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Abstract—As a new integrity authentication technology, subject-
sensitive hashing has the ability to achieve subject-sensitive au-
thentication for high-resolution remote sensing (HRRS) images
and can provide a security guarantee for their subsequent use.
However, existing research on subject-sensitive hashing focuses
on improving the structure of the deep neural network of the
algorithm to improve the algorithm’s performance, which makes
it necessary to reconstruct the training dataset or modify the
network structure in the face of different integrity authentica-
tion requirements. In this article, we delve into the impact of
dropout on subject-sensitive hashing and propose a stepwise-drop
mechanism to address the robustness and tampering-sensitivity
requirements of subject-sensitive hashing. On this basis, a network
named stepwise-drop and transformer-based U-net (SDTU-net) is
proposed for subject-sensitive hashing of HRRS images. SDTU-net
can use our proposed stepwise-drop mechanism to determine the
drop rate of different network layers, which makes it possible
to adjust the algorithm performance without changing network
structure and training data. Experiments show that our SDTU-net
based subject-sensitive hashing has better overall performance
compared with existing algorithms, especially at medium and low
thresholds. Our approach solves the problem that the existing
algorithms cannot balance robustness and tamper sensitivity at low
thresholds.

Index Terms—Dropout, geodata security, high-resolution remote
sensing (HRRS) images, integrity authentication, subject-sensitive
hashing, transformer, U-net.

I. INTRODUCTION

H IGH-RESOLUTION remote sensing (HRRS) images
with rich information, high precision, fast information

transmission, and all-weather work [1] are widely used in the
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Fig. 1. Comparison of content after HRRS image format conversion. (a) Orig-
inal high-resolution remote sensing images (TIF format). (b) Format converted
images (BMP format).

assessment of the environment [2], disaster monitoring [3], and
other applications [4]. However, the security of the HRRS image
must be guaranteed before it can be used. If an HRRS image is
maliciously tampered with, the information carried by the HRRS
image will be distorted, and the analysis or prediction results
based on the HRRS image cannot be trusted. Additionally,
if the tampered content is primarily used by the user, user’s
conclusions based on this tampered HRRS image are wrong,
which will have a serious impact on decision-making. This
means that HRRS images can only be used well when their
content integrity is guaranteed, especially the subject-sensitive
content that users focus on.

Mainstream data security technologies, such as fragile wa-
termarking [5], cryptographic algorithms [6], and block chain
[7], are still insufficient in the integrity authentication of
HRRS images. The most prominent performance is that main-
stream security technologies implement authentication at the
binary level. This makes it impossible for them to deter-
mine whether the carrier of the data has changed or the con-
tent of the data has been tampered with. A set of opera-
tions that do not alter the content of the HRRS image are
shown in Fig. 1, original images in TIF format are shown in
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Fig. 2. Examples of subject-unrelated tampering and subject-related tamper-
ing. (a) Original high-resolution remote sensing images. (b) Tampered images
(subject-unrelated tampering). (c) Tampered images (subject-related tampering).

Fig. 1(a), and the images converted to BMP format are shown
in Fig. 1(b).

In Fig. 1, the remote sensing information carried by the images
has not changed after converting the images to BMP format,
it is the carrier of information that has been changed. In this
case, mainstream security technologies, such as cryptography
and blockchain, believe that the data have changed, which is
inappropriate.

Although perceptual hashing [8], [9], [10] can realize content-
based integrity authentication for HRRS images, it cannot carry
out stricter integrity authentication for the content that users
are interested in, and does not have subject sensitivity. A set of
tampered examples of HRRS images are shown in Fig. 2, where
Fig. 2(a) is the original HRRS images and Fig. 2(b) and (c) shows
tampered images. If the tampered areas are not pointed out, it
is difficult to determine whether and where these images have
been maliciously tampered. Moreover, the tampering shown in
Fig. 1(c) is more harmful and makes it easier for users to make
incorrect analysis results and decisions, especially for users who
take building information as their primary object. Here, the
tampering content in Fig. 2(b) and (c) is subject-unrelated and
subject-related tampering, respectively.

Subject-sensitive hashing, derived from perceptual hashing,
overcomes the above-mentioned shortcomings [11], [12] and
can realize subject-sensitive authentication. It can perform
stricter authentication on the main ground object information
used by users. However, there are still some shortcomings in ex-
isting subject-sensitive hashing, which are mentioned as follows.

1) Under the premise of maintaining tampering sensitivity,
the robustness of subject-sensitive hashing is not ideal,
especially for JPEG compression.

2) As existing subject-sensitive hashing relies too much on
the deep learning models and training sample set, subject-
sensitive hashing lacks the means to adjust the robustness
and tampering sensitivity of the algorithm in the case of
determining the training dataset and network structure.

3) Existing deep learning network models for subject-
sensitive feature extraction adopt the same dropout rate
to extract the shallow and deep features of the net-
work equally, which is detrimental to extracting robust
features.

Based on the study of the influence of dropout on subject-
sensitive hashing, we propose a stepwise-drop and transformer-
based U-net (SDTU-net) to implement subject-sensitive hashing
for the authentication of HRRS images. The main contributions
can be summarized in the following points.

1) We take a closer look at the impact of the dropout mecha-
nism on the performance of subject-sensitive hashing and
propose a stepwise-drop mechanism for neural networks
to improve the robustness of subject-sensitive hashing

2) A new deep neural network named SDTU-net is proposed
based on a stepwise-drop mechanism, which is more suit-
able for extracting subject-sensitive features.

3) SDTU-net based subject-sensitive hash algorithm is pro-
posed, which can adjust the robustness of the algorithm
without changing the training dataset and network struc-
ture.

This article is then organized as follows. The theory of subject-
sensitive hashing is briefly discussed in Section II. Section III
discusses our proposed stepwise-drop and STDU-net based
algorithm in detail. Section IV demonstrates the experimental
setup and experimental results. A discussion is presented in
Section V. Section VI presents future works and conclusions
of this article.

II. RELATED WORK

A. Perceptual Hashing and Subject-Sensitive Hashing

Perceptual hashing can map images with the same content
into the same digest as a string. It is also known as image
hashing or perceptual hash algorithm. Compared with the cryp-
tographic hash (such as MD5 and SHA1), digital signature, and
blockchain, perceptual hashing can map images with the same
content into the same hash sequences. It can be used to realize
image authentication [12], image retrieval [13], and image copy
detection [14].

Some scholars have studied perceptual hashing for remote
sensing images. Li et al. [15] proposed a hashing network based
on deep learning for remote sensing image retrieval, which is
not suitable for the integrity authentication of remote sensing
images. Ding et al. [16] proposed an improved U-net for the
perceptual hash algorithm of HRRS images, improving the
algorithm’s robustness. Zhang et al. [17] proposed a perceptual
hash algorithm combining local and global features of images,
which can locate tampering.
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With the improvement of the resolution of HRRS image, per-
ceptual hashing is gradually unable to cope with some problems
of HRRS image authentication, the more prominent problem is
that perceptual hashing cannot distinguish the key content in
HRRS images. For example, if building information is mainly
used by the users, the building information in HRRS images
should be more strictly authenticated, and the authentication
method should pay more attention to whether building informa-
tion in HRRS images has changed. This type of integrity authen-
tication, a specific type of feature, that is focused on is known as
subject-sensitive authentication. When objects and backgrounds
are complex, the insufficient feature difference leads to the fact
that perceptual hashing cannot maintain sufficient sensitivity to
a specific subject.

Subject-sensitive hashing, derived from perceptual hashing,
is also named subject-sensitive hash algorithm. Subject sen-
sitivity is the main difference between perceptual hashing
and subject-sensitive hashing [11]. Subject sensitivity makes
subject-sensitive hashing meet the integrity authentication needs
of users in different domains that are sensitive to a particular
subject and can achieve subject-related integrity authentication
with as few perceptual features as possible, avoiding too large
hash sequence. Although it is not easy to implement subject-
sensitive hashing with traditional methods, the rise of deep
learning provides a feasible way to implement subject-sensitive
hashing.

Deep learning has strong feature extraction capabilities [18]
and has been deeply studied in the field of remote sensing to over-
come problems that are difficult to solve by traditional methods.
In [19], a cloud detection method based on deep semisupervised
learning and active learning is proposed to achieve state-of-
the-art segmentation with a small number of labels. In [20], a
multistage self-guided separation network is presented for the
classification of remote sensing images, solving the problem of
unbalanced change of background and target between interclass
samples. Zhang et al. [21] proposed a structural optimization
transmission network for land-cover classification of HSI and
LiDAR data to enhance the complementary ability of multiple
sources in collaborative classification tasks.

The deep learning model for feature extraction is the key to a
subject-sensitive hash algorithm. In [11], MUM-Net is used for
subject-sensitive feature extraction. In [12], AAU-Net is used to
implement critical feature extraction tasks. In fact, other deep
learning networks, such as U-net [22], M-net [23], Attention
U-net [24], MultiResUNet [25], and Attention ResU-Net [26],
can be used for subject-sensitive feature extraction.

B. Dropout

The difficulty of deep learning based subject-sensitive hash
algorithm lies in how to balance the robustness of the algorithm
with tampering sensitivity [12], and dropout technology can
improve this difficulty to some extent.

Dropout [27] is a generalization technique for deep neural
networks. Dropout randomly selects a subset of the inputs from
each training iteration to prevent the trained network from
overfitting. Several variants of dropout have been proposed for

various learning tasks. Ko et al. [28] proposed controlled dropout
to facilitate the reduction of training time and memory usage.
Inoue et al. [29] presented multisample dropout, which is an
enhanced dropout technique. Different from the original dropout
randomly discards the neurons, multisample dropout creates
multiple dropout samples. Liu et al. [30] developed β-dropout
that unifies discrete dropout with continuous dropout, which can
derive approximate Gaussian dropout and Bernoulli dropout. To
solve the problem that the transformer is prone to overfitting
with an insufficient amount of training data, Li et al. [31]
developed DropKey to improve the dropout technique in ViT
(Vision Transformer). DropKey implicitly assigns an adaptive
operator to each attention block by randomly dropping part of the
key to constrain the attention distribution. Lu et al. [32] proposed
a regularization algorithm named MultiDrop, which drops some
random tasks in optimization.

Different from other applications of deep learning such as
object detection and instance segmentation, subject-sensitive
hashing is not the richer the extracted features, the better: if
too much information is extracted, the subject-sensitive hash al-
gorithm will have to process too many subject-unrelated features
when generating subject-sensitive hash sequences, which is not
conducive to algorithm’s robustness; if image feature (especially
subject-related feature) extraction is insufficient, tampering sen-
sitivity of the algorithm will be reduced.

Inspired by DropKey [31], we propose a new drop mecha-
nism named stepwise drop to overcome the above-mentioned
problems. Stepwise drop enables deep neural networks to adopt
different drop rates at different network layers to reduce the
impact of shallow features on the algorithm’s robustness while
extracting more deep features to enhance tampering sensitivity.

C. Transformers

Transformer has been successfully applied to application
research of remote sensing images, providing a new idea to
solve the problems of insufficient robustness faced by subject-
sensitive hashing. Chen et al. [33] employed a pure multiscale
transformer for captioning of remote sensing images, which can
effectively generate specific types of captions. Zhang et al. [34]
built a dual stream network (DTHNet) based on a transformer
for shadow extraction of remote sensing images. Drawing on
the principle and structure of TransUNet [35], Wu et al. [36]
proposed a multilevel TransUNet (MTU-net) for multilevel
feature extraction of remote sensing images. He et al. [37]
proposed Swin Transformer embedding U-net (ST-Unet) for
remote sensing image semantic segmentation.

Taking advantage of the transformer in feature extraction,
combined with our proposed stepwise-drop mechanism, we de-
sign a novel stepwise-drop and transformer-based U-net (SDTU-
net) to achieve subject-sensitive feature extraction

III. METHOD

In this section, we introduce the proposed stepwise-drop
mechanism and SDTU-net based subject-sensitive hash algo-
rithm in detail. First, our proposed stepwise-drop mechanism is
introduced. The network structure of SDTU-net is described
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subsequently. Finally, the SDTU-net based subject-sensitive
hash algorithm is introduced.

A. Stepwise Drop

Stepwise drop is a mechanism for determining the drop rate
of each layer in an encoder–decoder network, making different
layers of the network adopt different dropout rates. The stepwise-
drop mechanism is stated as follows.

1) For the encoder stage, set two initial values TopKey
and MinusKey, which, respectively, represent the initial
drop rate at the beginning of the encoder stage and the
decrement value. For the decoder stage, two initial values,
BotKey and PlusKey, are set to represent the initial value
of the drop rate of the decoder stage and the value of each
increase.

2) Let EnNum represents the block number of the encoder,
then

droprateEnNum
Encoder=TopKey − (EnNum−1)×MinusKey.

(1)
The drop rate for each block in the encoder stage can be

expressed as follows:

encoder_dropEnNum=

{
droprateEnNum

Encoder

0, if droprateEnNum
Encoder< 0

. (2)

3) Let DeNum represents the block number of the decoder,
then

droprateDeNum
Decoder= BotKey − (DeNum− 1)× PlusKey.

(3)
The drop rate for each block of the decoder stage can be

expressed as follows:

decoder_dropDeNum
Decoder=

{
droprateDeNum

Decoder

0, if droprateDeNum
Decoder< 0

. (4)

It can be seen from (1)–(4) that the output drop rate of stepwise
drop decreases gradually in the encoder stage, whereas the drop
rate increases gradually in the decoder stage, and the minimum
drop rate of both the encoder and decoder is 0.

In fact, DropKey [31] also sets a different drop rate for each
network layer, but it is quite different from our stepwise-drop
mechanisim.

1) Different from DropKey, which sets Key as a drop object,
stepwise-drop sets the drop rate of each module by setting
the initial drop rate, and value of each increase and de-
crease to adjust the algorithm’s robustness and tampering
sensitivity.

2) The drop rate of DropKey is decreasing layer by layer,
whereas the drop rate of our stepwise drop is increasing
in the decoder stage and decreases in the encoder stage.

3) Our stepwise drop produces a series of discrete drop
rates, mainly for the convolutional neural network (CNN),
whereas DropKey is for transformers.

B. Architecture of SDTU-Net

The detailed structure of our proposed SDTU-net is shown
in Fig. 3. The overall structure of SDTU-net is similar to that
of U-net [22] and TransUnet [35]. SDTU-net takes the prepro-
cessed HRRS image as input and consists of an encoder part, a
transformer block, and a decoder part.

1) Encoder: The encoder part of SDTU-net is divided into
four modules, each module is similar to the original U-net’s
encoder, consisting of convolutional layers, a pooling layer (the
last module does not contain a pooling layer), batch normaliza-
tion (BN) layers, and dropout layers. The main difference from
U-net’s encoder is that the drop rate of the encoder of STDU-net
is determined by stepwise drop mechanism, whereas the drop
rate of U-net’s encoder is constant.

2) Decoder: The decoder part of SDTU-net is divided into
three modules, each consisting of two convolutional layers, one
upsampling layer, one concatenation layer, and one dropout
layer. As with STDU-net’s encoder, the decoder’s drop rate is
also determined by a stepwise drop mechanism.

3) Transformer Block: SDTU-net’s transformer block dif-
fers from TransUnet in that it has only 4 transformer layers
instead of 12. This is mainly because the transformer is com-
putationally intensive, and too many transformer layers do not
significantly improve the performance of the subject-sensitive
hash algorithm. A more detailed analysis will be carried out in
Section V-C.

Stepwise drop enables SDTU-net to extract HRRS image
features with stronger subject sensitivity. Shallow networks of
deep neural networks extract low-dimensional visual features,
whereas deep networks are more suitable for extracting crude
but complex essential information. If a shallow network extracts
too many features, the algorithm’s robustness would be affected.
If there is no stepwise drop, the structure of SDTU-net is similar
to TransUnet [35] (except for the number of transformer layers).
TransUnet has good feature extraction capabilities, but it is not
suitable for direct use in implementing the subject-sensitive hash
algorithm due to its poor robustness, which will be demonstrated
by the experiments in this article.

C. Overview of the SDTU-Net Based Subject-Sensitive Hash
Algorithm

As shown in Fig. 3, the main steps of the SDTU-net based
subject-sensitive hash algorithm include preprocessing of the
HRRS image, SDTU-net-based feature extraction, feature com-
pression, and encoding.

In preprocessing, the HRRS image is resized to 256 × 256
pixels to meet the input requirements of SDTU-net. In the
feature compression stage, principal component analysis is used
to decompose the feature matrix extracted by SDTU-net, and the
first column of principal components after matrix decomposition
is extracted as the subject-sensitive feature, which is binary
encoded by the low-bit priority principle to generate a 128-b
hash sequence.

The hash sequence of the original HRRS image is transmitted
and stored with the corresponding HRRS image. If an HRRS
image needs to be verified whether it has been tampered with, the
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Fig. 3. Subject-sensitive hash algorithm based on SDTU-net.

hash sequence of this HRRS image is generated and compared
with the hash sequence of the original image. Our algorithm
also uses normalized Hamming distance (N-Dis) to compare two
hash sequences: if N-Dis is greater than the pre-set threshold T,
this HRRS image has been tampered with.

N-Dis between two hash sequences is shown as follows:

N −Dis =

(
128∑
i=1

|SH (i)− SH ′ (i)|
)
/128 (5)
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where SH and SH’ represent hash sequences of the HRRS image
to be authenticated and the original HRRS image, respectively.

IV. EXPERIMENTS AND ANALYSIS

In this section, details of model training and experimental
data are detailed first. Then, a set of integrity authentication
examples is shown to initially compare each algorithm. Next,
we focus on testing the tampering sensitivity and robustness of
each comparison algorithm.

A. Datasets and Implementation Details

1) Datasets: The experimental data in this article includes
two categories: datasets used to train deep neural networks,
and datasets used to test the subject-sensitive hash algorithm.
SDTU-net is trained using the same training dataset in [11] and
[12], which is a dataset based on WHU building dataset [38]
and contains 3166 pairs of training samples. Datasets testing
the performance of subject-sensitive hashing algorithms will be
presented in Section IV-C.

2) Training Settings: Our SDTU-net is implemented based
on Keras 2.9.0 (with TensorFlow as the backend). In the training
process of SDTU-net, the number of epochs is set to 100,
and batch size is 8; the Adam optimizer is used with an ini-
tial learning rate of 0.0001. Since the proportion of pixels
occupied by edge features of the object is generally low in
the training sample, we use the binary focal loss as the loss
function and set the parameters alpha and gamma to 0.25 and
2, respectively. Gelu is used as the activation function of mul-
tilayer perceptron in the transformer block, Sigmoid is used
as the activation function of the final output layer of SDTU-
net, and the rest of the network layers of SDTU-net all use
Relu as activation function. Through multiple experiments, we
set (Topkey, MinusKey) and (BotKey, PlusKey) to (0.4, 0.1)
and (0.1, 0.05). The impact of the initial value of stepwise
drop on algorithm performance will be tested and analyzed
in Section V-B.

To compare the performance of SDTU-net, we take MUM-
Net [11], U-net [22], M-net [23], Attention U-Net [24], Mul-
tiResUnet [25], Attention ResU-Net [26], TransUnet [35], and
Swin-Unet [39] as comparison models. Among them, TransUnet
contains 12 transformer layers; each module of Swin-Unet con-
tains 2 transformer blocks, and all dropouts are set to 0. The
above-mentioned models are all built by the Keras framework.
The training process of these models uses the same dataset as
SDTU-net, and the epochs and batch size are also the same as
SDTU-net.

To maintain algorithm compatibility, we take Python as a
programming language to implement each model-based subject-
sensitive hash algorithm. All experiments were performed on a
workstation with an RTX4090 GPU, Intel I7-13700K CPU, and
32G DDR4 RAM.

B. Examples of Integrity Authentication

In this section, we use a set of instances to make a preliminary
comparison of each algorithm, and the HRRS images used for

Fig. 4. HRRS images for integrity authentication. (a) Original HRRS image.
(b) Format converted image (TIFF to BMP format). (c) Invisible watermark
embedding. (d) JPEG compressed image. (e) Subject-unrelated tampered image.
(f) and (g) Subject-related tampered image. (h) Randomly tampered image (24×
24 pixel).

integrity authentication are shown in Fig. 4. The original HRRS
image is shown in Fig. 4(a), stored in TIF format. Fig. 4(b)
shows an example of image format conversion (TIF format to
BMP format). Fig. 4(c) is the image after an invisible watermark
is embedded (128-b watermark information is embedded in a
single band using the least significant bit algorithm). Fig. 4(d)
shows the results of 95% JPEG compression. Fig. 4(e)–(g) shows
the results of Fig. 4(a) being tampered with subject-unrelated
tampering and subject-related tampering, respectively. Fig. 4(h)
is the image of being tampered with a random 24 × 24-pixel
size area in Fig. 4(a).

Obviously, the content of the formatted [see Fig. 4(b)] im-
age, watermark embedded image [see Fig. 4(c)], and JPEG
compressed image [see Fig. 4(d)] do not differ from that of
the original image [see Fig. 4(a)]. However, since the original
HRRS image is very different from the HRRS images shown
in Fig. 4(b)–(d) at the binary level, cryptography-related tech-
niques (such as MD5, DSA, and blockchains) treat the images
shown in Fig. 4(a)–(d) as different data. It is not appropriate to
consider these four images as different data, after all, users are
concerned about the content carried by HRRS images, not the
carrier itself.

The contents of HRRS images shown in Fig. 4(e)–(h) are
significantly different from Fig. 4(a), that is, they have been
tampered with. Among them, the tampered content in Fig. 4(e) is
that the woods have been altered, not related to the building, that
is, the tampering is subject-unrelated tampering. The tampering
in Fig. 4(f)–(g) is subject-related tampering. Fig. 4(h) shows
positional random tampering.

Each comparison algorithm was used to generate hash se-
quences of the HRRS image shown in Fig. 4(a)–(h). Then,
N-Dis between the hash sequence of the original image shown
in Fig. 4(a) and the hash sequences of the images shown in
Fig. 4(b)–(h) is calculated, as shown in Table I.

The authentication results based on Table I are shown in
Tables II and III, in which thresholds T is set to 0.02 and 0.05,
respectively.
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TABLE I
N-DIS OF EACH ALGORITHM BASED ON DIFFERENT MODELS

TABLE II
INTEGRITY AUTHENTICATION RESULT BASED ON TABLE I (THRESHOLD T IS 0.01)

As seen from Table II, Attention U-Net, Attention
ResU-Net, and our SDTU-net based algorithms maintain ro-
bustness to JPEG when threshold T is 0.01, and other algo-
rithms fail to keep robustness to JPEG (95%) compression.
However, Attention ResU-Net based algorithm exhibits poor
tampering sensitivity, it failed to detect the tampering in Fig. 4(e)
and (h). Algorithms based on Swin-Unet and TransUnet, two
transformer-based models, fail to maintain robustness to JPEG
compression.

From Table III, it can be seen that each algorithm keeps
robustness to format conversion and JPEG compression when

threshold T increases to 0.05, whereas M-net, MultiResUnet,
and Attention ResU-Net based algorithms have reduced tam-
pering sensitivity, and they failed to detect all of the malicious
tampering shown in Fig. 4(f)–(h).

An ideal subject-sensitive hash algorithm should have the
ability to distinguish subject-related tampering from subject-
unrelated tampering. Combined with the results of subject-
related tampering detection, algorithms based on MUM-Net,
MultiResUnet, Attention U-Net, Swin-Unet, TransUnet, and
our SDTU-net can achieve subject-sensitive authentication by
setting different thresholds.
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TABLE III
INTEGRITY AUTHENTICATION RESULT BASED ON TABLE I (THRESHOLD T IS 0.05)

Based on Tables II and III, we can see that our algorithm and
Attention U-Net based algorithm performed better in this set of
integrity authentication examples.

C. Robustness Testing of the Algorithms

To compare the robustness of each algorithm, we removed
some unsatisfactory HRRS images in dataset Datasets10000
(containing 10000 images) of [11] and added some HRRS
images from DOTA and GF-2 satellite to dataset Datasets10000
to construct a new dataset containing 11000 images, named
Datasets11000. Each image in Datasets11000 is 256 × 256 pixels
in size and stored in TIF format.

First, each algorithm’s robustness to JPEG compression is
tested. HRRS image in Datasets11000 is compressed (95% JPEG
compression) based on OpenCV’s interface. Here, the propor-
tion of HRRS images with normalized Hamming distances
higher than threshold T is used to describe algorithm’s ro-
bustness: the lower the proportion, the better the robustness of
the algorithm at the corresponding threshold T. The results of
the robustness test to JPEG (95%) compression are shown in
Table IV. From Table IV, we can see that our SDTU-net based
algorithm is the best of these algorithms, especially at a lower
threshold such as 0.02. At medium thresholds, such as 0.05, our
algorithm is slightly more robust than MUM-net based algo-
rithms and significantly better than other algorithms. At higher
thresholds, such as 0.1, each algorithm’s robustness to JPEG
(95%) compression is ideal, but a higher threshold will result in
a decrease in algorithm’s tampering sensitivity, which means that
higher thresholds are often not used in actual integrity authen-
tication. In short, our SDTU-net based algorithm’s robustness
to JPEG (95%) compression is not only a great improvement
over subject-sensitive hashing based on CNN networks such

TABLE IV
COMPARISON OF ROBUSTNESS TO JPEG (95%) COMPRESSION

as M-net and MUM-net, but also better than algorithms based
on attention mechanism models such as Attention ResU-Net,
Attention U-net, and TransUnet.

Next, each algorithm’s robustness to digital watermark em-
bedding is tested. For each image in Datasets11000, we use least
significant bit (LSB) algorithm to embed 24 b of information in
each of its bands, not just one band. The test results are shown
in Table V.
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TABLE V
ROBUSTNESS TEST COMPARISON OF WATERMARKING EMBEDDING

From Table V, it can be found that our algorithm’s robustness
to multiband watermark is inferior to Attention ResUNet and
Swin-Unet based algorithms. However, as can be seen from
Sections IV-D and IV-E, Attention ResUNet and Swin-Unet
based algorithms have poor tampering sensitivity and compu-
tational performance, which makes the overall performance of
the two algorithms unsatisfactory.

D. Tampering Sensitivity Testing of Algorithms

In this section, dataset Datasets11000 is still used to test each
algorithm’s tampering sensitivity.

First, each algorithm’s tampering sensitivity to rectangular
area tampering with random locations is tested: Each image in
Datasets11000 is randomly selected for an area of 24× 24 pixels,
and each pixel in the region is set to a random value to simulate
image tampering in reality. A set of HRRS images before and
after tampering is shown in Fig. 5.

Here, we also use the proportion of tampered images with
normalized Hamming distance (N-Dis) above the threshold T
to describe the algorithm’s tampering sensitivity: the higher the
proportion, the better the tampering sensitivity. The results are
shown in Table VI.

From Table VI, it can be found that our SDTU-net-based
algorithm’s tampering sensitivity is similar to MUM-net and
TransUnet based algorithms, stronger than MultiResUnet and
Attention ResU-Net based algorithms, and slightly weaker than
that of M-net and U-net based algorithm at a higher threshold
(such as T = 0.1).

Next, each algorithm’s tampering sensitivity to random pixel
tampering is tested: for each image in Datasets11000, 64 pixels
are randomly selected in each image to set to 255. The results
are shown in Table VII.

Fig. 5. Examples of tampering with 24 × 24 pixels area. (a) Original images.
(b) Tampered images.

TABLE VI
TAMPERING SENSITIVITY TEST FOR 24 × 24 PIXELS TAMPERING

From Table VII, it can be seen that our algorithm is optimal
except that attention U-Net based algorithm has better tamper
sensitivity at a high threshold (T = 0.1). Attention ResUNet and
Swin-Unet based algorithms have poor tampering sensitivity to
random pixel tampering.

Subject sensitivity is the main difference between perceptual
hashing and subject-sensitive hashing, which means subject-
sensitive hashing is more effective for detecting subject-related
tampering. Since no dataset for testing subject-related tampering
is now exposed, we build a dataset containing 400 tampering
instances to test the algorithm’s subject sensitivity. This dataset
takes buildings as subject and contains 200 tampering instances
for adding buildings and 200 tampering instances for deleting
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TABLE VII
TAMPERING SENSITIVITY TEST FOR MODIFICATION OF 64 RANDOM PIXELS

Fig. 6. Instances of Subject-related tampering (taking buildings as subjects).
(a) Original images. (b) Tampered images.

buildings. Three tampering instances of this dataset are shown
in Fig. 6. The tampering methods of these three instances are
adding buildings, deleting buildings, and smearing the contents
of buildings. Test results are shown in Table VIII.

As seen from Table VIII, our SDTU-net based algorithm has
good sensitivity to subject-related tampering and is only slightly
inferior to TransUnet based algorithm at a higher threshold
(T = 0.1), and overall better than other algorithms.

E. Comparison of Computing Performance

Since deep learning-based subject-sensitive hashing needs to
load the trained model first every time it starts computation, the
average time for the algorithm to calculate a hash sequence of
different numbers of HRRS images may be different. To avoid

TABLE VIII
TAMPERING SENSITIVITY TEST FOR SUBJECT-RELATED TAMPERING

the chance caused by a single amount of computation, we built
four test datasets based on Datasets11000, each containing 10,
200, 2000, and 10000 HRRS images.

We evaluate the computational performance of the algorithm
from three perspectives: total time, average time and frames per
second (FPS). The test results are shown in Table IX.

From Table IX, the following conclusions can be drawn.
1) Each algorithm exhibits different computational perfor-

mance under different datasets. The average computation
time when there is less test data (such as ten images)
is greater than that when the data volume is large. Our
SDTU-net-based algorithm achieves stable computational
speed at several 2000 HRRS images per batch.

2) The computational performance of algorithms based
on traditional CNNs is generally better than that of
transformer-based algorithms. After all, the transformer
itself has a high level of computational complexity.

3) The computational performance of our SDTU-net-based
algorithm is at a medium level among these algorithms.
It is better than that of Swin-Unet, TransUnet, Attention
ResU-Net, and MultiResUnet, but not as good as the
algorithms based on MUM-net, U-net, M-net, and Atten-
tion U-net algorithms. This means that it is necessary to
improve the computational performance of the algorithm
in our next research.

V. DISCUSSION

A. Comprehensive Evaluation of Algorithm Performance

An ideal subject-sensitive hash algorithm (also known as
subject-sensitive hashing) should have both high robustness and
high tampering sensitivity. However, robustness and tampering
sensitivity are often contradictory, and some algorithms’ tam-
pering sensitivity is reduced when robustness is improved: for
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TABLE IX
TESTS OF COMPUTE PERFORMANCE

example, Attention ResUNet based algorithm performs well in
robustness, but it does not perform well in tamper sensitivity.

In actual integrity authentication, low thresholds are often
used to ensure that malicious tampering is detected. In this way,
how to make the algorithm have good robustness while keeping
high tamper sensitivity has become a key issue. According to
the experimental results shown in Tables IV–IX, it can be found
that our SDTU-net based algorithm has the best comprehensive
performance.

1) Robustness: In general, the robustness of our algorithm is
better than that of existing algorithm, especially the robustness of
JPEG (95%) compression. Although Attention ResUNet based
subject-sensitive hash algorithm is more robust to LSB digital
watermark at low thresholds, the difference is not obvious, and
the robustness at high thresholds is still not as good as our
algorithm.

2) Tampering Sensitivity: From the experimental results
shown in Tables VI–VIII, the tampering sensitivity of our
algorithm is at the same level as that of existing algorithms,
and there is no obvious gap.

3) Computing Performance: The computational perfor-
mance of each algorithm participating in the comparison
varies greatly, whereas our SDTU-net-based algorithm is at
the medium level. Although our SDTU-net is better than other
transformer-based models such as Swin-Unet and TransUnet, it
is significantly inferior to traditional CNN network models such
as U-net and M-net.

4) Security: Security of a subject-sensitive hash algorithm
mainly refers to unidirectionality and uninterpretability of deep
neural networks used by subject-sensitive hashing satisfies this
well. As each algorithm used a deep neural network to extract
the feature of HRRS images, the security of each algorithm is at
the same level.

TABLE X
ROBUSTNESS TO JPEG COMPRESSION UNDER DIFFERENT MULTIDROP

(T = 0.02)

B. Impact of Stepwise Drop on Algorithm’s Performance

In this section, the impact of stepwise drop on algorithm
performance is tested. While keeping the network structure as
shown in Fig. 3 unchanged, we set (Topkey, MinusKey) and
(BotKey, PlusKey) to different values, and constructed 12 sets
of stepwise-drop settings. In fact, this means that 12 different
models have been built. For example, Decrease = 0.0 means
that the drop rate in the encoder stage is a constant value, and
Increase = 0.0 means that the drop rate in the decoder stage is a
constant value.

After training these 12 models using the same training dataset,
the algorithm’s robustness to JPEG compression and tampering
sensitivity to random tampering in 24 × 24 pixel region under
the threshold T = 0.02 were tested, and the results are shown in
Tables X and XI.
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TABLE XI
TAMPERING SENSITIVITY TO 24 × 24 PIXELS TAMPERING UNDER DIFFERENT

MULTIDROP (T = 0.02)

As can be seen from Table X, when (Topkey, Decrease)
and (Bottomkey, Increase) are set to (0.4, 0.1) and (0.1, 0.05)
respectively, the algorithm’s robustness is the best, and this set
of values is exactly what our SDTU-net based algorithm uses.

Similarly, as can be seen from Table XI, when (Topkey,
Decrease) and (Bottomkey, Increase) are set to (0.4, 0.1) and
(0.1, 0.05), tampering sensitivity is also the best, which means
that this set of stepwise drop can make the algorithm have good
tamper sensitivity and robustness at the same time.

Combining Tables X and XI, it can be found that different
drop rates at different layers of deep neural networks have a
large impact on the performance of a subject-sensitive hash
algorithm, and our stepwise-drop mechanism is effective for
improving the subject-sensitive hash algorithm. The setting of
the stepwise drop is a whole: coordinating the different drop
rates of the encoder and the decoder can make the model optimal,
and adjusting the drop rate of the encoder stage or decoder stage
alone cannot make the algorithm have a good comprehensive
performance. The initial value of the stepwise drop that we
set in Section IV can optimize the overall performance of our
algorithm.

C. Effect of the Number of Transformer Layers

In addition to stepwise drop, another difference between our
SDTU-net and TransUnet is that there are4 transformer layers
in STDU-net and 12 transformer layers in TransUnet. This
is not only because transformer is computationally intensive,
but more importantly, too many transformer layers have lim-
ited improvement on the tampering sensitivity of an algorithm,
and will reduce the robustness. For the subject-sensitive hash
algorithm, overextracted features will affect the algorithm’s
robustness, whereas insufficient extracted features will reduce
the algorithm’s tampering sensitivity.

To test the effect of different number of transformer layers on
the performance of subject-sensitive hashing, we build networks
with 2, 4, 8, and 12 transformer layers while keeping network
structure and stepwise-drop parameters unchanged. The robust-
ness to JPEG compression and tampering sensitivity to random
tampering in 24 × 24 pixel region of the algorithms under
different transformer layers is tested. Here, (Topkey, MinusKey)

TABLE XII
ROBUSTNESS TO JPEG (95%) UNDER DIFFERENT TRANSFORMER LAYERS

(T = 0.02)

TABLE XIII
TAMPERING SENSITIVITY TO 24 × 24 PIXELS TAMPERING UNDER DIFFERENT

TRANSFORMER LAYERS (T = 0.02)

and (Botkey, PlusKey) are set to (0.4, 0.1) and (0.1, 0.05),
consistent with Section IV.

As can be seen from Table XII, an algorithm’s robustness to
JPEG compression is the best when the number of transformer
layers is 4, and increasing transformer layers does not make the
algorithm more robust.

From Table XIII, it can be found that the model with 4 trans-
former layers performs better at a low and medium threshold,
although it has a weaker tamper sensitivity at a high threshold
than the model with 12 transformer layers. Moreover, the model
with four transformer layers has better tamper sensitivity than
models with two and eight transformer layers.

Combined with Tables XII and XIII, it can be seen that the
algorithm’s overall performance is optimal when there are 4
transformer layers, and increasing the number of transformer
layers does not have a significant improvement on the algo-
rithm’s performance.

VI. CONCLUSION

In this article, a new deep neural network model named
SDTU-net for the subject-sensitive hash algorithm of HRRS
images is proposed. The drop rate of different network layers of
SDTU-net is determined according to our proposed stepwise-
drop mechanism. Based on the experiments and discussions,
the following conclusions can be drawn.

1) Dropout has a great impact on the tampering sensitivity
and robustness of subject-sensitive hashing.
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2) Our proposed stepwise drop can significantly adjust the
subject-sensitive hash algorithm’s performance by setting
different drop rates for different layers of deep neural
networks.

3) The SDTU-net based algorithm has good comprehen-
sive performance, especially at medium and low thresh-
olds, which solves the problem that existing algorithms
cannot balance robustness and tamper sensitivity at low
thresholds.

However, due to the high computational complexity of the
transformer, the computational efficiency of our SDTU-net is
inferior to that of pure convolutional neural networks such
as M-net. On the other hand, existing subject-sensitive hash
algorithms are mostly for a single subject and do not have
the sensitivity to multisubject. Therefore, our future research
include improving the computational efficiency of algorithms
and exploring multisubject-sensitive hashing.
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