in Japan using phenology and temporally aggregated landsat
images in Google Earth Engine,” ISPRS J. Photogrammetry Remote Sens.,
vol. 191, pp. 277–289, 2022.

[10] K. Liu, X. Li, S. Wang, and X. Zhang, “Unrevealing past and future
vegetation restoration on the Loess Plateau and its impact on terrestrial
water storage,” J. Hydrol., vol. 617, 2023, Art. no. 129021.

[11] K. Liu, H. Su, X. Li, and S. Chen, “Development of a 250-m downscaled
land surface temperature data set and its application to improving remotely
sensed evapotranspiration over large landscapes in northern China,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2020, Art. no. 5000112.

[12] X. Cai and C. Ringler, “Balancing agricultural and environmental water
needs in China: Alternative scenarios and policy options,” Water Policy,
vol. 9, no. S1, pp. 95–108, 2007.

[13] V. Niva, J. Cai, M. Taka, M. Kummu, and O. Varis, “China’s sustainable
water-energy-food nexus by 2030: Impacts of urbanization on sectoral
water demand,” J. Cleaner Prod., vol. 251, 2020, Art. no. 119755.

[14] X. Cai, “Water stress, water transfer and social equity in Northern China—
Implications for policy reforms,” J. Environ. Manage., vol. 87, no. 1,
pp. 14–25, 2008.

[15] J. Li, Z. Liu, C. He, H. Yue, and S. Gou, “Water shortages raised a legitimate
concern over the sustainable development of the drylands of northern
China: Evidence from the water stress index,” Sci. Total Environ., vol. 590,
pp. 739–750, 2017.

[16] J. Wei, Y. Cui, S. Zhou, and Y. Luo, “Regional water-saving potential
calculation method for paddy rice based on remote sensing,” Agricultural
Water Manage., vol. 267, 2022, Art. no. 107610.

[17] J. M. Yeom, S. Jeong, R. C. Deo, and J. Ko, “Mapping rice area and yield
in northeastern Asia by incorporating a crop model with dense vegetation
index profiles from a geostationary satellite,” GIScience Remote Sens.,
vol. 58, no. 1, pp. 1–27, 2021.

[18] D. M. G. de la Torre, J. Gao, and C. Macinnis-Ng, “Remote sensing-based
estimation of rice yields using various models: A critical review,” Geo-
Spatial Inf. Sci., vol. 24, no. 4, pp. 580–603, 2021.

[19] M. Weiss, F. Jacob, and G. Duveiller, “Remote sensing for agricultural
applications: A meta-review,” Remote Sens. Environ., vol. 236, 2020,
Art. no. 111402.

[20] K. Liu, X. Li, S. Wang, and X. Gao, “Assessing the effects of urban
green landscape on urban thermal environment dynamic in a semiarid
city by integrated use of airborne data, satellite imagery and land sur-
face model,” Int. J. Appl. Earth Observation Geoinf., vol. 107, 2022,
Art. no. 102674.

[21] C. Ma et al., “Temperature and emissivity retrieval from hyperspec-
tral thermal infrared data using dictionary-based sparse representation
for emissivity,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5002016.

[22] S. Chauhan, R. Darvishzadeh, M. Boschetti, M. Pepe, and A. Nelson,
“Remote sensing-based crop lodging assessment: Current status and per-
spectives,” ISPRS J. Photogrammetry Remote Sens., vol. 151, pp. 124–140,
2019.

[23] Y. Cai, H. Lin, and M. Zhang, “Mapping paddy rice by the object-based
random forest method using time series Sentinel-1/Sentinel-2 data,” Adv.
Space Res., vol. 64, no. 11, pp. 2233–2244, 2019.

[24] M. Waleed et al., “Evaluating the efficiency of coarser to finer resolution
multispectral satellites in mapping paddy rice fields using GEE implemen-
tation,” Sci. Rep., vol. 12, no. 1, 2022, Art. no. 13210.

[25] L. R. Mansaray, F. Wang, J. Huang, L. Yang, and A. S. Kanu, “Accuracies
of support vector machine and random forest in rice mapping with Sentinel-
1A, Landsat-8 and Sentinel-2A datasets,” Geocarto Int., vol. 35, no. 10,
pp. 1088–1108, 2020.

[26] X. Li, L. Li, L. Chen, T. Zhang, J. Xiao, and L. Chen, “Random forest
estimation and trend analysis of PM2. 5 concentration over the Huaihai
Economic Zone, China (2000–2020),” Sustainability, vol. 14, no. 14, 2022,
Art. no. 8520.

[27] H. Bazzi et al., “Mapping paddy rice using Sentinel-1 SAR time series in
Camargue, France,” Remote Sens., vol. 11, no. 7, 2019, Art. no. 887.

[28] X.-Z. Pan, S. Uchida, Y. Liang, A. Hirano, and B. Sun, “Discriminating
different landuse types by using multitemporal NDXI in a rice planting
area,” Int. J. Remote Sens., vol. 31, no. 3, pp. 585–596, 2010.

[29] A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of machine-
learning classification in remote sensing: An applied review,” Int. J. Remote
Sens., vol. 39, no. 9, pp. 2784–2817, 2018.

[30] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh,
P. Ghamisi, and S. Homayouni, “Support vector machine versus random
forest for remote sensing image classification: A meta-analysis and sys-
tematic review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 6308–6325, 2020.

[31] C. Small, “Grand challenges in remote sensing image analysis and classi-
fication,” Front. Remote Sens., vol. 1, 2021, Art. no. 605220.

[32] R. Zhao, Y. Li, and M. Ma, “Mapping paddy rice with satellite remote
sensing: A review,” Sustainability, vol. 13, no. 2, 2021, Art. no. 503.

[33] J. Han et al., “NESEA-Rice10: High-resolution annual paddy rice maps
for Northeast and Southeast Asia from 2017 to 2019,” Earth System Sci.
Data, vol. 13, no. 12, pp. 5969–5986, 2021.

[34] P. Zhan, W. Zhu, and N. Li, “An automated rice mapping method based
on flooding signals in synthetic aperture radar time series,” Remote Sens.
Environ., vol. 252, 2021, Art. no. 112112.

[35] W. Liu, J. Dong, K. Xiang, S. Wang, W. Han, and W. Yuan, “A sub-pixel
method for estimating planting fraction of paddy rice in Northeast China,”
Remote Sens. Environ., vol. 205, pp. 305–314, 2018.

[36] B. Qiu, W. Li, Z. Tang, C. Chen, and W. Qi, “Mapping paddy rice
areas based on vegetation phenology and surface moisture conditions,”
Ecological Indicators, vol. 56, pp. 79–86, 2015.

[37] X. Xiao et al., “Mapping paddy rice agriculture in southern China using
multi-temporal MODIS images,” Remote Sens. Environ., vol. 95, no. 4,
pp. 480–492, 2005.

[38] T. Sakamoto, N. Van Nguyen, A. Kotera, H. Ohno, N. Ishitsuka, and M.
Yokozawa, “Detecting temporal changes in the extent of annual flooding
within the Cambodia and the Vietnamese Mekong Delta from MODIS
time-series imagery,” Remote Sens. Environ., vol. 109, no. 3, pp. 295–313,
2007.

[39] C. Zhang, H. Zhang, and S. Tian, “Phenology-assisted supervised paddy
rice mapping with the Landsat imagery on Google Earth Engine: Exper-
iments in Heilongjiang Province of China from 1990 to 2020,” Comput.
Electron. Agriculture, vol. 212, 2023, Art. no. 108105.



3834 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[40] D. Li et al., “Four decades of hydrological response to vegetation dynam-
ics and anthropogenic factors in the Three-North Region of China and
Mongolia,” Sci. Total Environ., vol. 857, 2023, Art. no. 159546.

[41] X. Liu, H. Li, S. Wang, K. Liu, L. Li, and D. Li, “Ecological security
assessment of ‘grain-for-green’ program typical areas in Northern China
based on multi-source remote sensing data,” Remote Sens., vol. 15, no. 24,
2023, Art. no. 5732.

[42] H. Li et al., “Relationship between carbon pool changes and environmental
changes in arid and semi-arid steppe—A two decades study in Inner
Mongolia, China,” Sci. Total Environ., 2023, Art. no. 164930.

[43] H. Du, X. Liu, X. Jia, S. Li, and Y. Fan, “Assessment of the effects of
ecological restoration projects on soil wind erosion in northern China in
the past two decades,” CATENA, vol. 215, 2022, Art. no. 106360.

[44] K. Liu, X. Li, S. Wang, and H. Zhang, “A robust gap-filling approach
for European Space Agency Climate Change Initiative (ESA CCI) soil
moisture integrating satellite observations, model-driven knowledge, and
spatiotemporal machine learning,” Hydrol. Earth System Sci., vol. 27, no. 2,
pp. 577–598, 2023.

[45] K. Liu, X. Li, S. Wang, and G. Zhou, “Past and future adverse response of
terrestrial water storages to increased vegetation growth in drylands,” npj
Climate Atmospheric Sci., vol. 6, no. 1, 2023, Art. no. 113.

[46] D. P. Roy et al., “Landsat-8: Science and product vision for terrestrial
global change research,” Remote Sens. Environ., vol. 145, pp. 154–172,
2014.

[47] S. Viswambharan, I. T. Kumaramkandath, and J. A. Tali, “A geospatial
approach in monitoring the variations on surface soil moisture and veg-
etation water content: A case study of Palakkad District, Kerala, India,”
Environ. Earth Sci., vol. 81, no. 20, 2022, Art. no. 494.

[48] X. Zhao, K. Nishina, A. Ito, Y. Masutomi, and S. Li, “Mapping rice and
soybean calendars based on different algorithms,” in Proc. AGU Fall Meet.
Abstr., 2022, vol. 2022, Paper GC31A-08.

[49] X. Zhao, K. Nishina, T. K. Akitsu, L. Jiang, Y. Masutomi, and K. N. Nasa-
hara, “Feature-based algorithm for large-scale rice phenology detection
based on satellite images,” Agricultural Forest Meteorol., vol. 329, 2023,
Art. no. 109283.

[50] J. B. Tao, X. Y. Zhang, Q. F. WU, and W. Yun, “Mapping winter rapeseed
in South China using Sentinel-2 data based on a novel separability index,”
J. Integrative Agriculture, vol. 22, no. 6, pp. 1645–1657, 2023.

[51] B. Qiu et al., “Maps of cropping patterns in China during 2015–2021,”
Sci. Data, vol. 9, no. 1, 2022, Art. no. 479.

[52] F. Xuan et al., “Mapping crop type in Northeast China during 2013–2021
using automatic sampling and tile-based image classification,” Int. J. Appl.
Earth Observation Geoinf., vol. 117, 2023, Art. no. 103178.

[53] H. Li et al., “Development of a 10-m resolution maize and soybean map
over China: Matching satellite-based crop classification with sample-based
area estimation,” Remote Sens. Environ., vol. 294, 2023, Art. no. 113623.

[54] X. Chen et al., “Toward sustainable land use in China: A perspective
on China’s national land surveys,” Land Use Policy, vol. 123, 2022,
Art. no. 106428.

[55] T. Le Toan et al., “Rice crop mapping and monitoring using ERS-1 data
based on experiment and modeling results,” IEEE Trans. Geosci. Remote
Sens., vol. 35, no. 1, pp. 41–56, Jan. 1997.

[56] C. Zhu, D. Lu, D. Victoria, and L. V. Dutra, “Mapping fractional cropland
distribution in Mato Grosso, Brazil using time series MODIS enhanced
vegetation index and Landsat thematic mapper data,” Remote Sens., vol. 8,
no. 1, 2016, Art. no. 22.

[57] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC
superpixels compared to state-of-the-art superpixel methods,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.

[58] H. Li et al., “Automatic mapping of national surface water with Open-
StreetMap and Sentinel-2 MSI data using deep learning,” Int. J. Appl.
Earth Observation Geoinf., vol. 104, 2021, Art. no. 102571.

[59] M. Wang et al., “Interannual changes of coastal aquaculture ponds in China
at 10-m spatial resolution during 2016–2021,” Remote Sens. Environ.,
vol. 284, 2023, Art. no. 113347.

[60] D. Chicco, M. J. Warrens, and G. Jurman, “The Matthews correlation coef-
ficient (MCC) is more informative than Cohen’s Kappa and Brier score in
binary classification assessment,” IEEE Access, vol. 9, pp. 78368–78381,
2021.

[61] G. Liu et al., “On the accuracy of official Chinese crop production data:
Evidence from biophysical indexes of net primary production,” Proc. Nat.
Acad. Sci., vol. 117, no. 41, pp. 25434–25444, 2020.

[62] X. Tong et al., “The forgotten land use class: Mapping of fallow fields
across the Sahel using Sentinel-2,” Remote Sens. Environ., vol. 239, 2020,
Art. no. 111598.

[63] A. M. Abdi, N. Boke-Olén, D. E. Tenenbaum, T. Tagesson, B. Cappelaere,
and J. Ardö, “Evaluating water controls on vegetation growth in the semi-
arid Sahel using field and Earth observation data,” Remote Sens., vol. 9,
no. 3, 2017, Art. no. 294.

[64] N. You, J. Dong, J. Li, J. Huang, and Z. Jin, “Rapid early-season maize
mapping without crop labels,” Remote Sens. Environ., vol. 290, 2023,
Art. no. 113496.

[65] K. I. Shinozuka, M. Chiwa, K. Nakamura, S. Nagao, and A. Kume, “Stream
water nitrogen eutrophication during non-irrigated periods in a paddy-
dominated agricultural basin in a snowfall area in Japan,” Water, Air, Soil
Pollut., vol. 227, pp. 1–11, 2016.

[66] M. Lamers, M. Anyusheva, N. La, V. V. Nguyen, and T. Streck, “Pesticide
pollution in surface-and groundwater by paddy rice cultivation: A case
study from Northern Vietnam,” Clean–Soil, Air, Water, vol. 39, no. 4,
pp. 356–361, 2011.

[67] A. Fernández-Cirelli, J. L. Arumí, D. Rivera, and P. W. Boochs, “Envi-
ronmental effects of irrigation in arid and semi-arid regions,” Chilean J.
Agricultural Res., vol. 69, pp. 27–40, 2009.

[68] M. F. Baumgardner, L. F. Silva, L. L. Biehl, and E. R. Stoner, “Reflectance
properties of soils,” Adv. Agronomy, vol. 38, pp. 1–44, 1986.

[69] L. Weidong, F. Baret, G. Xingfa, T. Qingxi, Z. Lanfen, and Z. Bing,
“Relating soil surface moisture to reflectance,” Remote Sens. Environ.,
vol. 81, nos. 2/3, pp. 238–246, 2002.

[70] P. D. Dao and Y.-A. Liou, “Object-based flood mapping and affected rice
field estimation with landsat 8 OLI and MODIS data,” Remote Sens., vol. 7,
no. 5, pp. 5077–5097, 2015.

[71] X. Li, T. Wu, K. Liu, Y. Li, and L. Zhang, “Evaluation of the Chinese fine
spatial resolution hyperspectral satellite TianGong-1 in urban land-cover
classification,” Remote Sens., vol. 8, no. 5, 2016, Art. no. 438.

[72] Y. Zhao, F. Su, and F. Yan, “Novel semi-supervised hyperspectral image
classification based on a superpixel graph and discrete potential method,”
Remote Sens., vol. 12, no. 9, 2020, Art. no. 1528.

[73] J. Franke, V. Heinzel, and G. Menz, “Assessment of NDVI-differences
caused by sensor specific relative spectral response functions,” in Proc.
IEEE Int. Symp. Geosci. Remote Sens., 2006, pp. 1138–1141.

[74] X. Fan and Y. Liu, “A comparison of NDVI intercalibration methods,” Int.
J. Remote Sens., vol. 38, no. 19, pp. 5273–5290, 2017.

[75] M. Saadat, S. T. Seydi, M. Hasanlou, and S. Homayouni, “A convolutional
neural network method for rice mapping using time-series of Sentinel-1
and Sentinel-2 imagery,” Agriculture, vol. 12, no. 12, 2022, Art. no. 2083.

[76] Q. Jiang et al., “Mapping paddy rice planting area in Dongting Lake Area
combining time series Sentinel-1 and Sentinel-2 images,” Remote Sens.,
vol. 15, no. 11, 2023, Art. no. 2794.

Long Li is currently working toward the Ph.D. degree in cartography and GIS in
the Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing, China.

His research interests include remote sensing extraction of agricultural infor-
mation.

Daoqin Zhou received the B.S. degree in remote sensing applications from
Wuhan University, Wuhan, China, in 2006.

She is currently working with the Third Surveying and Mapping Institute
of Guizhou Province, Guiyang, China. Her research interests include remote
sensing information extraction.

Kai Liu received the M.S. degree in electronic and communication engineering
from the Institute of Remote Sensing and Digital Earth, Beijing, China, in 2013,
and the Ph.D. degree in cartography and geographical information system from
the Institute of Geographic Sciences and Nature Resource Research, Beijing, in
2016.

His research interests include the application of thermal infrared and hydro-
logical remote sensing methods to the study of land use and anthropogenic
activities, urban heat island, and surface energy and water balance.



LI et al.: OPTIMIZING RICE FIELD MAPPING IN THE NORTHERN REGION OF CHINA 3835

Tian Shi received the B.S. degree in application of new technologies in map-
ping and geographic information from the Guizhou University of Technology,
Guiyang, China, in 2003.

He is currently working with the Third Surveying and Mapping Institute
of Guizhou Province, Guiyang. His research interests include remote sensing
information extraction.

Chou Xie received the B.Eng. degree in photogrammetry and remote sensing
from Wuhan University, Wuhan, China, in 2005, and the Ph.D. degree in
cartography and geographic information system from Graduate University of
Chinese Academy of Sciences, Beijing, China, in 2008.

He is currently a Professor of remote sensing with the Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing, China. His research
interests include remote sensing (mainly InSAR and GNSS) and their applica-
tions to geohazards (e.g., earthquakes, landslides, and land subsidence).

Shudong Wang received the Ph.D. degree in cartography and geographic
information system from the State Key Laboratory of Remote Sensing, Institute
of Remote Sensing and Digital Earth, Normal University, Beijing, China, in
2007.

He is currently an Research Fellow with the Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing. His research interests include
optical remote sensing and its application in ecological and environment field.

Hang Li received the Ph.D. degree in mineralogy, petrology and mineral deposit
from Jilin University, Changchun, China, in 2022.

In 2022, he entered the postdoctoral research station of Geography in the
Institute of Aerospace Information Innovation, Chinese Academy of Sciences,
Beijing, China, and has been working ever since. His research interests include
the genetic and tectonic background analysis of granitic rocks, remote sensing
inversion of carbon pools in terrestrial ecosystems, and remote sensing obser-
vation and attribution analysis of changes in terrestrial ecosystems.

Guannan Dong is currently working toward the Ph.D. degree in the Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing, China.

His current research interests include urban remote sensing, urban carbon
assessment, and model design.

Xueke Li received the M.S. degree in cartography and geographic information
systems from the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing, China, in 2014, and the Ph.D. degree in ge-
ography from the University of Connecticut, Storrs, CT, USA, in 2019.

Since 2023, she has been a Postdoctoral Fellow with the Department of
Earth and Environmental Science, University of Pennsylvania, Philadelphia,
PA, USA. Her current research interests include extreme weather/climate and
the associated drivers, mechanisms, and impacts.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


