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Abstract—Satellite-based remote sensing images are essential for
Earth surface analysis, serving diverse purposes in both civilian and
military domains. Satellite images are used for analysis and deci-
sion making and are considered a reliable source of information.
Recently, the field of image generation has developed increasingly
sophisticated techniques, such as generative neural models, usu-
ally known as generative adversarial networks (GANs), to create
synthetic images from scratch that appear almost real. Genera-
tive models have traditionally been applied to RGB or grayscale
images and have been used for generating fake images of faces,
animals, or objects. Currently, there are few studies regarding the
application of GAN to multispectral satellite images. This work
aims to test GAN models against the generation of multispectral
satellite images, and in particular, the work explores the ability
of the state-of-the-art StyleGAN3 model to produce high-quality
synthetic Sentinel-2 images. The work delves into the configura-
tion, training process, and evaluation of StyleGAN3 using custom
Sentinel-2 datasets. StyleGAN3 results are compared with those
provided by the proGAN model, the only GAN model tested so far
on multispectral satellite data. Evaluation methods include visual
inspection, spectral signature analysis, and a modified Fréchet
inception distance for quantitative assessment. Results show that
StyleGAN3 outperforms proGAN model exhibiting visually pleas-
ing images. The quantitative comparison shows that StyleGAN3
provides the best results in terms of FID scores, in particular the
improvement compared to proGAN increases as the spatial extent
and spectral dimension of the generated images increases.

Index Terms—Generative adversarial network (GAN), GeoFake,
Sentinel-2, StyleGAN3, synthetic image generation.

I. INTRODUCTION

THE rapid advancement of artificial intelligence (AI) al-
gorithms, coupled with the abundance of available data

for training, has sparked significant interest within the scien-
tific community in the field of image generation. Generative
methods have proven effective in synthesizing various types of
images, including medical images [1], realistic photographs of
objects, scenes, and human faces [2]. These generated images
have been utilized to augment existing datasets, enhancing the
training process and improving the performance of machine
learning models. Furthermore, generative models have found
applications in creating avatars for online gaming and social
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media profiles. In addition, artists are exploring the possibilities
of merging human and machine-generated content, redefining
the boundaries of art itself [3].

Existing research works mainly concern the generation of
captured photographs from conventional red green blue (RGB)
cameras with a focus on human face images [4], [5]. In this
work we concentrate on the generation of multispectral remotely
sensed images from satellite platforms, which still remains a
relatively unexplored topic within the scientific community.
The generation of satellite (and aerial) imagery presents unique
challenges compared to the generation of images of human faces
or objects, as they require the reconstruction of both local and
global features to obtain realistic results.

In the context of remote sensing, generative models for satel-
lite images could be a useful data augmentation tool for enriching
existing datasets adopted to train machine learning and deep
learning models [6], [7]. Data augmentation through generative
models can also be used for evaluating the performance of a
certain algorithm (not necessarily based on AI) by providing
statistically more reliable values for the performance indicators
adopted. The generative approach is particularly useful in ap-
plication scenarios where limited images are available or when
there is significant disparity between the different categories of
interest [1], [8] as well as for reproducing unique features that
are unusual or challenging to find in nature, such as camouflaged
objects or rare materials [9]. The generation of remote sensing
images also finds application in the field of defense and secu-
rity. Fake satellite images can be generated specifically to hide
important military infrastructure and/or to create false scenarios
in order to deceive opposing analysts [10].

Furthermore, the impressive results obtained by AI-based
generative models in the creation of “fake” images acquired
by conventional RGB cameras have stimulated the analysis of
their impact on real life [11] and the development of methods
to evaluate the authenticity of a visual content and discriminate
between false and real images [12], [13], [14]. This problem
also arises in the remote sensing field [15], [10], where, on the
one hand, it is crucial to investigate the potential of AI-based
generative models in order to assess the implications and risks
associated with such strategies. On the other hand, it is important
to have large datasets of generated images in order to analyze and
design the possible strategies for the detection of false satellite
data [16].

The most successful and widely adopted approaches for
image manipulation and synthesis are based on the genera-
tive adversarial networks (GANs) framework introduced by
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Goodfellow et al. [17]. GANs have been employed in various
computer vision applications, including style transfer [18], su-
perresolution [19], and image-to-image translation [20]. While
early GAN models had limitations in terms of image resolution,
variation, and visual quality, current models have significantly
improved in these aspects.

The first works that combined GAN models with remote
sensing data were mainly focused on image-to-image translation
for mapping purposes, where photos were synthesized from edge
maps by means of the pix2pix algorithm [20]. Then, researchers
have explored the application of GANs to remote sensing for
tasks, such as superresolution [21] and cloud coverage removal
[22], [23]. In recent years, GAN models have been proposed
to produce images from scratch that closely mimic the spatial
distribution observed in the training set [24]. However, the
application of GAN methods, from the original Deep Convo-
lutional GAN (DCGAN) [25] to more recent models, such as
StyleGAN2 [26], has primarily been restricted to RGB data
acquired by aerial platforms [27]. The first study that generalizes
to the multispectral domain the generation of remote sensing
images is that in [28] where the architecture named Progressive
GAN (ProGAN, [29] is adopted to generate multispectral images
from the Sentinel-2 satellite platform [30].

Following recent advances in the generative models, in this
article, we explore the capability of StyleGAN3 [31], one of
the latest and most promising GAN architectures, to generate
tiles of Sentinel-2 multispectral images. Sentinel-2 data have 13
spectral bands covering the visible and near infrared (VNIR)
and short wave infrared (SWIR) ranges with ground sampling
distance (GSD) of 10, 20, and 60 m. Particularly, we focus on the
four bands in the VNIR spectral range with 10 m GSD (referred
to as high resolution (HR) images, hereinafter) and the six bands
in the NIR/SWIR spectral range having 20 m GSD (referred to
as low resolution (LR) images, hereinafter).

In the paper, we detail: a) the modifications made to the orig-
inal StyleGAN3 architecture in order to extend its functionality
to multispectral Sentinel-2 data, and b) the training strategy
adopted in terms of training set involved and training parameters.
We also discuss the results obtained by comparing them with
those provided by the ProGAN model. For this purpose, we
propose a qualitative analysis based on visual inspection of
examples of generated images and a quantitative analysis ob-
tained by exploiting the well-known Fréchet inception distance
(FID, [32].

The rest of this article is organized as follows. After a gen-
eral introduction to the GAN architecture (see Section II), in
Section III we describe the StyleGAN3 model and the modifi-
cations made to handle Sentinel-2 data. In the same section we
also provide details about the training strategy adopted. Results
are discussed in Section IV. Finally, Section V concludes this
article.

II. GENERATIVE ADVERSARIAL NETWORKS

The general architecture of a GAN consists of two neu-
ral networks, named the generator and the discriminator,
which compete in a zero-sum game to generate data that are

Fig. 1. GAN architecture.

indistinguishable from real ones. This adversarial competition
enables the generator to learn to synthesize new data that follows
the same statistical distribution as the training set. The concep-
tual GAN architecture is depicted in Fig. 1. The generator is
a differentiable function G(z; θg), depending on the parameters
θg, that takes input from a latent space z with a prior distribution
pz and generates data samples xg according to a distribution pg .
The discriminator can be represented as a differentiable func-
tion D(x; θd), with parameters θd, that outputs the probability
that sample x originates from the training data distribution pt.
During the training phase the parameters θd are updated so as
to maximize D(x; θd), while the parameters θg are modified in
order to make the statistical distribution of xg more similar as
possible to pt. This is accomplished by solving the following
minmax optimization problem:

min
θg

max
θd

V (θg, θd) (1)

where

V (θg, θd) = Ex[logD(x; θd)] + Ez[log(1−D(G(z; θg); θd))]
(2)

with E denoting the expectation. Equation (1) defines a compet-
itive game where the discriminator is trained to best distinguish
between true and generated data, while the generator learns
to “fool” the discriminator. GANs were originally proposed as
generative models for unsupervised learning, but they can also
be trained using semisupervised or fully supervised learning
methods [20], [33]. In recent years, there has been significant
advancement in GAN research, leading to substantial changes
in cost function used for training and network architecture. As
to the cost function, various metrics have been proposed to
enhance and expedite convergence, including Jensen–Shannon
Divergence, least squares distance, and Wasserstein distance,
which have demonstrated notable improvements [34]. The net-
work architectures of GANs have also evolved. DCGAN [25]
is one of the first proposed architecture and employs cascading
2-D convolutional layers in both the generator and discriminator.
A major advance was introduced by the multiscale processing
architecture resulting in ProGAN, [29] which incorporate a
progressive growth mechanism into the generator, enabling the
generation of higher resolution images with superior quality
compared to previous approaches. In 2019, the ProGAN hierar-
chical processing chain was modified by introducing the innova-
tive idea of style modulation, which resulted in the first version
of the StyleGAN architecture [2]. The original StyleGAN has
been modified in recent years to reduce droplet-like artefacts
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Fig. 2. Architecture of the StyleGAN3 generator. Figure from [35].

(StyleGAN2 [26] and aliasing arising in video synthesis (Style-
GAN3, [35]. In parallel with the development of StyleGAN,
conditional coordinate GAN [36] was developed which allows
for the generation of images larger than those included in the
training set.

III. GENERATING SENTINEL-2 IMAGES

In this section, first, we briefly summarize the Style-
GAN3 architecture and we describe the modifications made to
adapt the original model to Sentinel-2 image generation (see
Section III-A). Then we describe the learning strategy by de-
tailing the training set and the adopted training parameters (see
Section III-B).

A. StyleGAN3

It is worth noting that the primary objective of this study is
to assess the effectiveness of the StyleGAN3 model in gener-
ating unconditional multispectral remote sensing images, with
a specific focus on Sentinel-2 satellite data. Here, StyleGAN3
is used as a tool and the complete description of the network
architecture is out of the scope of this work. Therefore, in
the following we briefly summarize the philosophy behind the
StyleGAN3 architecture without going into the details, which
can be found in [35]. StyleGAN introduced a innovative ar-
chitecture for the generator part that, by using latent codes
injected in each intermediate layer, enables dynamic adjustment
of image style [2]. As to the discriminator part, all the versions
of StyleGAN use the same architecture as ProGAN. The ar-
chitecture of the StyleGAN3 generator is sketched in Fig. 2.
It basically consists of two components: mapping network and
synthesis network. The latter enables a progressive generation
process that starts from low-resolution images and gradually
refines them to higher resolutions. Regardless of the resolution

of the final output, synthesis network encompasses 14 blocks
(denoted asLi with i = 0, . . . , 13 in Fig. 2). Each block basically
includes a convolutional layer and a nonlinearity (leakyRelu)
wrapped between two data resize layers. One of the innovations
of StyleGAN3 concerns the data resize layers. Specifically, the
upsampling task which was accomplished by bilinear interpo-
lation in the previous versions, in StyleGAN3 is performed by
the more rigorous Whittaker–Shannon interpolation formula. It
is implemented through a low-pass finite impulse response filter
that approximates the “sinc” impulse response by truncation. In
order to control the transition band and the ringing artifacts in the
approximation of the low-pass filter, truncation is performed by
using the Kaiser window. The blocks Lis extract feature maps at
different scales that are modulated by the style coefficients. The
latter are in turn obtained by applying an affine transformation
to the intermediate latent code w, which is the output of the
mapping network. This latter ensembles two fully connected
layers whose coefficients are learned during the training phase
and transforms the 512 × 1 input latent vector z in the 512 ×
1 intermediate latent vector w. z is the input of the StyleGAN3
generator and is randomly drawn from a multivariate normal
distribution.

In our experiments we adopt the implementation of Style-
GAN3 proposed in [37] based on the original software released
by NVIDIA research group [38]. The adopted implementa-
tion supports standard raster image formats, such as JPG and
PNG. These data formats restrict the system to handle images
with three (or four, in the case of PNG) channels and having
a radiometric resolution of 8-bit per channel. As stated in
Section I, we analyze the generation process with respect to
the HR Sentinel-2 data having four bands (B2, B3, B4, and B8)
with 10 m GSD and the LR Sentinel-2 data with six bands (B5,
B6, B7, B8A, B11, B12) and 20 m GSD named. Each band of the
considered data has radiometric resolution of 12 bit. Therefore,
different StyleGAN3 models are considered and to cope with the
specific characteristics of Sentinel-2 data two main changes are
applied to the implementation in [37]: a) the data read and write
modules are modified to handle standard ENVI format [39] and
floating-point precision; b) the number of channels of the 1 × 1
convolutional layer in the last block of the synthesis network (to
RGB in Fig. 2) and that of the input layer of the discriminator
are changed to handle the four bands and the six bands of HR
and LR images, respectively.

In addition, for the purpose of comparison, we consider the
official implementation of ProGAN proposed in [40], which
we modified according to the aforementioned considerations
in order to make the network capable of processing and gen-
erating multispectral floating point images. These steps enable
the possibility of training the state-of-the-art StyleGAN3 and
ProGAN on the same Sentinel-2 dataset, consequently allowing
for a qualitative and quantitative comparison, as will be evident
in Section IV.

B. Training Strategy

It is worth noting that, despite the StyleGAN3 network is able
to manage images up to 1024 × 1024 pixels we decided to train
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TABLE I
REAL DATASETS DESCRIPTION

TABLE II
TRAINED STYLEGAN3 MODELS

models for reduced size images in order to limit the training time.
Specifically, we consider the two data formats corresponding to
64 × 64 pixels and 128 × 128 pixels images. The unconditional
generation task we are addressing via generative models requires
huge and sufficiently diverse datasets of images in order to be
properly trained. In this work we use datasets extracted from
Sentinel-2 products that are free of charge and can be obtained
directly from the online Copernicus Open Access HUB [41].
The online portal is provided by the European Space Agency to
download the Sentinel’s images acquired since the launch date.

We selected eight data acquired by both Sentinel-2A and
Sentinel-2B sensors in different regions of the world (i.e., Italy,
Australia, USA, Mexico) from 2020 to 2022. Specifically, three
images cover regions that include the towns of Grosseto, Pisa
(Tuscany, Italy), and Rome, two images refer to the area of San
Diego (California, USA), two images were acquired on the area
of Melbourne (Victoria, Australia) and one image refers to the
area of La Paz (Baja California Sur, Mexico). Each dataset is
composed by a 10 980 × 10 980 pixels HR image and a 5490 ×
5490 pixels LR image. The considered images are representative
of various application scenarios including urban, rural, coastal,
and mountain scenarios. For each of the real dataset, Table I
provides a) the assigned name, b) the sensing date, and c) the
file identifier for its download.

We trained four different StyleGAN3 models, one for
each combination of spectral range and image size. Table II

summarizes the four models indicating, for each of them, the
name assigned, the type of image it refers to (HR with four
bands or LR with six bands) and the size of the image in pixel
units.

From the above-mentioned dataset, for each of the Style-
GAN3 model considered, according to the spectral range and
the images size of interest, we randomly picked 105 image tiles
to define the training set. In this tiles extraction process we
discarded areas covered by clouds, corrupted data and areas
completely covered by sea water. Each image tile contains
atmospherically corrected spectral reflectances with a 12 bit
radiometric resolution that have been properly scaled within the
dynamic range [0, 1] with floating point precision.

To further enrich the obtained training sets we applied to each
of them the data augmentation techniques suggested in [42] and
consisting in geometric and blitting transformations.

Geometric transformations encompass a range of techniques
including isotropic scaling, arbitrary rotation, anisotropic scal-
ing, and fractional translation. These transformations contribute
to the augmentation process and assist in preserving the high-
frequency details that may be lost during geometric transforma-
tions. In addition, pixel blitting techniques, such as x-flips, 90◦

rotations, and integer translations, are employed. These blitting
transformations prove useful in recovering high-frequency de-
tails and further improving the quality of the training process
[42].

Augmentation operations are applied sequentially to the train-
ing set during the training procedure following by means of an
updating pipeline enabled by the NvLabs StyleGAN3 imple-
mentation.

Similar to StyleGAN3, we trained four different ProGAN
models, one for each combination of spectral range and im-
age size. Table III summarizes the four models, indicating
the core dataset used for each of them. The dataset used
to train the ProGAN models was identical to that used for
StyleGAN3.

The training process took place on a single NVIDIA GeForce
3090 with 24 GB RAM. The models were trained until the
generated images reached a satisfactory level of quality. The
training duration was approximately seven days for each of the
StyleGAN3 and ProGAN model considered. The StyleGAN3
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TABLE III
TRAINED PROGAN MODELS

networks were configured using the StyleGAN3-t configuration,
and specific optimization parameters were chosen for the Adam
optimizer. The values selected for the optimization parame-
ters were β1 = 0 and β2 = 0.99. The learning rate was set to
dlr = 0.002, the R1 regularization weight was γ = 1, and the
batch size was set to 32.

The ProGAN networks were trained using Adam optimizer.
The values selected for the optimization parameters wereβ1 = 0
and β2 = 0.99. The learning rate was set to dlr = 0.001, the R1
regularization weight was γ = 1, and the batch size was set to
16 [29].

IV. RESULTS

In this section, we discuss the results obtained by the networks
trained on the dataset described in Section III-B. We present the
generated multispectral images for both the high-resolution and
low-resolution datasets, and we discuss their performance in
terms of visual quality and selected analytical indicators which
will comprehensively described in Section IV-A. As stated in
Section III ProGAN are considered for comparison.

A. Performance Metrics

The evaluation of generative models is a subject of on-
going debate, lacking consensus on a metric that effectively
captures the models’ strengths and limitations for comparison
purposes [43]. While some approaches focus on quantitative
assessment, others emphasize qualitative evaluation.

Currently, there is no universally accepted metric that com-
prehensively evaluates all aspects of generative models, such as
quality, diversity, overfitting, and mode dropping [44].

Nonetheless, certain metrics are highly regarded. A widely
accepted score is the FID, which compares generated images
with real ones using a pretrained deep neural network classifier,
based on inception models [45].

FID measures the statistical distance between the distributions
of inception features extracted from both generated and real im-
ages [32]. These features are derived from the final convolutional
layer of the inception model and are assumed to be Gaussian
random vectors. Specifically, denoted as r and g the 2048-D
features vectors obtained as output of the Inception model for
real and generated data, respectively, FID measures the Fréchet

distance between the two Gaussian distributions of those vectors

FID(r, g) = ‖μr − μg‖22 + Tr
(
Σr +Σg − 2 (ΣrΣg)

1
2

)
(3)

where (μr,Σr) and (μg,Σg) are the mean vectors and the
covariance matrices of r and g, respectively [46].

FID ranges from 0 to ∞, where lower values indicate greater
similarity among groups of images.

In this work, to compute r and g we utilize a standard Incep-
tionV3 model pretrained on the ImageNet dataset. The latter is
a three-bands (RGB) dataset, so in order to take into account
the multispectral nature of the HR and LR Sentinel-2 data we
consider an augmented feature space for r and g. Specifically,
for the HR four-bands images we calculate the FID4 score using
augmented feature vectors that result from concatenating the
features extracted by InceptionV3 from bands B2, B3, B4, and
bands B3, B4, B8. This approach ensures that the evaluation
takes into account all the bands, facilitating a comprehensive
assessment of the generated image. The same methodology is
applied to evaluate the generated LR six-bands images, where
the FID6 score is defined using bands B5, B6, B7, and bands
B8A,B11, B12, respectively.

It is worth noting that, while FID is not particularly infor-
mative for absolute evaluation of the performance of a given
generative model, it holds significance for the relative scoring
of generative models trained on the same dataset.

B. Image Generation and Evaluation

This section discusses examples of images obtained by the
StyleGAN3 and ProGAN generators after the training process.
We provide examples for both urban and rural scenarios and for
both HR and LR images. For the sake of clarity and space, we
are limiting ourselves to reporting only the figures associated
with the 128 × 128 resolution, while the other case study (64 ×
64) can be found in the Appendix.

To facilitate visual comparison, we have split the presented
multispectral images into three-band subsets suitable for false
color representation. The HR four-band images are represented
by grouping bandsB2, B3, andB4 to obtain an RGB image, and
grouping bands B3, B4, and B8 to obtain a color infrared (CIR)
image. The LR six-band images are represented by means of two
false-color images, each grouping the first three and the second
three bands (B5, B6, B7 and B8A,B11, B12, respectively).

Let us start the discussion focusing on the results in Fig. 3,
which contains six HR image tiles organized in a two-rows and
three-columns grid. The first row contains the RGB representa-
tions, while the second row contains the CIR representations
of the selected images. In the first column, you can find an
image randomly extracted from the training dataset. In the
second column, you can find an image extracted from a pool
of 50 000 images generated by StyleGAN3, and finally, in the
third column, you can find an image extracted from a pool of
50 000 images generated by ProGAN. For each generative model
the image shown was selected according to a specific criterion.
Such a criterion is based on the consideration that by applying
the Inception model to images with similar content, similar
feature vectors are obtained. Therefore, first, we compute the
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Fig. 3. Real and generated HR tiles, each measuring 128× 128 pixels, of an urban scenario. (a), (b), and (c) depict the RGB representations of images belonging to
the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B2, B3, and B4. (d), (e), and (f) depict the corresponding false-color
CIR representations obtained by combining bands B3, B4, and B8. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

augmented inception feature vector for the real image, then we
obtain the augmented Inception feature vectors for all the images
produced by each generative model, and, finally we select the
generated image closest to the real one in terms of Euclidean
distance between the corresponding augmented inception fea-
ture vectors. It is therefore no coincidence that the images
generated by both StyleGAN3 and ProGAN shown in Fig. 3
appear related in terms of content and describe a very similar
scenario.

Specifically, Fig. 3 depicts HR tiles referring to a typical
urban scenario and we can notice that the generated images
are visually quite similar to the real one (first column) and
faithfully reproduce the typical urban pattern, characterized by
roofs of various sizes and compositions, as well as the presence
of roads, green spaces, and industrial buildings. Both generated
images are visually good in quality; however, the ProGAN image
appears a little more blurred and with some evident artifacts,
such as the straight lines highlighted in the yellow box within
Fig. 3(c) and (f).

Fig. 4 shows examples concerning the generation of LR
images with reference to an urban scenario. The organization
of the results in Fig. 4 follows the format detailed for Fig. 3.
Also in this case, the presented images generated by Style-
GAN3 and ProGAN were selected according to the criterion
based on the minimum Euclidean distance between augmented
inception feature vectors. Of course, in this case we used the
augmented inception feature vectors defined for the LR images
in Section IV-A. The selected images are visually quite similar
and reproduce typical urban pattern as the previous HR case. The
quality of the StyleGAN3 image appears better than ProGAN
one. The latter contains some visible artifacts, as highlighted
by the yellow boxes within Fig. 4(c) and (f). The checkerboard

pattern in the image is not natural but is probably induced by the
generation process.

Figs. 5 and 6 follow the structure described for the previous
images but present rural scenario examples referring to the HR
and LR cases, respectively. Also in this case the extraction
approach based on Inception distance allowed to select images
that are very similar in context. Both the networks successfully
reproduce the geometry and composition of the fields, charac-
terized by grassland juxtaposed with woods and bare soil. It can
be said that, there is high quality in both the generated images,
but the artifacts of ProGAN seem less pronounced.

In general, we can appreciate that the generative models are
capable of producing high quality images. Both StyleGAN3 and
ProGAN generate images that are hardly distinguishable to the
naked eye, although it is evident that StyleGAN3 produces an
overall better result.

In addition we underline that, for both the LR and HR cases,
the generated images exhibit similarity in context but are not
identical to the closest real image (in terms of Euclidean distance
between the feature vectors). This fact could be considered as
an indirect proof of the capability of the networks to generate
images with a high degree of generalization without incurring
in overfitting issues.

To further test the quality of the generated images, we com-
pared the spectral profiles of selected pixels extracted from
StyleGAN3 images, ProGAN images, and real ones, respec-
tively. An effective generation process should produce similar
spectral signatures for pixels that belong to the same natu-
ral/material class. Fig. 7 displays graphs comparing the spectral
signatures of pixels highlighted by colored dots in Figs. 5
and 6 (the lines follow the color notation of the points). The
first graph [see Fig. 7(a)] shows the signatures of the three
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Fig. 4. Real and generated LR tiles, each measuring 128 × 128 pixels, of an urban scenario. (a), (b), and (c) depict the false color representations of images
belonging to the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B5, B6, and B7. (d), (e), and (f) depict the corresponding
false-color representations obtained by combining bandsB8A,B11, andB12. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

Fig. 5. Real and generated HR tiles, each measuring 128 × 128 pixels, of a rural scenario. (a), (b), and (c) depict the RGB representations of images belonging to
the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B2, B3, and B4. (d), (e), and (f) depict the corresponding false-color
CIR representations obtained by combining bands B3, B4, and B8. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

vegetation pixels marked by the dots in Fig. 5 (HR images),
while the second graph [see Fig. 7(b)] displays the signatures
of three pixels marked by the dots in Fig. 6 (LR images).
This analysis is useful to evaluate the spectral signatures of
pixels that belong to similar classes in order to verify if they
exhibit consistent behavior. For instance, vegetation pixels [see

Fig. 7(a)] exhibit the characteristic red-edge profile between the
bands B3 and B8. This is the first quantitative result that is
useful to enforce the quality and consistence of the generation
process.

Finally, to enforce the results we quantitatively compare the
performance of StyleGAN3 and ProGAN by means of the
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Fig. 6. Real and generated LR tiles, each measuring 128× 128 pixels, of a rural scenario. (a), (b), and (c) depict the false color representations of images belonging
to the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bandsB5, B6, andB7. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B8A,B11, and B12. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

Fig. 7. Representation of the spectral reflectance of some pixels extracted from
the images in Figs. 5 and 6; the colors in the graphs indicate the points they refer
to. (a) Graphs associated with the points in Fig. 5(a) (red), Fig. 5(b) (green), and
Fig. 5(c) (blue). (b) Graphs associated with the points in Fig. 6(a) (red), Fig.
6(b) (green), and Fig. 6(c) (blue).

augmented FID scores for all the considered spectral ranges
(FID4 for HR and FID6 for LR). In order to obtain FID scores for
each network (StyleGAN3 and ProGAN) we generated 50 000
images that are compared in terms of FID with 50 000 samples
extracted from the training dataset. This procedure is repeated
several times to have a statistical evaluation of the scores. This
approach allows us to assess the variability and consistency of
the results obtained from different runs. By the same procedure
we have also evaluated FID scores involving only the real data,
i.e., by extracting both the groups of 50 000 images from the
real dataset. Values obtained in this way establish a lower bound
for FID (the network cannot do better than this).

TABLE IV
FID SCORES OBTAINED USING THE AUGMENTED FEATURE VECTORS

GENERATED BY THE INCEPTIONV3 NETWORK

Table IV displays the mean and variance of the augmented
FID scores obtained after 100 runs. It is worth noting that,
although the visual comparison only involved the 128 × 128
case, Table IV also includes the numerical results obtained in
the 64 × 64 case for completeness.

The results in Table IV clearly highlight that StyleGAN3 out-
performs ProGAN in all the considered configurations. The first
column of Table IV displays the means and standard deviations
of FID4 applied to the 64 × 64 HR case, where the differences
in means and variances between ProGAN and StyleGAN3 are
limited to 1.24 and 0.69e− 2. The variance values remain small
in all cases; thus, we do not discuss them further because they are
less relevant. When we consider the 128 × 128 HR case (second
column of Table IV) the difference between FID4 mean values
provided by the two generative models, increase to 13.98 in favor
of StyleGAN3.
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Fig. 8. Real and generated HR tiles, each measuring 64 × 64 pixels, of a nonurban scenario. (a), (b), and (c) depict the RGB representations of images belonging
to the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bandsB2,B3, andB4. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B3, B4, and B8. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

The third column of Table IV illustrates the means and stan-
dard deviations of FID6 applied to the 64 × 64 HR case. The
difference in terms of mean values of FID6 between StyleGAN3
and ProGAN grows to 53.76. This value further increases when
considering the 128 × 128 LR case (fourth column of Table IV),
where the difference becomes 73.38. We can conclude that
FIDs scores provided by StyleGAN3 networks are consistently
lower than those obtained by ProGAN networks in all cases.
Interestingly, as the number of bands and image size increase, the
difference between the scores of the two networks becomes more
pronounced. This observation suggests that, as resolution and
the number of bands increase; StyleGAN3 becomes more effec-
tive than ProGAN and, to some extent, confirms the qualitative
results obtained from visual inspection.

V. CONCLUSION

In this article, we present a study focused on generating
synthetic satellite images using unconditional generative mod-
els. Specifically, we adapted an instance of the state-of-the-art
StyleGAN3 model and applied it to Sentinel-2 multispectral
satellite imagery. After proper adaptations and training, the
StyleGAN3 model demonstrated excellent performance in the
new context of multispectral satellite imagery, proving effective
in faithfully reproducing the spectral and spatial characteristics
of both four-bands and six-bands images under examination.
The images generated by StyleGAN3 were compared with
those generated by ProGAN, both trained on the same dataset.
The comparison was initially conducted through visual inspec-
tion and subsequently through quantitative analysis, involving
the observation of spectral signatures in selected pixels and

evaluation using the commonly used FID metric. The use of FID
required an augmentation procedure to handle the multispectral
case. StyleGAN3 exhibited superior performance over Pro-
GAN in all cases considered. When comparing StyleGAN3 and
ProGAN for 64 × 64 tiles, FID4 values of 13.41 and 14.65 were
observed for the HR four-band images, and FID6 values of 18.97
and 72.73 for LR six-band images. In addition, when comparing
StyleGAN3 and ProGAN for larger 128× 128 tiles, FID4 values
of 22.40 and 36.38 were observed for four-band images, and
FID6 values of 35.97 and 112.35 for six-band images. However,
while distinguishing images generated by StyleGAN3 from real
ones through visual inspection alone is challenging, and the
FID values are better than those of ProGAN, StyleGAN3’s
FID values still fall far from the lower bound established by
comparing groups of real images

This can be interpreted as a sign that there is still room to
define automatic methods able to distinguish fake images from
real ones. The latter is an important conclusion considering the
serious implications of false data in terms of security and should
stimulate researchers to study new algorithms for fake image
detection. In the near future we intend to extend our study to
images with larger dimensions (beyond 128 × 128) and more
spectral bands (e.g., hyperspectral images).

APPENDIX

This appendix presents results for the 64 × 64 case study
that were omitted from this article to maintain conciseness and
clarity. These results are reported here to provide the reader with
an overall view of the findings. The organization of the results
is the same as that adopted in Section IV-B.
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Fig. 9. Real and generated HR tiles, each measuring 64 × 64 pixels, of an urban scenario. (a), (b), and (c) depict the RGB representations of images belonging to
the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B2, B3, and B4. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B3, B4, and B8. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

Fig. 10. Real and generated HR tiles, each measuring 64 × 64 pixels, of an urban scenario. (a), (b), and (c) depict the RGB representations of images belonging to
the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B2, B3, and B4. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B3, B4, and B8. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

Particularly, Figs. 8–10 depict the RGB and corresponding
CIR representations of HR images extracted from the training,
StyleGAN3, and ProGAN datasets. Conversely, Figs. 11–13
show the false-color representations of LR image datasets.

We provide some examples from both urban (see Figs. 9–11)
and nonurban scenarios (Figs. 8, 12, and 13) with reference to
both HR and LR models.

Fig. 8 shows the capability of the networks to reproduce
the pattern of nonurban scenarios with alternating bare soil,

vegetation, and woods. Fig. 12 shows a coastal area with rural
lands and several water bodies, while Fig. 13 depicts the pattern
of a typical mountainous region. Whereas, for urban scenarios,
the networks exhibit the capability to reproduce low-density (see
Fig. 10), middensity (see Fig. 9), and high-density (see Fig. 11)
urban images.

Finally, in order to give examples of the capability of the
generative networks to reproduce the spectral behavior of real
data, we compare the spectral signatures of pixels extracted from
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Fig. 11. Real and generated LR tiles, each measuring 64 × 64 pixels, of an urban scenario (a), (b), and (c) depict the RGB representations of images belonging to
the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B5, B6, and B7. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B8A,B11, and B12. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

Fig. 12. Real and generated LR tiles, each measuring 64× 64 pixels, of an nonurban scenario. (a), (b), and (c) depict the RGB representations of images belonging
to the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bandsB5, B6, andB7. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B8A,B11, and B12. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

similar classes. Fig. 14 displays the spectral signatures of the
pixels that are highlighted by colored dots in Figs. 8 and 12 (the
lines follow the color notation of the points). The first graph [see
Fig. 14(a)] shows the signatures of two vegetation pixels from
HR images, while the second graph [see Fig. 14(b)] displays

the signatures of two soil pixels from LR images. The spectral
signatures extracted from the same classes exhibit consistent
behavior. For example, also in this case, the vegetation pixels
have the typical red-edge profile in all the considered images
[see Fig. 14(a)].
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Fig. 13. Real and generated LR tiles, each measuring 64x64 pixels, of a nonurban scenario. (a), (b), and (c) depict the RGB representations of images belonging to
the Training, StyleGAN3, and ProGAN datasets, respectively, obtained by combining bands B5, B6, and B7. (d), (e), and (f) depict the corresponding false-color
representations obtained by combining bands B8A,B11, and B12. (a) Training. (b) StyleGAN3. (c) ProGAN. (d) Training. (e) StyleGAN3. (f) ProGAN.

Fig. 14. Representation of the spectral reflectance of some pixels extracted from the images in Figs. 8 and 12; the colors in the graphs indicate the points they
refer to. (a) Graphs associated with the points in Fig. 8(a) (red), Fig. 8(b) (green), and Fig. 8(c) (blue). (b) Graphs associated with the points in Fig. 12(a) (red),
Fig. 12(b) (green), and Fig. 12(c) (blue).
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