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An Efficient and Adaptive Reconstructive
Homogeneous Block-Based Local Tensor Robust

PCA for Feature Extraction of Hyperspectral Images
Longxia Qian , Xianyue Wang , Mei Hong , Hongrui Wang , and Yongchui Zhang

Abstract—Model-driven tensor robust principal component
analysis (TRPCA) has been widely applied to feature extraction
of hyperspectral images (HSIs) and successfully protected two-
dimensional spectral contextual information. Nevertheless, the cur-
rent TRPCA-based feature extraction methods still destroy the
underlying spectral and spatial–spectral joint contextual features.
Moreover, these global iterative algorithms commonly ignore the
heterogeneity of different real-world regions, increase the calcula-
tion burden, and improve practice operating time. To solve these
issues, an efficient reconstructive homogeneous block-based local
TRPCA is proposed for low-rank feature extraction, composed of a
homogeneous block rebuilder and a local TRPCA low-rank feature
extractor. The proposed local TRPCA is a novel data-model-driven
algorithm depending on the data regulation. It remains the primary
spatial and spectral contextual information and extracts the un-
derlying homogeneity and heterogeneity characteristics of spatial,
spectral, and spatial–spectral joint variables, which provides more
essential features for further research than other model-driven
TRPCA models. Furthermore, our local TRPCA feature extrac-
tor is an elaborate divide-and-rule model that executes on each
homogeneous data block to extract low-rank features adaptively,
remarkably decreasing computing cost and time. Experimental
results on six hyperspectral datasets demonstrate that the proposed
local TRPCA is more adaptive to HSIs and outperforms other
state-of-the-art TRPCA-based feature extraction algorithms.

Index Terms—Feature extraction, hybrid spatial–spectral
frontal slice, hyperspectral image (HSI), reconstructive homo-
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geneous block, tensor robust principal component analysis
(TRPCA).

I. INTRODUCTION

WHEN advanced technical spaceborne or airborne hyper-
spectral sensors are used, hundreds of visible to infrared

narrow spectral bands provide detailed and identified informa-
tion about the characteristics of objectives within a practical
scene [1], [2], [3]. In other words, the acquired three-dimensional
(3-D) hyperspectral image (HSI), numerous observations on
hundreds of 1-D spectral channels reflected from a specific
2-D real-world spatial region, can record the temporary state
of ground-cover objects within a particular area. With the con-
tinuous development of related hyperspectral remote sensing
technologies, researchers tend to utilize available HSIs in various
domains to identify different unknown substances. Meanwhile,
the quantity and quality of HSIs are increasing substantially,
providing more and more support for concerned studies.

However, equipment noises, system errors, or random errors
may probably generate corrupted or outlying observations in
recorded data cubes [4], [5]. These observations that hardly
degrade the performance of further classification or other ap-
plication tasks make it difficult to directly apply HSIs to many
current research fields, especially for numerous deep-learning
methods sensitive to noise [6]. To solve this issue, a bunch of HSI
classification models have been proposed by incorporating ad-
vanced classification processing with a specific low-rank extrac-
tor manner to remove disturbing components and enhance object
recognition performance [7]. The adopted low-rank recovery
techniques could cover an extensive range of processing con-
cepts and can be interspersed at any point throughout the model.
In [8], principal component analysis (PCA) is employed to wipe
off unimportant components, followed by a deep-learning-based
3-D hierarchical convolution network. Likewise, a unified net-
work was proposed for HSI classification, integrating with a
well-designed loss function to reduce noises and recognize the
category of land-cover objects simultaneously [9].

Generally speaking, there are a variety of low-rank extracting
techniques suitable for high-dimensional images, ranging from
extensions of PCA [10], [11], wavelet transformation [12], and
total variation [13] to neural networks [14]. Compared with the
later data-driven networks, the prominent advantages of less
occupied memory and faster operating speed make the former
model-driven methods more applicable to vast hyperspectral
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datasets [7]. However, several problems still need to be solved in
these model-driven models. The damage to 2-D spatial structure
leads to the loss of essential pixel context information, which is
precisely the salient one of these problems. It may gravely affect
the results of subsequent model exhibition and data analysis,
especially for HSIs with more regional spatial similarities than
the traditional RGB remote sensing images [15]. Fortunately,
some tensor-based low-rank extracting models remedy the defi-
ciencies promptly.

Tensor robust PCA (TRPCA) seems valid to extract low-rank
elements while maintaining primary data structure [16]. Most
common TRPCA methods tend to integrate tensor representation
with 2-D robust PCA (RPCA), recovering the low-rank
component from the original noisy multidimensional array
without sparse noises. The typical TRPCA low-rank recovery
techniques can be roughly divided into two main categories,
which are Tucker [17] or CP [18] decomposition-based TRPCA
and tensor singular value decomposition (T-SVD) based
TRPCA [13]. Nevertheless, the former TRPCA algorithms
are less adaptive to HSIs than T-SVD-based algorithms [19].
Tensor decomposition-based TRPCA needs to unfold the 3-D
data cube along each dimension to compute the corresponding
low rankness, which still disrupts the inherent 2-D spatial
contextual information and impedes HSI classification. It
also requires finding a congruent numerical value for the
regularization parameter in the minimization objective along
three dimensions, which is pretty intractable.

To overcome these shortcomings, many TRPCA models em-
ploy the T-SVD algorithm to extract primary components. They
employ discrete Fourier transformation or inverse version to
minimize the created tensor nuclear norm of objective func-
tions [20], [21]. Such methods usually distinguish low-rank
tensor data from sparse noises by arranging the data slices in
a block-circulant manner without any unfolding processing and
congruent regularization parameter value of three dimensions.
In other words, T-SVD-based TRPCA is expected to be a
helpful denoising tool for HSIs because of the preservation
of more salutary spatial contextual information and the uti-
lization of more simple parameter conditions than Tucker or
CP decomposition-based TRPCA. Specifically, a 3-D HSI can
be denoted as H ∈ Rr×c×b, where parameters r, c, and b are
the sizes of spatial rows, spatial columns, and spectral bands,
respectively. Since a hyperspectral dataset H can be broken
down into a low-rank tensor componentL ∈ Rr×c×b and a noisy
tensor component N ∈ Rr×c×b, TRPCA algorithms tend to
acquire a low-rank recovery L from H without grossly corrupted
and outlier observations holding in N. Current T-SVD-derived
TRPCA always introduces a global iterative strategy to achieve
the objective minimalization function as

min
L,N

(‖L‖• + γ‖N‖�), s.t. H = L+N (1)

where γ is the only adopted regularization parameter, ‖L‖•
denotes a specific tensor norm to acquire recovery guarantees for
L by using a tight convex or nonconvex surrogate, and ‖N‖�
stands for a norm to ensure the sparsity of N. Most TRPCA
algorithms mainly differ in choosing distinct tensor norms on L
or N.

For instance, multilinear TRPCA (MLTRPCA) employs mul-
tilinear rank-based total tensor unclear norm ‖L‖s to replace
‖L‖• and �1,1,2-norm ‖N‖1,1,2 instead of ‖N‖�, executing
completion and denoising application for multilinear images
[22]. Besides, Lu et al. [23] proposed a novel TRPCA (NTR-
PCA) equipped with a new tensor unclear norm ‖N‖1 and
averaging tensor norm ‖L‖a to solve the designed convex prob-
lem. It aims to provide theoretical and practical guarantees for
extracting sufficient underlying low-rank features. In addition,
enhanced TRPCA (ETRPCA) employs ‖N‖1 and further treats
singular values differently with a weighted Schatten p norm
‖L‖pω [24]. As a result, it breaks through the limitation that
treats all tensor singular values equally and well preserves
the prominent information of the tensor-structured datasets.
In [21], nonconvex TRPCA (NNTRPCA) integrates nonlocal
self-similarity with ‖N‖1 and a nonconvex formulation tensor
adjustable logarithmic norm ‖L‖L to acquire the detailed edges
and texture characteristics of noisy high-order images. Analo-
gously, an improved tensor nuclear norm with a core matrix,
improved TRPCA (ITRPCA), has been developed to acquire
greater accuracy and faster low-rank tensor approximation [25].
Although several differences exist among these T-SVD-derived
TRPCA models, the constituents of the corresponding objective
functions are the same as the standard form given in (1). It should
be noted that these model-driven T-SVD TRPCA algorithms are
not quite adaptive to the vast high-dimensional HSIs because
their original modeling purposes are to remove noises existing
within grayscale images, RGB images, or even videos.

Some researchers try to apply the T-SVD-based TRPCA
algorithms appropriately to hyperspectral datasets. They mainly
choose different kinds of slices [26], change the types of norms
[27], add parameters to original objective functions, or employ
additional preprocessing or postprocessing steps [28]. Never-
theless, these updated TRPCA low-rank extracting techniques
destroy the underlying spectral contextual information of HSIs,
which may directly result in unsatisfactory classification perfor-
mance as the homogeneity and heterogeneity information are
insufficiently exploited. Similarly, the same outcomes may prob-
ably occur in the spatial and spatial–spectral joint dimensions for
abandoning the hyperspectral imaging principle and data regu-
lation [29]. Moreover, all these TRPCA algorithms are globally
applied to the whole pixel space with the same regularization
parameter value. It commonly ignores the distinct heterogeneity
of different real-world regions, increases the calculation burden,
and improves practice operating time.

To solve these issues, the article presents a localized data-
model-driven TRPCA feature-extracting model composed of
a homogeneous block rebuilder and a local TRPCA feature
extractor. Specifically, it is a superpixelwise reconstructed ho-
mogeneous block-based TRPCA that is efficient, effective, and
adaptive to hyperspectral datasets, referred to as SPRB-TRPCA
[30]. The primary contributions of the designed model are
demonstrated as follows.

1) The proposed local TRPCA is a novel data-model-driven
feature-extracting algorithm. It remains the primary spa-
tial and spectral contextual information and then ex-
tracts the underlying homogeneity and heterogeneity
information of spatial, spectral, and spatial–spectral joint
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Fig. 1. Homogeneous block rebuilder illustration. First, we utilize ERSS to divide all spatial pixels into multiple heterogeneous superpixels where homoregional
pixels are considered to be homogeneous and have the same group index. Meanwhile, all spectral bands are equidistantly partitioned into multiple neighboring
subsets. Finally, all frontal hybrid spatial–spectral slices are arranged along heterogeneous spectral subsets, where each slice contains homogeneous pixels as
column variables and bands within the same group as row variables.

variables. Considering the hyperspectral data regulation
that there exist prominent similarities among regional
pixels or neighboring spectral bands, we provide more
essential features for further research than other model-
driven TRPCA models.

2) Based on the adopted data regulations of spatial and
spectral dimensions, SPRB-TRPCA establishes some ho-
mogeneous blocks. These blocks make it possible to find
low-rank components existing in both spatial and spectral
dimensions. Since heterogeneous regions of HSIs contain
varying noise levels, informative degrees, and sizes, our
local TRPCA can independently find the optimal solu-
tions to objective functions in distinct subregions with
different parameter values. From the experimental results,
such processing successfully extracts more essential and
high-quality features from the vast and high-dimensional
datasets.

3) The proposed local TRPCA is conducted on each local
dataset instead of the global data cube in an elaborately
divide-and-rule manner. Since we divided the whole data
cube into several small data blocks, the computing cost and
time are significantly decreased. The efficient and effective
results reflect that the localization process makes SPRB-
TRPCA more adaptive to the vast hyperspectral datasets.

The rest of this article is organized as follows. The pro-
posed methodology with detailed explanations is presented in
Section II. Section III discusses thorough results on six hy-
perspectral datasets, such as parameter sensitivity, remaining
features’ quality, and classification performance. Section IV
provides the discussion. Finally, Section V concludes this article,
respectively.

II. PROPOSED METHODOLOGY

A. Preliminaries

In this article, bold straight letters denote the 3-D tensors, bold
capital italic letters indicate the 2-D matrices, bold lowercase
italic letters denote the vectors, and italic letters denote the

scalars. Given a 3-D HSI tensor H ∈ Rr×c×b with the entries
hi,j,t(i = 1, 2, …, r; j = 1, 2, …, c; t = 1, 2, …, b). In particular,
H(t) represents its frontal slices. The Frobenius norm on H

is ‖H‖F =
√∑

i,j,t(hi,j,t)
2. Since SPRB-TRPCA comprises

a homogeneous block rebuilder (Fig. 1) and a local TRPCA
low-rank feature extractor (Fig. 2), the following subsections
will briefly introduce these two steps.

B. Homogeneous Block Rebuilder

Most current T-SVD-derived TRPCA algorithms treat each
frontal slice of the input HSI independently, which protects
the structure of 2-D spatial pixels but destroys the underlying
spectral and spatial–spectral joint contextual information. It may
lead to unsatisfactory denoising and classification performance
because the homogeneity and heterogeneity information are not
sufficiently exploited. For one thing, the exploitation of spatial
and spectral homogeneity and heterogeneity information can
promote the efficiency of further analysis. For another, it also
helps to remove noises within different spatial and spectral
regions. Therefore, we intend to extract more spatial, spectral,
and spatial–spectral joint contextual characteristics to provide
a basis for subsequent local denoising and further objective
recognition.

First, we employ entropy rate superpixel segmentation
(ERSS) [30] on the first principal component of spectral vari-
ables to divide each spatial slice into m varying subsets by
visually recognizing the boundaries among different objects. As
a result, the whole 2-D ground pixels are divided into differ-
ent connected heterogeneous pixel clusters, and each group is
composed of regional homogeneous spatial samples. To better
demonstrate the segmentation results, the pixels within each
homogeneous cluster are assigned the same labeled number.
Then, we denote vector pν as a spatial pixel group composed of
the pixels assigned the same value of v and scalar mν as the size
(i.e., quantity) of spatial pixels within the obtained cluster pν .
The heterogeneity segmentation of spatial pixels can be given
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Fig. 2. Local TRPCA low-rank feature extractor illustration. First, the incomplete T-SVT is produced on each homogeneous block by performing T-SVD to
shrink singular values on all frontal hybrid spatial–spectral slices after discrete Fourier transformation. Meanwhile, the ADMM is conducted to generate low-rank
tensors until it satisfies certain convergence conditions. Subsequently, the inversed results are delivered by inverse discrete Fourier transformation, following the
second block reconstruction that reshapes the partitioned bands into one group. Finally, PCA is utilized to extract primary low-rank components.

by

pν = ∪
h(i)=v

i ∈ Rmv , s.t.
m∪

ν=1
pν ∈ Rrc,

m∑
v=1

mv = rc (2)

where h(i) denotes the resulting group number v of the ith pixel
obtained by ERSS. To retain more spatial–spectral contextual
information for the subsequent homogeneous block rebuilder
processing, the pixel grouping results are the same for all spatial
slices H(t)(t = 1, 2, …, b) of the original HSI data cube. After
that, the homoclustered pixels hold approximately the same
degree of sparse noise and retain similar spatial information.
Then, an equidistant partition technique is performed on the third
band dimension to roughly obtain homogeneous bands, which is
another crucial step for naturally creating hybrid spatial–spectral
slices.

Suppose [β1,β2, . . . ,βb] = unfold(H) is the transformation
of H ∈ Rr×c×b, which is acquired by unfolding the 3-D cube
into a series of 2-D spectral band vectors βi(i = 1, 2, . . . , b)
along the spectral dimension. The equidistant partition on H
results in n adjacent band clusters B1,B2, . . . ,Bn, where the
μth band matrix Bμ(μ = 1, 2, . . . , n) can be formulated as

Bμ = [β(μ−1)δ+1,β(μ−1)δ+2, . . . ,βμδ], δ = b/n (3)

where δ denotes the column size of each reconstructive slice. To
maintain the reconstructive hybrid spatial–spectral slice size,
n is set as a factor of the band quantity b. This segmentation
roughly results in heterogeneous clusters of bands since similar
continuous narrow channels may be grouped when choosing a
suitable group number.

Since we successfully acquired homogeneous spatial pixels
and spectral bands, there seem to be m×n reconstructive slices.
Specifically, by setting the vth homogeneous pixel cluster pν

as the column variable and the μth adjacent band group Bμ as
the row variable, the corresponding reconstructive slice matrix
F μ(pν) can be created as

F μ(pν) = [β(μ−1)δ+1(pν),β(μ−1)δ+2(pν), . . . ,βμδ(pν)]
T

(4)

where βi(pν)(i = (μ− 1)δ + 1, (μ− 1)δ + 2, . . . , μδ) de-
notes the subset of βi, holding nothing but the observation
values of all homogeneous pixels contained in pν and spectral
vector βi. Therefore, the slice matrix F μ(pν) is a subset of Bμ,
employing the same homogeneous pixel cluster pν .

Although each spectral subset has the same size, the number
of pixels differs because of heterogeneous spatial subsets by
ERSS. Moreover, performing global TRPCA on all slices of
distinct sizes is inappropriate for properties of tensor operations.
To solve this issue, we further design a homogeneous block
reconstruction technique defined as

Fv = fold(F 1(pν),F 2(pν), . . . ,F n(pν)). (5)

Here, the vth reconstructed block array Fν ∈ Rmν×δ×n is
structured by arranging all 2-D subsets that only remain the
universal homogeneous pixels in the cluster pν of all spec-
tral subsets Bμ(μ = 1, 2, . . . , n) along the heterogeneous band
group dimension.

By establishing spatial–spectral alliances from the entire ten-
sor, the main contextual and structural features of both pixel and
band variables can remain, and the input HSIs heterogeneous
regions can be distinguished. Considering the hyperspectral
data regulation that prominent similarities exist among regional
pixels or neighboring spectral bands, the data-model-driven
model provides more essential features for further research than
other model-driven TRPCA models. Meanwhile, the proposed
homogeneous block rebuilder offers the necessary conditions
for the subsequent low-rank feature-extracting technique.

C. Local TRPCA Low-Rank Feature Extractor

Most existing T-SVD-derived TRPCA models utilize tensor
singular value thresholding (T-SVT) to find the low-rank re-
covery component of a 3-D tensor, removing sparse parts to
improve the image quality [23]. However, such approaches are
costly operations requiring quite a lot of memory, global man-
ners ignoring the heterogeneity of different spatial subregions
to increase the difficulty and insufficiency of noise reduction,
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and iterative algorithms separately operating on each band to
destroy spectral contextual information. On the contrary, we
utilize T-SVT to shrink the singular values in a divide-and-rule
manner, flexibly and sufficiently reducing noises in various
spatial–spectral blocks independently. The proposed local TR-
PCA algorithm is performed on each reconstructive block with
the objective function defined as

min
Lv,Nv

(‖Lv‖a + γv‖Nv‖1), s.t. Fν = Lv +Nv (6)

where the averaging tensor norm ‖Lv‖a and �1-norm ‖Nv‖1
[23] are employed on the vth reconstructive homogenous block
tensor Fν ∈ Rmν×δ×n to perfectly separate its low-rank ten-
sor element Lν from the noisy tensor element Nν . γν =

(max(mν , δ) · n)−1/2 is the regularization parameter to make
a balance between two different norms. To achieve the objec-
tive function, the alternating direction method of multipliers
(ADMM) [31] is employed with an augmented Lagrange mul-
tiplier [32] for the exact recovery from corrupted observations.
Since the tensor Fν is typically already known, the optimized
objective model can be rewritten as

min
Lv,Nv

Φ(Lv,Nv,Ev, γv, αv)

= min
Lv,Nv

(
‖Lv‖a + γv‖Nv‖1 +

αv

2
‖Fv − Lv −Nv‖2F

+ 〈Ev,Fv − Lv −Nv〉
)
. (7)

Here, tensor Ev stands for the corresponding Lagrange mul-
tiplier tensor, αv denotes the matched nonnegative parameter,
and 〈�〉 stands for the inner product of the input two elements.
The objective low-rank recovery tensor Lv can be generated by
iteratively updating the objective function until it reaches the
convergence conditions. Specifically, when the kth Nk

v , Ek
v , γv ,

and αk
v are fixed, the (k+1)th low-rank recovery tensor Lk+1

v

can be generated by

Lk+1
v = argmin

Lv

(
‖Lv‖a +

αk
v

2

∥∥∥∥Lv +Nk
v − Fν +

Ek
v

αk
v

∥∥∥∥
2

F

)
.

(8)
According to Lu et al. [33], the function φ(�) obeys the soft-

thresholding rule with a thresholding parameter τv ≥ 0 to shrink
the singular values, reducing noises. Moreover, it can also serve
as a proximal operator on the averaging tensor nuclear norm by
providing a closed-form solution to the above updating problem
as

φ(Qk
v)=argmin

Lv

(
τv‖Lv‖a +

1

2

∥∥Lv −Qk
v

∥∥2
F

)
, τv = (αk

v)
−1

(9)
where tensor Qk

v = Nk
v − Fν + (αk

v)
−1
Ek

v . By employing the
T-SVT operator, the (k+1)th low-rank recovery tensorLk+1

v can
be easily obtained byLk+1

v = φ(Qk
v). It should be noted that the

proximal operator can finally lead to a convergent result on each
block of real-word grossly noisy HSI. Then, the (k+1)th sparse

Algorithm 1: Low-Rank Recovery by ADMM and T-SVT.

Input: Fν , γν , pν , v = 1, 2, . . . ,m, ρ = 1.1, ε = 10−8,
αmax
v = 1010, Ŵ = 0 ∈ Rrc×b

Initialize: L0
v = N0

v = E0
v = 0 ∈ Rmν×δ×n, α0

v = 10−3

Output: Low-rank tensor L
For v = 1, 2, . . . ,m do

While not converged do
1: Update Lk+1

v by Lk+1
v = φ(Qk

v) as
1.1: Perform Q̂k

v = fft(Qk
v).

1.2: Conduct SVD on Q̂
k(l)

v by τv = (αk
v)

−1
as

for l = 1, 2, …, 	n/2
 do

[Ûk
v
(l)
, Ŝk

v
(l)
, V̂ k

v
(l)
] = SVD(Q̂k

v
(l)
)

Ŵ k
v
(l)

= Ûk
v
(l) · (Ŝk

v
(l) − τv)+ · (V̂ k

v
(l)
)
T

Ŵ k
v
(n−l+1)

= conj(Ŵ k
v
(l)
) end for

1.3: Perform φ(Qk
v) = ifft(Ŵk

v)
2: Update Nk+1

v by (17)
3: Update Ek+1

v by
Ek+1

v = Ek
v + αk

v(L
k+1
v +Nk+1

v − Fν)
4: Update αk+1

v by αk+1
v = min(ραk

v , α
max
v )

Until all following convergence conditions are satisfied
‖Lk+1

v − Lk
v‖∞ ≤ ε, ‖Nk+1

v −Nk
v‖∞ ≤ ε

‖Lk+1
v +Nk+1

v − Fv‖∞ ≤ ε
End while

5: Construct Ŵ by Ŵ (pν) = unfold(Ŵk
v) ∈ Rmν×b

End For
6: Reshape Ŵ to Ŵ = reshape(Ŵ , [r, c, b])
7: Compute L = ifft(P̂)
8: Extract primary low-rank components of L by PCA

noise tensor Nk+1
v can be computed by

Nk+1
v =argmin

Nv

(
γv‖Nv‖1+

αk
v

2

∥∥∥∥Lk+1
v +Nv−Fν+

Ek
v

αk
v

∥∥∥∥
2

F

)
.

(10)
Denote 	n/2
 the smallest integer greater than or equal to

n/2, SVD(�) is the matrix SVD operator, (Ŝk
v
(l) − τ)+ denotes

a diagonal matrix by shrinking the elements of Ŝk
v
(l)

that is less
than τ to zero, conj(�) is the complex conjugate of each entry
of the input matrix, discrete fast Fourier transform (DFFT) of
H is Ĥ = fft(H), and the corresponding reverse operation is

H = ifft(Ĥ). Ŝk
v
(l)

represents the diagonal eigenvalue matrix of

Q̂k
v
(l)

, which is the lth frontal slice of the DFFT Q̂k
v of Qk

v . The
final low-rank and low-dimensional components are generated
by iteratively updating the objective function until convergence,
as shown in Algorithm 1.

Each reconstructive block can quickly generate conver-
gent results and satisfy tensor incoherence conditions [23].
Therefore, the proposed SPRB-TRPCA can successfully re-
cover the low-rank and sparse components of H. The main
cost of each iteration is calculating Lk+1

v ∈ Rmν×δ×n (v =
1, 2, . . . ,m) by T-SVT on each reconstructive block, holding
the complexity of O(mνb log(n) + n(1)n

2
(2)n), where n(1) =

max(mν , δ) and n(2) = min(mν , δ). Furthermore, given M =
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Fig. 3. Ground truth map with category labels of Indian Pines.

Fig. 4. Ground truth map with land-cover category labels of Longkou.

Fig. 5. Ground truth map with land-cover category labels of Salinas.

max(mv), N(1) = max(M, δ), and N(2) = max(n(2)), the
execution complexity of the whole H per iteratively is
O(Mb log(n) +N(1)N

2
(2)n). Moreover, given κ1 = max(r, c),

ϑ1 = min(r, c), κ2 = max(r, c, b), and ϑ2 = min(r, c, b), the
complexity of our local TRPCA is much lower than the com-
plexity O(rcb log(b) +κ1ϑ

2
1b+ κ2ϑ

2
2) of the ITRPCA and the

complexity O(rcb log(b) + κ1ϑ
2
1b) of NTRPCA.

III. EXPERIMENTS AND ANALYSES

A. Dataset Description and Experimental Setup

The subsequent experiments are mainly implemented on
the following publicly available hyperspectral datasets, termed
Indian Pines [34], WHU-HI-Longkou (Longkou) [35], [36],
Salinas, Botswana, Pavia University (PU), and Kennedy Space
Center (KSC) [37]. Ground truth maps of the labeled land-cover
objects and the category indices of Indian Pines, Longkou,
Salinas, Botswana, PU, and KSC are all displayed in Figs. 3–8
in sequence. It should be noted that the white spaces of each
map are all unlabeled spatial pixels, and the labeled pixels of
Botswana and KSC only cover a small spatial subset.

Therefore, we add black borders to these maps.
1) An airborne AVIRIS sensor acquired Indian Pines within

a specific scene on June 12, 1992. After abandoning 24

Fig. 6. Ground truth map with category labels of Botswana.

Fig. 7. Ground truth map with land-cover category labels of PU.

Fig. 8. Ground truth map with land-cover category labels of KSC.

water-absorption channels, the HSI holds 200 available
spectral bands with a wavelength range between 400 and
2500 nm. Each spectral band contains 145 × 145 pixels,
which can be artificially divided into 16 categories.

2) Longkou was gathered by a UAV platform equipped with
a hyperspectral sensor. The available data cube consists of
270 spectral channels of 0.463 m resolution. In addition,
the dataset contains 550 × 400 pixels covering nine crop
species.

3) The Salinas dataset was obtained by an airborne AVIRIS
sensor from the Salinas Valley test site. After eliminating
several redundant spectral variables, the employed data
hold 204 bands and 512×217 pixels, which can be divided
into 16 kinds of land covers.

4) Botswana dataset was acquired by the NASA EO-1 satel-
lite sensor from Botswana. After removing several futile
bands, the test data cube contains 145 spectral signatures
and 1476 × 256 pixels, including 14 kinds of different
land covers.

5) PU was gathered by a ROSIS sensor in Pavia, Italy. It
contains 103 spectral bands and 610 × 340 spatial pixels,
including nine material categories.
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Fig. 9. Parameter tuning results in OA (%) on (a) Indian Pines, (b) Longkou, (c) Salinas, (d) Botswana, (e) PU, and (f) KSC.

6) KSC was recorded by NASA AVIRIS from the Kennedy
Space Center, Florida, on March 23, 1996. After elimi-
nating several useless channels, the dataset contains 176
spectral bands and 512 × 614 spatial pixels covering 13
species.

To verify the effectiveness of remaining spatial–spectral joint
information and local denoising, a nonlinear support vector ma-
chine (SVM) classifier is introduced for recognizing objectives
[38]. Considering the global pixel and spectral size, 10% of ran-
domly selected labeled pixels of each class are considered train-
ing samples in Indian Pines, Salinas, Botswana, PU, and KSC,
and 1% of randomly selected labeled pixels of each category are
grouped as the training set for Longkou. The testing samples are
gained by complementing the training set. Apart from parameter
tunning that performs classification once, other investigations
are conducted by fivefold cross validations, eliminating the ef-
fect of random operations. For objective comparison, the training
sets and the parameter settings of the SVM classifier are identical
and fixed in the same HSI for distinct approaches rather than
random selection. To evaluate the quality of extracted features by
TRPCA-related algorithms, three widely used accuracy metrics,
i.e., the accuracy of each class (CA), average overall accuracy
(AA), overall accuracy (OA), and kappa coefficient (Kappa), are
conducted. The classification maps also choose different colors
to describe separate classes and can visually illustrate the quality
of extracting features.

All experiments are conducted in MATLAB on a laptop with
a 1.60 GHz CPU, Windows 10 system, Intel Core i5 processors,
and 8 GB memory.

B. Parameter Tuning

To obtain competitive results, fine-tuning is still necessary for
further comparison. Since the proposed algorithm mainly con-
sists of a homogeneous block rebuilder and a local TRPCA de-
noiser, a grid-search strategy is implemented on the two modules
to tune essential hyperparameters, which are the heterogeneous
superpixel number m and the number δ of homogeneous bands
with each spectral subset (i.e., the column size of each frontal
hybrid spatial–spectral slice). Considering the computational
cost, m is set from 10 to 80 and δ is chosen from {2, 4, 5, 8,
10, 20, 25, 40, 50, 100, 200} for Indian Pines, {18, 27, 30, 45,
54, 90, 135, 270} for Longkou, {2, 3, 4, 6, 12, 17, 34, 51, 68,
102, 204} for Salinas, {1, 5, 29, 145} for Botswana, and {1, 2, 4,
8, 11, 16, 22, 44, 88, 176} for KSC. Since the number of spectral
bands (i.e., 103) is a prime number, we add the last band to the
original HSI. Therefore, δ is chosen from {1, 2, 4, 8, 13, 26, 52,
104} for PU.

Fig. 9 demonstrates the corresponding experimental results
under different parameter values. The vertex coordinates of each
block represent the effect of m and δ, where the darker red the
color block indicates, the higher the accuracy of the correspond-
ing four vertices. On Indian Pines, the classification accuracy
increases as δ rises until it arrives around 40. Accordingly, setting
the values of m and δ as (55, 40) is acceptable for Indian Pines.
Different from the case on Indian Pines, one can observe that OA
achieves satisfactory results when m arrives at the upper limit on
the Longkou dataset. Therefore, setting the values of m and δ as
(75, 270) and (30, 12) is recommended to guarantee satisfactory
performance for Longkou and Salinas, respectively. Similarly,
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Fig. 10. Ablation experimental classification results in OA, AA, and Kappa (%) obtained by raw, RP, HP, HPRB, SLIC, and our model (Our) on (a) Indian Pines,
(b) Longkou, (c) Salinas, (d) Botswana, (e) PU, and (f) KSC.

(75, 29), (80, 8), and (30, 176) are the setting values of (m, δ)on
Botswana, PU, and KSC, respectively.

Comparing the results, we have two observations. First, as
shown in Fig. 9, the setting values of δ on Longkou and KSC are
significantly larger than those in other HSIs. This is probably
because Longkou and KSC have less spectral heterogeneity and
more spare noise in spatial–spectral contexts than others. Con-
sequently, a more significant δ is needed to retain the contextual
information of homogeneous spectral bands and remove the
noises among spatial and spectral subspaces. Moreover, it should
be noted that satisfactory performance is usually generated
when m is remarkably larger than the number of classes. Such
results may be attributed to the pixels on homolabeled regions
still holding distinguishable characteristics, demonstrating the
effectiveness of the designed homogeneous block rebuilder and
local TRPCA denoiser.

C. Ablation Study

In this section, step-by-step ablation experiments are con-
ducted to validate the necessities of every essential component
of our approach. Since the proposed model consists of a homo-
geneous block rebuilder and a local TRPCA low-rank feature
extractor, the ablation study is mainly conducted on these two
components. To be specific, we employ the raw HSI (Raw), local
TRPCA with only regional pixels (RP), local TRPCA with only
homogeneous pixels (HP), local TRPCA with homogeneous
pixels, and randomly grouped bands (HPRB) as comparative
models. Moreover, simple linear iterative clustering (SLIC) [39],
another superpixel segmentation technique, is also adopted as
a replacement for ERSS. Fig. 10 illustrates the classification
results of these comparative models and our model in OA, AA,
and Kappa on the six introduced hyperspectral datasets.

From Fig. 10, one can observe that the classification accu-
racy in all metrics generally increases with each step of the

model on most datasets, and our proposed model surpasses all
comparative models on all datasets. Generally, the designed
recognition of homogeneous pixels and bands, local TRPCA
processing, and ERSS are all beneficial to promote HSI clas-
sification. Specifically, in Fig. 10(a), the accuracy of HP is
higher than RB, illustrating the effectiveness of homogeneous
spatial pixels and TRPCA localization. Such superiority also
occurs when applying homogeneous band groups (Our) instead
of only random band groups (HPRB), which can prove the
effectiveness of employing homogeneous spectral bands. Fur-
thermore, it should be noted that SLIC is not adaptative to
provide beneficial homogeneity information for the proposed
model because the adaptation of SLIC may further decrease the
classification accuracy in most datasets. It also demonstrates the
necessity of the ERSS technique to identify heterogeneous pixel
boundaries.

D. Robust Feature Extraction Capability to Different HSIs

Several relevant algorithms are taken as comparative methods
to demonstrate the superiority of our model for HSIs. RPCA [11]
is one of the most classic and well-known techniques for signal
feature extraction and is a 2-D foundation of TRPCA. Further-
more, MLTRPCA [22], ETRPCA [24], PTRPCA [40], NNTR-
PCA [21], ITRPCA [25], and NTRPCA [23] are manipulated
as control groups during the parallel experiments. For objective
comparison in all parallel tasks, 35 principal components of all
HSIs are constantly retained by PCA.

The regularization parameter λ of ETRPCA was set to (min
(r, c) b)−1/2, while the parameter of PTRPCA, NTRPCA, and
NNTRPCA was set to (max (r, c) b)−1/2. The regularization
parameters of ITRPCA were assigned to (max (min (r, c), b))
−1/2 and 2(max (r, c) b) −1/2, and the parameter of MLTRPCA was
fixed at r1/2. Subsequently, we mainly employ computing time,
classification accuracy, and feature visualization to validate the
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Fig. 11. Computing time (seconds) of MLTRPCA (M), PTRPCA (P), ETRPCA (E), NNTRPCA (NN), ITRPCA (I), NTRPCA (N), and our model (O) on (a)
Indian Pines, (b) Longkou, (c) Salinas, (d) Botswana, (e) PU, and (f) KSC.

TABLE I
CLASSIFICATION ACCURACIES (%) AND STANDARD DEVIATIONS ON INDIAN PINES (FOLLOWING THE PLUS/MINUS SIGNS)

efficiency, adaptivity, and effectiveness of the proposed SPRB-
TRPCA.

1) Efficiency and Adaptivity Analysis: Since the TRPCA
algorithm mainly relies on ADMM alternatively obtaining
the optimal solution to the objective problem, the com-
puting time is remarkably higher than other model-driven
traditional feature extractors but lower than data-driven
deep-learning machines. Nevertheless, our data-model-
driven SPRB-TRPCA relies on both hyperspectral data
regulation and algorithm mechanism to promote the pro-
cessing course. Based on the reconstructive homogeneous
blocks and local TRPCA, our model ought to be more
efficient and adaptive to hyperspectral datasets than others.
To prove this advantage, we compare the practical running
time of different TRPCA algorithms on six employed
HSIs, which is demonstrated in Fig. 11.

In Fig. 11, our designed model SPRB-TRPCA costs the lost
operating time among these models on all datasets. Benefiting
to homogeneous blocks and elaborately divide-and-rule manner,
we only need to find the optimal solution in local spatial–spectral
regions. Although such localized alternative processing needs
to be conducted several times because of different blocks, the
whole computing time is still much lower than the others,
especially on Indian Pines and PU datasets. The stable and
remarkable efficiency also represents that our SPRB-TRPCA

is adaptive to the high-dimensional HSIs, illustrating the supe-
riority of the localization to TRPCA models.

2) Effectiveness, Robustness, and Adaptivity Analysis in
Classification: Our SPRB-TRPCA mainly consists of a
homogeneous block rebuilder and a local TRPCA feature
extractor. As a result, the final output of our model is
low-dimensional primary features. The extracted features
are indispensable for effectively classifying the unknown
land-cover objectives and mitigating the Hughes phe-
nomenon, which also reduces operating costs and in-
creases classification performance. Therefore, the classi-
fication application of different feature sets on different
HSIs is another essential and practical way to reflect
the superiority of our model. The detailed setting of the
classification process is already introduced in the experi-
mental setup. Tables I–VI present the classification results
in CA, OA, AA, and Kappa with a standard error of
five cross validations of different TRPCA-related algo-
rithms on six employed testing HSIs, while the matching
classification maps are given in Figs. 12–17. In each
Table, the best results for each quantitative metric are
labeled in bold. In general, the performance of our model
is significantly better than RPCA, MLTRPCA, PTR-
PCA, ETRPCA, NNTRPCA, ITRPCA, and NTRPCA
combined.
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TABLE II
CLASSIFICATION ACCURACIES (%) AND STANDARD DEVIATIONS ON LONGKOU (FOLLOWING THE PLUS/MINUS SIGNS)

TABLE III
CLASSIFICATION ACCURACIES (%) AND STANDARD DEVIATIONS ON SALINAS (FOLLOWING THE PLUS/MINUS)

TABLE IV
CLASSIFICATION ACCURACIES (%) AND STANDARD DEVIATIONS ON BOTSWANA (FOLLOWING THE PLUS/MINUS)
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Fig. 12. Classification maps of different TRPCA-related algorithms on Indian Pines. (a) False RGB image. (b) RPCA. (c) MLTRPCA. (d) PTRPCA. (e) ETRPCA.
(f) NNTRPCA. (g) ITRPCA. (h) NTRPCA. (i) SPRB-TRPCA.

Fig. 13. Classification maps of different TRPCA-related algorithms on Longkou. (a) False RGB image. (b) RPCA. (c) MLTRPCA. (d) PTRPCA. (e) ETRPCA.
(f) NNTRPCA. (g) ITRPCA. (h) NTRPCA. (i) SPRB-TRPCA.

Fig. 14. Classification maps of different TRPCA-related algorithms on Salinas. (a) False RGB image. (b) RPCA. (c) MLTRPCA. (d) PTRPCA. (e) ETRPCA.
(f) NNTRPCA. (g) ITRPCA. (h) NTRPCA. (i) SPRB-TRPCA.
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TABLE V
CLASSIFICATION ACCURACIES (%) AND STANDARD DEVIATIONS ON PU (FOLLOWING THE PLUS/MINUS)

TABLE VI
CLASSIFICATION ACCURACIES (%) AND STANDARD DEVIATIONS ON KSC (FOLLOWING THE PLUS/MINUS SIGNS)

Fig. 15. Classification maps of different TRPCA-related algorithms in Botswana. (a) False RGB image. (b) RPCA. (c) MLTRPCA. (d) PTRPCA. (e) ETRPCA.
(f) NNTRPCA. (g) ITRPCA. (h) NTRPCA. (i) SPRB-TRPCA.

In Tables I–VI, one can observe that SPRB-TRPCA is always
more effective than others in OA, AA, and Kappa on all HSI
datasets. Moreover, it should be noted that not all tensor-built
TRPCA algorithms outperform the nontensor RPCA algorithm.
Theoretically, the TRPCA is supposed to surpass RPCA in main-
taining a 3-D data structure and a 2-D spatial structure. However,

the classification performance of features by MLTRPCA is
always lower than that of RPCA on most datasets except Indian
Pines. It may be the consequence of that MLTRPCA is not adap-
tive to the vast and high-dimensional HSIs. Fortunately, other
TRPCA algorithms constantly outperform RPCA on different
HSIs. It means that the inherent low-rank tensor information
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Fig. 16. Classification maps of different TRPCA-related algorithms on PU. (a) False RGB image. (b) RPCA. (c) MLTRPCA. (d) PTRPCA. (e) ETRPCA.
(f) NNTRPCA. (g) ITRPCA. (h) NTRPCA. (i) SPRB-TRPCA.

Fig. 17. Classification maps of different TRPCA-related algorithms on KSC. (a) False RGB image. (b) RPCA. (c) MLTRPCA. (d) PTRPCA. (e) ETRPCA.
(f) NNTRPCA. (g) ITRPCA. (h) NTRPCA. (i) SPRB-TRPCA.

across pixels and channels needs to be considered during the
feature extraction for pixel classification. Furthermore, the most
crucial observation is that the proposed TRPCA-built algorithm
outperforms other methods, which may benefit from sufficient
informative features extracted and harmful noises removed. For
instance, in Table I, it acquires the highest overall accuracy,
around 3% better than the second-best results of NTRPCA in
OA, AA, and Kappa. In addition, our proposal also holds the
most elevated category accuracy on most land-cover objects
in CA. In some classes of Indian Pines, such as Corn-N-T,
Corn-M-T, Soybean-N-T, and Soybean-M-T, the CA values
obtained by our model are at least around 4% better than the
comparative models. Likewise, the CA values acquired by our
model are at least 7% better than the relative algorithms in
Cotton and Narrow-L-S of Longkou and at least 16% better
than the comparative algorithms in Vinyard-U of Salinas. Such
advantages also demonstrate in Botswana, PU, and KSC. The
proposed model is always superior to others. Moreover, it is
worth noting that our model usually obtains the highest CA
in more categories, while others are much less. In Table Ⅴ,
we find that SPRB-TRPCA acquires the best performances in
seven classes while there are nine classes. Such a phenomenon
indicates that our designed model is adequate and robust to
different HSIs.

In Figs. 12–17, each homogrouped subfigure is acquired
by the same training and testing pixel set. As seen in these

subfigures, our proposal got the optimal visual classifica-
tion performance among the tested algorithms. Our model
incorrectly classified fewer pixels than the other algorithms
suffering from more errors and outliers. From Figs. 12 to 17, it
should be noted that the classification maps of all pixels acquired
by our model are the ones that are closest to the false RGB image,
also demonstrating the excellent feature-extracting performance
to identify a bunch of unknown pixels and the high quality
of SPRB-TRPC. The constant outstanding results powerfully
validate that our model is effective, robust, and adaptive to
different HSIs.

IV. DISCUSSION

One of the contributions of our model is to maintain the ho-
mogeneity and heterogeneity of spatial and spectral dimensions
to promote the quality of the remaining features. Here, to further
evaluate the quality of different feature sets, we also employ a
t-distributed stochastic neighbor embedding (t-SNE) algorithm
[41]. The t-SNE technique can intuitively reflect whether the
obtained features are beneficial to identify labeled spatial pixels
precisely by displaying the pixel distribution maps. Each map
corresponds to the feature quality of resulting features by one
extracting model, where one color represents one labeled cate-
gory. The visualization maps of RPCA, MLTRPCA, PTRPCA,
ETRPCA, NNTRPCA, ITRPCA, and NTRPCA on Indian Pines
and Salinas are illustrated in Fig. 18 and Fig. 19, respectively.
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Fig. 18. Visualization by t-SNE algorithm of extracting features in (a) RPCA, (b) MLTRPCA, (c) PTRPCA, (d) ETRPCA, (e) NNTRPCA, (f) ITRPCA,
(g) NTRPCA, and (h) SPRB-TRPCA on Indian Pines.

Fig. 19. Visualization by t-SNE algorithm of extracting features in (a) RPCA, (b) MLTRPCA, (c) PTRPCA, (d) ETRPCA, (e) NNTRPCA, (f) ITRPCA,
(g) NTRPCA, and (h) SPRB-TRPCA on Salinas.

We only display the images of two hyperspectral datasets be-
cause of limited space. The experimental results are like the
classification maps; we generally generate the best results. It
can be seen from Fig. 19 that the labeled pixel distribution of
our model is more prominent, clear, and compact, significantly
outperforming other techniques, verifying the effectiveness and
adaptivity of the designed SPRB-TRPCA to extracting features
from the vast and high-dimensional HSI datasets.

V. CONCLUSION

This article presented a novel data-model-driven local TR-
PCA model for HSIs in an elaborately divide-and-rule manner,
yielding stable and brilliant results in low-rank feature extracting
and generating hybrid spatial–spectral frontal slices-based local

3-D block. As a result, the primary homogeneous contextual in-
formation is sufficiently and efficiently remained. In six publicly
available hyperspectral datasets, the proposed model constantly
shows its robustness, efficiency, effectiveness, and adaptivity
to different HSIs than other advanced model-driven TRPCA
algorithms.

In the future, we will focus on applying the effective and
efficient data-model-driven feature-extracting technique in other
remote sensing data, including space–time remote sensing
datasets, or optimizing it to be a vital component of an integrating
network for other HSI application fields, such as object recogni-
tion and change detection. Furthermore, we would try our best
to determine how to employ such homogeneous reconstruction
ideas on other huge data-derived and complicated models to
improve analysis accuracy and execution speed.
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