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Fusing Global and Local Information Network for
Tassel Detection in UAV Imagery

Jianxiong Ye and Zhenghong Yu

Abstract—Unmanned aerial vehicles (UAVs), equipped with sen-
sors, have made a significant impact in the field of agricultural
analysis. Maize, being one of the most vital crops worldwide, is
intricately linked to its yield and the growth of tassels. Leveraging
UAV imagery for the automatic monitoring of maize tassels holds
the potential to drive the development of intelligent maize culti-
vation. Current research methods, nevertheless, are limited and
lack robustness. To address the challenge of tassel detection in UAV
images, we propose an innovative network, termed FGLNet. This
network models the backbone with a 16x down-sampling to retain
richer pixel information and enhances performance by effectively
fusing global and local information through weighted mechanisms.
Moreover, the scarcity of tassel data presents a substantial con-
straint. In this article, we publicly release a new dataset, named the
maize tassels detection and counting UAV (MTDC-UAV), featuring
annotated bounding boxes, to advance research in the agricultural
domain. Although tassel detection and counting in aerial images
pose formidable challenges, our approach demonstrates remark-
able accuracy in evaluations based on the MTDC-UAV dataset. It
achieves a detection AP50 of 0.837 and a counting R2 of 0.9409, all
while maintaining a parameter count of just 0.77 M. This level
of performance considerably outperforms other state-of-the-art
computer vision methods. Overall, this research not only introduces
innovative concepts but also provides worthwhile references and a
solid data foundation for future studies.

Index Terms—Computer vision, detection and counting,
information fusion, maize tassel, unmanned aerial vehicle (UAV).

I. INTRODUCTION

MAIZE, as one of the world’s most important crops, serves
multiple purposes, providing food, feed, and industrial
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raw materials, thereby exerting a profound impact on agricul-
tural economies [1], [2]. The performance of maize yield is
closely tied to the growth of tassels. Consequently, monitoring
the growth status of maize tassels is critically important for
agricultural activities, such as breeding, field management, phe-
nological observations, and yield prediction [3], [4]. Traditional
agricultural methods typically rely on manual labor for this task,
which is subjective, time-consuming, labor-intensive, and inef-
ficient. Fortunately, with computer vision technology advancing
rapidly, crop monitoring is moving from manual to automated
image processing solutions. This approach offers advantages
like noninvasiveness, continuity, and intuitiveness. Some widely
studied cases include the detection of wheat heads [5], counting
maize tassels [6], and recognizing crop seedlings [7].

In recent years, high-performance graphics processing units
(GPUs) and ever-increasing computational capabilities have had
a significant impact on the analysis of maize tassels in agri-
cultural fields using sensor-equipped unmanned aerial vehicles
(UAVs). Researchers can easily access high-resolution plant
growth images for automated phenotypic trait analysis. Some
typical research cases include Liu et al. [8], who used ResNet
as the backbone for Faster R-CNN to detect tassels in high-
resolution images. Regrettably, Faster R-CNN only utilized a
single layer of feature mapping, limiting detection accuracy due
to feature representation and a small receptive field. To improve
processing speed, Song et al. [9] embedded channel attention
into the YOLOX model to detect tassels in low-altitude UAV
images. Attention, however, only provided partial foreground
guidance and did not directly enhance small object detection
accuracy. In order to address this, Liu et al. [10] introduced an
enhanced approach, YOLOv5-tassel, by fusing shallow informa-
tion into BiFPN to enhance perception of small objects. Even so,
its structure is complex and comes with a substantial number of
parameters. During recent research, Yu et al. [11] proposed an
innovative deep convolutional network, TasselLFANet, which
features a concise and efficient global architecture. It includes a
16x down-sampling layer in the encoder and utilizes two feature
layers in the decoder to accomplish the task of fast detection
and counting in high-resolution images of densely populated
tassels in the natural canopy layer. It is worth noting that using a
16x down-sampling layer in the encoder for high-altitude UAV
image detection offers notable advantages due to higher spatial
resolution, preserving more detailed information at each pixel
position.

Detecting tassels in RGB images acquired by UAVs is a rather
challenging task, especially since the objects of interest are
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typically small in size. In the context of small object detection,
low-level convolutional neural network features often exhibit
higher effectiveness [12]. Nevertheless, existing UAV object de-
tection methods often employ feature extraction networks with
large down-sampling factors to obtain higher-level features [13],
[14]. Inevitably, such large strides tend to compress the feature
information of small objects into small points or even make them
disappear in low-resolution feature maps due to pixel limitations.
A common solution to this challenge is to introduce additional
branches that fuse multiscale information with the output feature
set [15], [16], [17]. Nonetheless, this approach is not always
efficient because there are distinct semantic differences between
different layers. For instance, shallow responses typically in-
clude more detailed spatial features, such as edges, colors, and
textures, which are crucial for precise object localization. In
contrast, high-level responses emphasize semantic information,
including object categories, shapes, and abstract features. Hence,
the effective detection of objects profoundly depends on the
integrated use of multiscale and deep-level information [18].
While TasselLFANet may have achieved success, the impor-
tance of high-level features should not be overlooked, as they
can capture more representative semantic information, aiding in
understanding the context and context of the object. To fully
harness the advantages of both, we introduce an innovative
network architecture called FGLNet. This network focuses on
modeling the backbone with a 16x down-sampling layer to
preserve richer small object information. It generates a global
feature set by fusing multiscale feature layers. Subsequently, this
global information is fused with two critical local feature layers,
facilitating the organic integration of information. Finally, the
two branches fuse their outputs through the learning of nonlinear
weight combinations.

On the other hand, datasets hold an extremely important
position in this field. Unfortunately, there has not been a dataset
available for the UAV maize tassel detection research so far. We
noticed that Lu et al. [19] had annotated a maize tassels counting
UAV (MTC-UAV) dataset with point annotations. Building upon
their annotated points, we took the initiative to add bounding
box annotations to this dataset, and we named it maize tassels
detection and counting UAV (MTDC-UAV). Simultaneously,
we decided to make this dataset publicly available to promote
further research in the field of agricultural remote sensing.

Our main contributions include the following.
1) FGLNet: A novel convolutional network that effectively

fuses modeled global information with local information
to enhance performance.

2) MTDC-UAV: A dataset for the UAV-based maize tassel
detection and counting with bounding box annotations.

3) In the evaluation on the MTDC-UAV dataset, we demon-
strate state-of-the-art performance compared to various
advanced methods.

II. MATERIALS AND METHODS

A. Dataset Processing

Before proceeding with the introduction, let us review
the MTC-UAV dataset. The image capture experiment was
conducted at China Agricultural University during the spring

sowing season of 2019, where a diverse array of over 400 maize
varieties was meticulously planted. Different varieties were ran-
domly distributed across various small plots, each replicated
six times. Each microplot measured 5 m in length and 0.6
m in width. The imaging process took place under favorable
conditions, capturing scenes on clear sunny, overcast, and cloudy
days. The resulting dataset comprises 306 images acquired by
a UAV flying at an altitude of 12.5 m, with a resolution of
5472 × 3648 pixels. Among these, 200 images are allocated
for training, while the remaining 106 are designated for testing.
Each image encompasses a range of 36–550 tassels, covering
approximately one hectare of experimental farmland. The cam-
era has a focal length of 28 mm, resulting in a ground sampling
resolution of roughly 0.3 cm/pixel. The annotation process for
the MTDC-UAV dataset involved the use of the LabelImg an-
notation tool [20]. In Fig. 1, we present an annotation example.
It should be emphasized that annotating such small instances
is highly challenging. Therefore, we annotated only the 200
images in the training set, while the remaining 106 images were
used for the counting task. Although the annotation process was
time-consuming (taking approximately one month), it proved
to be meaningful and valuable. What is more, we encountered
difficulties when attempting to directly train on these images.
Largely, it is because the down-sampling factor of the neural
network has led to the loss of detailed information regarding the
tassels in the UAV imagery. A straightforward solution would
be to enhance the input resolution, but this undoubtedly incurs
a significant increase in computational expenditure. So for the
annotated images, we employed a beneficial technique by evenly
splitting each image into four parts, as illustrated in Fig. 2. This
resulted in a total of 800 images. It should be noted that the
annotation file for the corresponding image will also be split into
four correspondingly, and the bounding box that exceeds the split
size will be set back to the split boundary value. This is similar to
annotating a partially obscured/visible tassel. By employing the
splitting approach, the feature map preserves a greater amount of
spatial information, thereby assisting in the accurate localization
and capturing of intricate tassels details. Furthermore, it also
proves beneficial in alleviating the demands placed on computa-
tional resources. In summary, the training set of the MTDC-UAV
dataset comprises 500 segmented images, with the remaining
300 images used for testing detection performance. As for the
106 unsegmented images with point annotations, we employed
them for evaluating the model’s counting performance.

B. FGLNet Architecture

We noticed that Wang et al. [21] proposed a Gold-YOLO
based on a gather-and-distribute mechanism. It achieves more
efficient information interaction and fusion by uniformly ag-
gregating and distributing features from different levels on a
global scale. Moreover, Yu et al. [11] recently achieved advanced
results in maize tassel detection and counting. Their research
suggests that in agricultural scenarios, modeling the backbone
network with a 16x down-sampling layer is sufficient and con-
tributes to building a concise and efficient architecture. Inspired
by these findings, we adopt an efficient strategy to fuse global
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Fig. 1. Example of bounding box annotation in the MTC-UAV dataset, with reference to existing point annotations during the labeling process.

Fig. 2. Data processing, the left is the original image of the MTC-UAV, and the right is the first image split into 4 equal parts.

and local information. Our constructed FGLNet is illustrated in
Fig. 3, and we will now explain its modeling ideas.

Given a 3-D tensor I ∈ RH×W×3 of an RGB image, we start
by performing feature extraction using the CSPDarknet [22]
backbone with a 16x down-sampling. This can be viewed as
defining a transformation RH×W×3 → R(H/16)×(W/16)×C that
maps the input I to a new tensor space. As shown in Fig. 3,
we model only the generated C2, C3, and C4 feature layers,
with down-sampling rates of 1/4, 1/8, and 1/16, respectively.
Next, we build a Global-Fusion (G-Fusion) module to obtain
global information. Given three different spatial-dimension fea-
ture maps x1, x2, x3, and a weight coefficient W , we align C2
and C4 with intermediate layer C3 using average pooling and

bilinear interpolation, mapping two feature maps to a new tensor
space R(H/8)×(W/8)×C . This preserves feature map sizes while
avoiding excessive computational overhead. Considering that
these three features from different layers contribute unequally
to the output features, we assign an additional weight coefficient
for each feature map to balance the semantic differences between
the layers. Specifically, the weight coefficient W is defined as

W =
w

ε+
∑3

i=1wi

(1)

w represents a learnable three-element vector, where W corre-
sponds to the weights associated with the input data, and ε is
a small constant value to prevent the denominator from being
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Fig. 3. Architecture of FGLNet. C2, C3, and C4 refer to feature maps sampled at 4, 8, and 16 times, respectively, with output channels of 32, 64, and 128.

Fig. 4. Structure of CSPNet and Inject in FGLNet.

zero. Thereafter, the calculated weights are mapped back to the
three feature maps, resulting in a weighted coefficient structure

x1, x2, x3 = W1 · x1,W2 · x2,W3 · x3. (2)

Among them W1 +W2 +W3 = W , and W = 1. Then, we
concatenate the three feature maps along the channels and further
process them to generate more advanced representations. In
particular, we employ a dimension-reduction Conv followed by
CSPNet [23] to enhance the feature representation. Finally, we
attach another Conv to restore the channel number, with Conv
consisting of 2-D convolution, batch normalization (BN) [24],
and rectified linear unit (ReLU) [25]. The structure of CSPNet is
illustrated in Fig. 4, which acquires richer gradient information
representations by channel splitting.

After obtaining the global information through G-Fusion, the
next step is to effectively fuse it with local information. Here,
we employ the inject’ module proposed by Wang et al. [21], as
depicted in Fig. 4. Its essence lies in using attention operations to
fuse information. The input to the Inject module comprises local
information and global information, with the global informa-
tion extracted from global features. First, the local information
is processed through a local embedding layer to obtain local
features. Simultaneously, the global information also undergoes
embedding, including global embedding and global activation
layers. Furthermore, average pooling is employed to ensure
proper alignment between global and local information. Sub-
sequently, the local features are fused with the activated global

information through elementwise multiplication, followed by
elementwise addition with the global embedding layer. The
activation information plays a crucial role in determining the
extent of global information’s influence on the local information.
Through the inject module, we achieve the fusion of global
information with two critical local feature layers.

Afterwards, we employ weight fusion to merge the two
branches and obtain the final output layer. First, the C4 branch
undergoes dimension alignment through average pooling and
2-D convolution. We initialize a weight coefficient w with two
elements, which is used to perform a weighted average of the
feature maps y1 and y2 from both branches, ensuring that their
sum equals 1. This process can be described as

y = ReLU(wt1 · y1 + wt2 · y2) (3)

wt is defined as

wt =
w

ε+
∑2

i=1wi

. (4)

Here, the weights w are learned through backpropagation and
gradient descent optimization. Next, the ReLU activation func-
tion is used to enhance the nonlinear expressiveness of the
output. After entering the detection layer, a separate feedforward
neural network is used to perform both position regression of
the object bounding boxes and category information prediction.
The detector provides dense pixel-level predictions as output.
Finally, nonmaximum suppression (NMS) is performed to filter
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the generated prediction boxes and eliminate redundant detec-
tions.

C. Loss Function

The loss functions measure the difference between the
model’s predictions and the actual objects, quantifying the
model’s performance on the given task. In this section, we
introduce the bounding box regression process of FGLNet,
supervised by two loss functions.

Classification loss is used to assess the model’s ability to
match its category predictions with the actual category labels,
aiding in accurate classification tasks. We employ binary cross-
entropy loss (BCE) as a guiding metric, which is a common
binary classification loss and easy to optimize. It is defined as
follows:

Lcls = − 1

n

∑n
i=1(yilog(pi) + (1− yi)log(1− pi)) (5)

n represents the batch size, y is the ground truth labels, and p is
the model’s predictions.

Localization loss is used to measure the disparity between the
object detection model’s position regression predictions for the
object bounding boxes and the actual bounding box positions.
We employ the complete intersection over union (CIoU) loss
for supervision, which takes into account the overlapping area,
center point distance, and aspect ratio. It is described as

Lloc = IoU − d2

c2
− αv (6)

where IoU represents the intersection over union (IoU) between
the predicted bounding box and the true bounding box, d rep-
resents the Euclidean distance between the center points of the
object bounding box, c represents the sum of the diagonal lengths
of the object bounding box and the true label bounding box, v
is used to measure the similarity of aspect ratios, and α is the
influence factor of v.

III. EXPERIMENTS AND ANALYSIS

A. Implementation Details

To ensure the objectivity and authenticity of the results, all
compared methods in our experiments are trained and tested with
the same configurations. Our implementation is based on the
PyTorch deep learning framework and accelerated using CUDA.
During training, to reduce experimental costs, FGLNet scales
down high-resolution images to 1216 pixels. The backbone uses
CSPDarknet pretrained on the COCO dataset [26] for weight
initialization. We use AdamW [27] as the optimizer with an
initial learning rate of 0.002 and a momentum factor of 0.9, and
the batch size is set to 4. 150 epochs of iterative optimization
based on convergence were performed. To avoid overfitting,
mosaic, random scaling, and color distortion methods were used
to enhance the images. Importantly, when pretrained weights
were available, we configured the weight initialization for all
comparative methods to ensure they could achieve optimal per-
formance.

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT COMPARATIVE METHODS

B. Evaluation Metrics

We employ the following evaluation metrics to quantify the
model’s detection performance: precision (P), recall (R), as well
as average precision at 50% IoU (AP50) and average precision
from 50% to 95% IoU (AP50−95). They are expressed as follows:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =

∫ 1

0

PRd(R). (9)

Here, TP ,FP , andFN represent the numbers of true positives,
false positives, and false negatives, respectively. P denotes the
proportion of correctly predicted objects among all objects pre-
dicted by the model, and R represents the proportion of correctly
predicted objects among all true objects. AP50 and AP50−95

provide a more precise measure of the model’s localization
performance.

C. Comparison With State of the Art

We compared our proposed FGLNet with five advanced com-
puter vision methods, including Faster R-CNN [28], FCOS [29],
Yolov8 [30], WheatLFANet [5], and TasselLFANet [11], and the
quantitative results are presented in Table I. It is evident that our
FGLNet outperforms all other methods on all metrics. Notably,
in this UAV scenario, Faster R-CNN’s detection performance
is very suboptimal, mainly due to its output of a single and
relatively small feature layer, which leads to the loss of pixel
information for many small objects. FCOS tries to achieve a
recall (R) close to FGLNet by regressing detection boundaries
for tassels on a per-pixel basis using five dense prediction layers,
but it has lower precision (P) compared to other methods. One
possible reason is that, due to the more complex imaging views
of maize tassels captured by the UAV, the detection results
from different layers introduce noise, leading to suboptimal
final accuracy upon merging, as evidenced in Yan et al. [31]
study. Yolov8, as the current state-of-the-art detector in general
scenes, performs well but still lags behind FGLNet, particularly
in the context of tassel detection in UAV scenarios. To some
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TABLE II
COUNTING RESULTS OF DIFFERENT COMPARATIVE METHODS

extent, this is because Yolov8 employs a larger stride to achieve
a broader receptive field and higher-level features. Such a large
stride can directly reduce small objects to dots or even make them
disappear in deeper layers. This renders subsequent upsampling
operations ineffective in recovering the lost feature information.
WheatLFANet is an optimization for TasselLFANet regarding
speed and exhibits good generalization in wheat heads detec-
tion but struggles with small-sized tassels. TasselLFANet is the
current SOTA model for maize tassel detection and achieves
performance second only to FGLNet, largely due to its ability
to preserve richer detail information with 16x down-sampling
layers. FGLNet’s advantage lies in modeling larger feature maps
and fusing global and local information, significantly enhancing
accurate recognition and positioning of small tassels.

D. Counting Experiment and Visualization

In this section, we conducted a counting performance eval-
uation on the 106 MTDC-UAV images with point annotations.
We also compared it with the specialized maize tassel counting
method, TasselNetV2 [32], an extension of TasselNet [6]. The
motivation of TasselNetV2 is to observe the importance of weak
context to nonrigid plants and use this insight to markedly
improve counting performance. We summarize the counting
results for all the methods mentioned earlier in Table II, us-
ing three counting performance metrics: mean absolute error
(MAE), root mean squared error (RMSE), and the coefficient of
determination R2. Their formal expression is

MAE =
1

N

N∑
n=1

|Gn − Pn| (10)

RMSE =

√
1

N

N∑
n=1

(Gn − Pn)2 (11)

R2 = 1−
∑N

n=1(Gn − Pn)
2∑N

n=1(Ḡn − Pn)2
. (12)

N represents the total number of images, whileGn andPn denote
the ground truth count and predicted count, respectively, for the
nth image. Among these, MAE measures counting accuracy,

RMSE assesses counting robustness, and R2 reflects the good-
ness of fit to the data. Additionally, we also report the parameter
size for each model, an important consideration for deployment.
From the data in the table, it is evident that FGLNet outperforms
all other methods to a great extent, with a parameter size of only
0.77 M, second only to WheatLFANet. This is vital because
WheatLFANet is designed for deployment on edge devices. An
additional note is that there is a significant performance gap
between Faster R-CNN and other methods. In fact, there is evi-
dence of this difference, as demonstrated in the detection tests of
Table I, where Faster R-CNN has shown a noticeable inability to
effectively fit the level of tassels in UAV images. This is primarily
attributed to the substantial information loss in the output feature
layer of Faster R-CNN. Although one possible improvement
is to increase the input image resolution, the associated gains
in performance come at an almost disproportionate computa-
tional cost, as the performance bottleneck is mainly constrained
by the Faster R-CNN network structure. Another potentially
more effective approach is to utilize a feature pyramid network
(FPN) [33]. To provide a more intuitive representation of the
results, we offer inference examples for the top-performing four
methods in Fig. 5. The density map is generated using a Gaussian
function G(μ, σ) with a mean of μ and a variance of σ.

From these visual examples, we can conclude that FCOS still
exhibits significant disparities from ground truth results. Yolov8
often underestimates the number of objects in complex scenes,
which may be attributed to its semantic ambiguity in distin-
guishing between object and background areas. In comparison to
other methods, TasselNetV2 can only produce coarse responses,
making it difficult to further diagnose exceptional cases, and this
lack of interpretability can become a bottleneck for counting per-
formance. Unlike other methods, FGLNet demonstrates strong
fitting capabilities in the vast majority of scenarios, even in cases
with deceptive backgrounds. It is important to note that these
counting results are obtained from inference on high-altitude
UAV images, each containing a large number of instances. Even
for professionals, achieving precise counts in such situations
remains extremely challenging.

E. Linear Regression Results

As a supplement to the aforementioned counting results, we
present the linear regression results for the two methods with the
best counting performance, FGLNet and TasselNetV2, in Fig. 6
to enhance the interpretability of our experiments. These curves
correspond to the predicted results obtained by both models
based on regression analysis, and we have also calculated the
prediction bias and slope. Careful examination of the regres-
sion results reveals interesting differences. FGLNet’s regression
results exhibit robustness with a smaller bias and slopes that
are close to the 1:1 reference line. In contrast, TasselNetV2
shows relatively poorer stability. This indicates that FGLNet
provides a more consistent fit across most images. However, it is
worth noting that while FGLNet appears to perform well in most
cases, we must consider subtleties and outliers that may not be
immediately evident in regression analysis. Further research into
which specific scenarios each model excels in and where they
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Fig. 5. Visualized results. The first row is the input RGB image, the second row is the density map, the third row is the inference result of FGLNet, the fourth
row is the inference result of TasselNetV2, the fifth row is the inference result of Yolov8, and the sixth row is the inference result of FCOS. ‘GT’ stands for the
ground truth number of tassels, ‘PD’ represents the predicted number of tassels. Zoom in for a better view.

Fig. 6. Scatterplot shows the results of the two best-performing models in the counting task, with the calculation of linear regression’s bias and slope in the
bottom right corner.
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may perform less optimally will provide a more comprehensive
understanding of their counting performance.

IV. DISCUSSIONS

Despite reporting promising performance, plant vision appli-
cations remain an open and unsolved problem. A pervasive issue
is domain shift, where in the MTDC-UAV dataset, due to images
being captured in nearly identical external environments, train-
ing and testing data adhere to similar distributions, conforming
to standard machine learning assumptions. Nevertheless, when
the source domain (training data) and the target domain (testing
data) have different data distributions, domain shift becomes
apparent. It’s often observed that performance deteriorates when
a well-trained model is tested in fields with different plant
varieties, lighting, and weather conditions. Different image cap-
ture equipment and viewpoints exacerbate domain discrepan-
cies. Better solutions to overcome these challenges may require
customized approaches, such as domain alignment [34], self-
supervised learning [35], and meta-learning [36]. At times, this
also demands global collaboration among researchers, as seen
in initiatives like the global wheat head detection (GWHD) [37]
and diverse rice panicle detection (DRPD) [38] datasets.

Another aspect to consider is the challenge posed by high-
density cultivation of crops, such as rice panicles [38] and wheat
heads [39], FGLNet faces relative difficulty, primarily due to the
suppression of many dense bounding boxes by NMS, leading to
missed detections. This challenge is prevalent and needs to be
addressed by most object detection methods. A notable example
in the literature is the detection transformer (DETR) [40], which
leverages the advantages of post-processing-free techniques like
NMS to achieve end-to-end detection.

What is more, when contemplating practical applications, ef-
ficiency remains a critical concern. Due to the original intention
of FGLNet’s design sacrifices some operational speed, it may be
necessary to utilize deep learning acceleration libraries, such as
tensor real-time (TensorRT) and open neural network exchange
(ONNX). In comparison, Yolov8 has a more straightforward
high efficiency.

V. CONCLUSION

In this article, we have introduced an innovative approach,
FGLNet, which combines global and local information to ad-
dress the challenging task of maize tassel detection and counting
in complex agricultural UAV scenarios. Furthermore, we have
contributed the MTDC-UAV dataset, including maize tassel
images annotated with bounding boxes, which serves practical
purposes in the field. In the evaluation of detection and counting
using the MTDC-UAV dataset, our method has demonstrated su-
perior performance compared to other state-of-the-art computer
vision methods. In conclusion, this study provides beneficial
technical insights and plays a crucial role in advancing maize
tassel detection and counting for future UAV applications.

Data Availability: The MTDC-UAV dataset and other sup-
porting materials are available online at: https://github.com/Ye-
Sk/MTDC-UAV
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