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Abstract—The severity of the global warming issue emphasizes
the critical importance of utilizing carbon satellite data to es-
timate ground-level carbon dioxide emissions. However, existing
reviews have not kept pace with the latest research developments.
Therefore, this article provides an overview of relevant work in
the global carbon emissions field to address this knowledge gap.
Through visual analysis using Citespace software, the article out-
lines two methods for quantifying carbon dioxide: 1) ground-level
observations; and 2) satellite remote sensing. Despite the unique
advantages of ground-level observations, satellite remote sensing is
crucial for its extensive spatial coverage and long-term continuity
in understanding carbon cycling, drawing significant attention. In
addition, the article integrates the application of machine learning
in the carbon emissions field, dividing it into two parts: Direct
estimation based on ground emission inventory data and estimation
of ground-level carbon emissions based on carbon satellite data.
This innovative approach combines satellite observational data
with ground data to accurately estimate the current ground-level
carbon emissions with robust spatial distribution characteristics.

Index Terms—Carbon satellite, machine learning, retrieval
algorithm, XCO2.

I. INTRODUCTION

CARBON dioxide (CO2) is a major greenhouse gas, con-
tributing to 70% of the greenhouse effect. Human emis-

sions have led to an increase in atmospheric CO2 concentrations,
resulting in a global temperature rise of about 1◦ C [1]. The IPCC
urges significant emission reduction measures to limit global
warming and achieve carbon neutrality.

The study of atmospheric CO2 by the IPCC is categorized into
upper and lower layers, with boundary height being a critical fac-
tor. CO2 in the upper layer is a result of historical emissions over
thousands of years, representing the residual effects that carbon
sinks have not had the opportunity to absorb [2]. Meanwhile,
CO2 in the lower layer primarily originates from current human
activities, influencing future global temperatures [3], [4].
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Fig. 1. Carbon satellite observation of carbon flux column.

Fig. 2. Development timeline of carbon emission observation technology.

The extraction of anthropogenic emission data from total CO2

concentration data presents several challenges, stemming from
the following factors.

1) As depicted in Fig. 1, XCO2 concentrations observed by
carbon satellites predominantly capture background data
in the upper troposphere, with only a 2% representation of
the current anthropogenic CO2 flux from the lower ground.

2) CO2 is a long-lived gas with historical implications, per-
sisting in the environment for centuries.

3) The total amount of CO2 on the upper surface is signif-
icantly influenced by seasonal changes and atmospheric
motion.

CO2 monitoring encompasses ground observation, satellite
data retrieval, and data-driven methodologies. The current em-
phasis is on data-driven estimation utilizing satellite data, but
progress is impeded by a scarcity of pertinent datasets. Fig. 2
illustrates the stages of carbon emission monitoring, while Fig. 3
highlights the primary research areas. In addition, Fig. 4 provides
an overview of the article’s structure.

The first method focuses on ground-level CO2 monitoring
using various instruments (Y1). These instruments reflect hu-
man activities such as fossil fuel combustion and electricity
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Fig. 3. Technology road map.

Fig. 4. Structure diagram of this article.

usage. The calculated CO2 emissions (Y2) based on Y1 data
and relevant standards are determined by the model M1. Ma-
chine learning (ML) techniques can be employed for predictive
analysis. In CO2 ground observation, Dong et al. [5] summa-
rized macroscopic estimation methods applicable at national,
provincial, and city levels, addressing challenges in regional
energy variations in 2014. Ground-based observations of fixed
sources were recommended for enhanced reliability. Zhang et
al. [6] found on-site measurements more accurate than emission
factor approaches in monitoring CO2 emissions from fixed
sources. Physical optical methods, particularly nondispersive
infrared spectroscopy, were recognized internationally. Chen
et al. [7], using CiteSpace software, analyzed the past decade’s
progress in domestic and international carbon emissions. They
noted a global trend in employing mathematical models for
quantitative analysis. Debone et al. [8] observed frequent use
of neural networks and regression models in predictive anal-
yses of carbon emissions, energy consumption, and economic
growth.

The second method focuses on satellite data retrieval based
on physical model. X1 represents the original data of carbon
satellite detection of atmospheric carbon dioxide concentra-
tion, while X2 is XCO2 data, which is derived after pro-
cessing X1 using retrieval algorithms. M2 is physical model.
Section III provides a detailed description of the first pro-
gram. David et al. [9] comprehensively reviewed the use of
satellite data for emission estimation, particularly questioning
retrieval techniques for quantifying eight major atmospheric
pollutants and greenhouse gases. Yue et al. [10] compared
carbon dioxide concentration measurements from satellites and
ground-based observations, introducing carbon dioxide detec-
tion satellites and validating results with ground truth proxy
observations. Lees et al. [11] detailed the use of remote sens-
ing to estimate ecosystem carbon flux, explaining the scope
of satellite data for estimation and assessing their capabili-
ties in ecosystem carbon flux. These studies mainly compared
atmospheric remote sensing with traditional ground observa-
tions for measuring carbon dioxide. Using satellite-based mon-
itoring with XCO2 data allows for global-scale coverage, en-
abling the study of spatial distribution and trends in CO2 flux
worldwide.

The third method employs data-driven approaches to address
human-induced carbon emissions in XCO2 columns via satellite
remote sensing, overcoming limitations in ground observations.
Carbon assimilation techniques, integrating observational data
with numerical models, have improved accuracy. For instance,
Kaminski et al. [12] estimated urban fossil fuel CO2 emis-
sions using the CCFFDAS assimilation system. Miyazaki et al.
enhanced accuracy and predictability by estimating CO2/NOx
ratios and ground-level fossil fuel CO2 emissions with a Kalman
filter [13].

While these techniques enhance spatial distribution, they
rely on numerical models and prior knowledge. The advent
of artificial intelligence, specifically machine learning, allows
direct pattern learning from data, reducing reliance on prior
knowledge and proving more suitable for carbon observation
tasks. Although machine learning is applied for carbon dioxide
estimation, there’s limited exploration of spatial distribution.
Hakkarainen et al. [2] differentiated regions with anthropogenic
CO2 emissions using clustering algorithms, deriving XCO2

anomaly maps. However, the study did not account for the long-
term nature and seasonal variations of CO2 emissions. Yang et
al. [14] used artificial neural networks to estimate ground carbon
emissions in XCO2 for China during 2010–2014, revealing
potential spatial patterns. For satellite XCO2 data estimation,
auxiliary data is crucial. Combining meteorological auxiliary
data, as seen in Wang et al.’s [15] approach for nighttime PM2.5,
enhances model accuracy and reliability. Mustafa et al. [16]
improved prediction models by incorporating NPP auxiliary data
into XCO2 data, achieving high consistency between anthro-
pogenic emissions and satellite estimates. In recent research,
Zhang et al. [17] proposed an unsupervised deep model that
successfully mapped carbon satellite data to emission data,
allowing timely monitoring of regional and corporate carbon
emissions. Wang et al. [18] adopted a zone-based approach,
combining Open-source Data Inventory for Anthropogenic
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CO2 (ODIAC) anthropogenic emission inventory and potential
temperature data for remote sensing monitoring and analysis
of spatiotemporal changes in China’s anthropogenic carbon
emissions.

This article systematically reviews research pertaining to
ground-level carbon emissions resulting from human activities,
utilizing the Web of Science as the primary information source.
We scrutinize the efforts of previous scholars in developing
algorithms for estimating lower ground carbon, encompassing
both satellite and ground observations [19]. Furthermore, we
delve into the interplay between machine learning and carbon
emissions in both spatial and terrestrial domains. The significant
contributions of this article are as follows.

1) We utilized Citespace software to analyze domestic and in-
ternational research on carbon emissions, aiming to iden-
tify contributions and forefront issues. Key areas explored
include carbon trading, emission source localization, and
carbon emission estimation at various scales.

2) We outlined the developmental history of remote sens-
ing carbon satellites and ground observation instruments,
comparing their advantages and disadvantages. This anal-
ysis informs future instrument optimization and algorithm
improvement, empowering researchers to address chal-
lenges in atmospheric CO2 concentration monitoring.

3) We summarized XCO2 datasets from GOSAT and OCO-
2 at different time intervals, alongside selected ground-
based anthropogenic emission datasets. This information
serves as a foundational data source for exploring trends in
atmospheric carbon dioxide concentration and the impact
of human emissions.

4) This review pioneers a comprehensive exploration of
ground carbon emission estimation from a machine learn-
ing perspective. Beyond enhancing accuracy and intro-
ducing direct ground estimation, our focus on data-driven
differentiation provides a novel research perspective.
This not only contributes to the field, but also outlines
key focal points for future carbon emission estimation
research.

II. OBSERVATION SCHEMES, DATASETS, STATISTICAL

ANALYSIS OF GLOBAL RELATED RESEARCH

Initially, CO2 observation programs predominantly revolve
around two methodologies: 1) ground-based observation; and
2) carbon satellite observation. This article sequentially presents
the ground-based observation scheme, followed by the carbon
satellite observation scheme, delineating their chronological
development over time.

A. Ground-Based Observation Methods and Datasets

Traditionally, ground-based sampling has been a reliable
method for detecting challenging-to-measure CO2 emissions.
This approach uses sensors on vents, vehicles, and ships to
measure CO2 concentrations at ground level, investigating gen-
eration and consumption mechanisms for spatial and temporal
distribution understanding [21].

Fig. 5. Structure diagram of this article.

Various methods exist for detecting and verifying terres-
trial CO2 emissions [20]. Verification methods estimate emis-
sions using energy activity and conversion coefficients, which,
while simple, can be data-uncertain. Achieving global uniform
real-time CO2 monitoring is challenging due to limitations in
ground-based observation schemes [22]. Developed countries
have established costly Measuring, Reporting, and Verification
(MRV) policy systems, which are demanding for developing
nations. In addition, bottom-up carbon emission data may face
adjustments and falsifications by emission sources and local
governments [23].

1) Anthropogenic Emissions Dataset: Anthropogenic emis-
sion data is used to estimate the concentration of CO2. It pri-
marily includes CO2 emissions from various sources such as
agricultural activities, industrial production, land use changes,
and waste disposal. Fig. 5 illustrates the factors involved in an-
thropogenic emission data. Six datasets related to anthropogenic
CO2 emissions were introduced. Table I is a summary table of
the anthropogenic emission inventory dataset [24].

In 1944, the World Development Indicators (WDI) was es-
tablished, offering comprehensive global development data in
csv format spanning 1996–2020 [25]. BP Amoco’s acquisition
in 2000 and subsequent rebranding to BP marked a period of
increased global energy consumption, rising from 342.23 EJ in
1990 to over 576 EJ in 2020, as reported in BP’s statistical review
of world energy [26].

The ODIAC project, launched in 2008 by JAXA, provides
high-resolution (1 km× 1 km) emissions data for fossil fuel CO2

emissions in nc file format, covering 2000–2019 [27]. In 2012,
Tsinghua University developed the Multiresolution Emission
Inventory for China (MEIC), offering high-resolution emission
inventories for various sectors in nc files [28], [29].

Dabo Guan’s team created the China Emission Accounts and
Datasets System (CEADS) database in 2016, using a combined
accounting approach for Scope 1 and Scope 2 emissions [30].
Fig. 6 illustrates the line graph of CO2 emissions from fossil fuels
in China from 2010 to 2019 based on the CEADS inventory.

B. Carbon Satellite in Space Program and Datasets

With technological advancements, traditional ground-based
methods for observing atmospheric CO2 concentrations have
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TABLE I
ANTHROPOGENIC EMISSION INVENTORY DATASET

Fig. 6. Emission inventory chart of different energy sources in China [22].

expanded. Carbon satellites, equipped with high spatial and tem-
poral resolution through satellite remote sensing, have become
crucial for obtaining global and regional CO2 concentration
data [31]. Over nearly two decades, these satellites have revealed
spatial and temporal characteristics using a top-down observa-
tion approach, offering data less susceptible to manipulation or
errors by local authorities [32], [33]. Fig. 7 depicts the timeline of
human-launched CO2 detection satellites, while Table II details
instruments and performance of major satellites [34].

In 2002, NASA launched the AQUA satellite, while ESA
launched the ENVISAT satellite. These two satellites are
equipped with the Atmospheric Infrared Sounder (AIRS) and
Scanning Imaging Absorption Spectrometer (SCIAMACHY),
respectively, making them among the first instruments capable

Fig. 7. Launching timeline of satellites for CO2 detection including scheduled
satellite plans.

of monitoring CO2 concentrations from space. AIRS is primarily
used to support medium-term numerical weather prediction [35],
while SCIAMACHY is the first instrument capable of accurately
measuring both CO2 and CH4 concentrations [29].

In 2004, NASA launched the AURA satellite, which carries
the Tropospheric Emission Spectrometer (TES) [36]. The TES
instrument measures the infrared radiation emitted by the atmo-
sphere, providing a global map of tropospheric ozone and its
photochemical precursors with a spatial resolution of 5.3 km
× 8.5 km, compared to the previous AIRS and SCIAMACHY
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TABLE II
MAJOR EXISTING OR PREVIOUS SATELLITES FOR CO2 DETECTION AND THEIR MEASUREMENT PERFORMANCE [11]

instruments, which had lower spatial resolutions. The TES in-
strument also provides better results for CO2 observations.

In 2006, the European Meteorological Office launched the
METOP-A satellite carrying the Infrared Atmospheric Sounding
Interferometer. This instrument is capable of detecting atmo-
spheric concentrations of CO2, CH4, SO2, and NO2, but at a
coarse spatial resolution of 50 km×50 km [37].

In 2009, the Ministry of the Environment of Japan launched
the GOSAT satellite, which is the world’s first greenhouse gas
detection satellite. It uses the Near Infrared Sensor-Fourier
Transform Spectrometer (TANSO-FTS) and the Cloud and
Aerosol Imager (CAI) to observe global CO2 and CH4 con-
centration distribution information and quantitatively analyze
greenhouse gas sources and spatial and temporal variation char-
acteristics. The satellite has a spatial resolution of 10 km×10 km,
and it can observe the same site every three days [38].

In 2009, NASA initiated the Orbiting Carbon Observatory
(OCO) mission, but unfortunately, the launch failed. However,
in 2014, the OCO-2 satellite was successfully launched. OCO-2
carries three high-resolution grating spectrometers that use the
sunlight reflected from the Earth’s surface to make accurate
measurements of CO2. The sunlight entering the spectrometer

passively passes through the atmosphere twice, once from the
sun to the Earth and once from the Earth’s surface to the spec-
trometer. OCO-2 has a spatial resolution of 1.29 km×2.25 km
and an observation period of 16 days [10].

In 2016, China launched TANSAT, a scientific experimental
satellite designed for detecting and monitoring carbon dioxide.
It carries a carbon dioxide detector as well as cloud and aerosol
detectors that provide data on the seasonal concentration of
carbon dioxide as climate changes [39]. The TANSAT satellite
has a spatial resolution of 2 km×2 km and an observation period
of 16 days.

In 2018, the Ministry of the Environment and the Aerospace
Research Agency of Japan launched the GOSAT-2 satellite. This
satellite is equipped with a more advanced pair of TANSO-2
and a CAI compared to its predecessor, the GOSAT satellite.
The satellite collects atmospheric CO2 concentration data with
an unprecedentedly low uncertainty of only 0.5, making it an
important tool for studying global carbon cycle and climate
change [40].

In 2019, NASA’s OCO-3 was installed on the International
Space Station, which provides more intensive observations at
sampling sites, especially in high-latitude regions [41]. The
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planned lifetime task is three years, measuring total column CO2

and solar-induced chlorophyll fluorescence [42].
1) CO2 Satellite Database: XCO2 is defined as the total

number of CO2 molecules in the column divided by the total
number of dry air molecules in the column [43]

XCO2
=

∫∞
0 NCO2

(z)dz∫∞
0 Nair(z)dz

(1)

where NCO2
is the number density (number of carbon dioxide

molecules per cubic meter) associated with altitude (z), and
Nair(z) is the number of dry air densities associated with altitude.

The GOSAT and OCO-2 satellites are essential for XCO2

measurement and widely used in research. GOSAT TANSO-
FTS data is crucial for testing the ACOS retrieval algorithm,
aiding XCO2 retrieval from raw space data and calibrating OCO-
2 missions. A GOSAT and TCCON XCO2 retrieval comparison
helps identify ACOS GOSAT XCO2 product biases.

Since OCO-2’s 2014 launch, researchers estimate global and
regional CO2 fluxes through top-down atmospheric retrieval
methods [44]. Processed at ESMO and JPL’s SDOS, OCO-2
mission data includes Level 1 A, Level 1B, and Level 2 prod-
ucts [45]. The more compact “lite file” product includes XCO2

estimates and global bias correction. OCO-2 data, delivered
in both “forward” and “backward” processing, offers higher
scientific application quality in backward data.

Periodically updated, GOSAT and OCO-2 data are described
in series [1] and [2], respectively. [1]. GOSAT Data Series

The ACOS algorithm, initially developed for OCO, was
adapted for GOSAT data in 2009, processed using the Level-2
“full physical” (L2FP) retrieval algorithm. The dataset includes
location, XCO2, evaluation parameters, and recording angles
in HDF5/NetCDF formats. ACOS_L2FP_V2.8 processed all
GOSAT NIR soundings between 2009 and 2011 [46].

In subsequent versions, such as ACOS_L2FP_V3.3 (2010)
[47], solar-induced chlorophyll fluorescence (SIF) was
incorporated, improving surface pressure accuracy [48].
ACOS_L2FP_V3.5 (2014) introduced changes like replac-
ing aerosol types and using TCCON version GGG2014 for
XCO2 bias correction [49], [50]. ACOS_L2FP_v7.3 (2016)
and ACOS_L2FP_v9 (2019) extended the time record and im-
proved algorithm features, with v9 covering April 2009 to June
2020 [51]. GOSAT v9, utilizing Bayesian optimal estimation,
proves effective for studying carbon cycle phenomena over a
decade or more [25], [52].

[2]. OCO-2 data series
The OCO-2 dataset, available in NetCDF formats, features

a 1.75 km spatial resolution and 16-day temporal resolution,
covering the entire world. It provides information on location,
time, XCO2, XCO2 evaluation parameters, and recording angle.

In 2015, Eldering et al. [54] used OCO-2 V7 data to estimate
CO2 fluxes [53]. In 2019, OCO-2 released V9, addressing sub-
footprint pointing offset and coding errors, enhancing accuracy.

The 2021 OCO-2 v10r product, using ACOS_L2FP, improves
XCO2 data quality and quantity. It reduces biases, achieving a
single detection accuracy of approximately 0.8 ppm over land
and 0.5 ppm over water [55].

Fig. 8. Keyword clustering map.

Table III summarizes XCO2 data products obtained from
the mentioned satellites. To achieve a comprehensive CO2

flux, retrieval algorithms are crucial for extracting the total
column number of atmospheric trace gases from NIR nadir
spectra. Section IV reviews various methods proposed for this
purpose.

C. Statistical Analysis of Global Related Research

Citespace is a widely used citation visualization and analysis
tool known for its user-friendly interface and clear visualiza-
tions. It plays a crucial role in analyzing source regions, identify-
ing key scholars, understanding research hotspots, and tracking
the evolution of literature in related fields. This tool facilitates
the creation of network knowledge maps [56], [57]. In this
section, we leverage Citespace software to visualize and analyze
global carbon emission-related literature. Our analysis includes
comparing keyword mapping and the publication volume across
different countries in the field of carbon emissions. In addition,
we utilize the pyecharts module in Python to extract the number
of paper contributions from the Web of Science over the last two
years and create a world map.

In this study, a Web of Science advanced search was conducted
using the keywords “carbon emission” and “XCO2,” with a
time frame of 2005 to 2022 and a time slice of 1. A total of
1353 relevant documents were selected and analyzed for their
keywords, national institutions, and topics using visualization
tools.

Fig. 8 reveals key clusters in carbon emissions research using
data from the Web of Science. Among them, #0 delves into
the connection between economic growth and increased carbon
emissions due to industrial energy consumption. #1 examines
the overall carbon footprint from human activities, while #2
scrutinizes the impact of carbon tax on energy use. #6 employs
machine learning for regional CO2 emission estimation. The
recent emphasis on large-scale remote sensing, aided by machine
learning, enhances data accuracy, supporting green initiatives,
and carbon neutrality goals.

Table IV summarizes research themes identified through
clustering. The earliest and enduring theme is the greenhouse
effect, with its significant impact on various aspects of the
environment and global affairs. This concern has garnered
global attention. In recent years, carbon emissions have gained
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TABLE III
XCO2 DATASET

TABLE IV
ANTHROPOGENIC EMISSION INVENTORY DATASET

TABLE V
COMPARISON OF CO2 DETECTION METHODS FOR STATIONARY EMISSION SOURCES

TABLE VI
METHODS OF GROUND-BASED OBSERVATIONS
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Fig. 9. Mapping of country, institutional cooperation networks.

prominence, notably after the Paris Climate Agreement took
effect in November 2016, prompting countries to propose
emission reduction targets aligned with international objectives
[62].

Fig. 9 shows the graph of the number of articles published by
relevant countries and institutions about remote sensing carbon
emissions. The larger the circle, the more frequently it appears
and the more articles are published; the circle layer from inside
to outside shows the time from past to present. The red color
is highlighting nodes where relevant literature has attracted
attention in the field. Connecting lines indicate the existence of
continuity between different national institutions. From Fig. 9,
it can be seen that the United States has the largest node among
countries, the largest number of publications, and the earliest
time, indicating that the United States has laid the foundation of
research in the field of remote sensing carbon emissions, and has
played an important role in theoretical and research innovation
with far-reaching influence. China ranked second in the number
of publications, and although it started late, it is developing
rapidly, thanks to the Chinese government’s emphasis on energy
conservation and emission reduction, but there is still a gap
compared to the United States.

The Chinese Academy of Sciences leads in carbon emissions
publications among the top ten institutions, including NASA,
Caltech, and others. Despite China’s significant overall research
output, its emphasis on remote sensing technology in carbon
emissions research lags behind Western counterparts.

As shown in Fig. 10, China and the United States have con-
tributed the most papers on the topic of remote sensing carbon
emissions. This is likely due to the fact that both countries are
major players in the global economy and energy industry, and

Fig. 10. Contribution of different countries in the field of carbon emissions
for the two years 2020–2023.

Fig. 11. Frequency of citations to articles on carbon emissions and the number
of published papers.

have therefore invested heavily in research on remote sensing
technology for carbon emission monitoring. As a result, the
number of paper contributions from developed regions is gener-
ally higher than that from developing regions, as the latter may
have less resources and funding available for such research.

Fig. 11 presents the publication count and citation frequency
of literature on carbon emissions from 1996 to the first half of
2023, obtained from the Web of Science database. The publica-
tion count and citation frequency of carbon emissions literature
serve as indicators of the level of academic research activity
in this field. As depicted in the figure, the discipline of remote
sensing applied to carbon emissions has undergone three distinct
stages: 1) initial stage; 2) slow growth stage; and 3) rapid growth
stage. This indicates the continuous attention of both domestic
and international scholars towards research in remote sensing
for carbon emissions.

In summary, Citespace aims to assist researchers in gaining
a better understanding of the knowledge structure related to
carbon emissions, identifying research hotspots and trends, and
providing valuable insights and information for academic re-
search, disciplinary development, and climate decision-making.

D. Section Summary

This section summarizes several key elements related to
carbon emission observation, encompassing a carbon emission
observation program comprising space carbon satellites and
ground observation methods. The primary remote sensing satel-
lites utilized are GOSAT and OCO-2, while ground observation
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methods include the gas detector method, ground base station
verification method, and MRV. In addition, this subsection intro-
duces relevant datasets, incorporating those from carbon satel-
lites and anthropogenic emissions. Finally, the section employs
the Citespace visualization tool to showcase recent papers on
carbon emission research in terms of regions, keywords, and
topic clustering. Section III spotlights the TCOON system. In
addition to the retrieval algorithm, ground-based CO2 detection
methods are explored, considering that the column concentration
of atmospheric CO2 in satellite observations encompasses CO2

emissions resulting from human activities.

III. GROUND STATION OBSERVATION

In this section, we highlight the essential role of ground obser-
vations in exploring carbon cycle patterns. We discuss various
ground observation systems, including simple instruments and
the widely used TCCON system, crucial for validating satellite-
derived data. The principles for analyzing ground carbon mon-
itoring are detailed, comparing their strengths and weaknesses.
In addition, we introduce the globally adopted MRV monitoring
system, contributing to an improved understanding of carbon
cycle processes.

A. CO2 Detection Methods for Ground-Based Stationary
Emission Sources

In the past, ground-based sampling and detection instruments
were the only reliable means of detecting changes in global
atmospheric CO2 concentrations. CO2 gas detection from sta-
tionary emission sources involved detecting and quantitatively
analyzing CO2 gas using detectors [63]. Table V summarizes
the advantages and disadvantages of these methods [64].

Chemical methods involve manual determination of CO2 in
gases, either by direct laboratory testing or calibration of CO2

concentrations from stationary emission sources [65]. These
methods do not require standard gas calibration and are easy
to operate. However, they are not suitable for continuous on-site
detection of stationary emission sources due to poor operational
timeliness. Gas chromatography is a more precise method for
offline determination of CO2 with high sensitivity, but it requires
sampling and preprocessing, which limits its timeliness [66].

The electrochemical method is a widely used and cost-
effective instrument for detecting CO2 due to its lightweight
instrumentation and ease of operation. However, its selectivity
for gas separation is limited and the sensor cannot operate for
long periods, which hinders its further development [67].

Physical-optical methods primarily use nondispersive in-
frared absorption spectroscopy to detect CO2, but they are
susceptible to external interference, requiring regular instru-
ment calibration for reliability [68]. Despite this vulnerabil-
ity, these methods are easy to maintain and offer high pre-
cision across a broad measurement range, making them ap-
plicable in various fields. Another method, Fourier Trans-
form Infrared Spectroscopy (FTIR), has evolved from labo-
ratory techniques to real-time monitoring of industrial emis-
sions, such as those from power plants and factories. FTIR
features rapid scanning, simultaneous detection of over 50

Fig. 12. Total Carbon Column Observing Network (TCCON) base stations
worldwide [72].

compounds, minimal cross-interference, high resolution, and
sensitivity, without the need for frequent calibration. How-
ever, it comes with drawbacks like high costs, lack of porta-
bility, the need for regular maintenance, and higher software
workload. FTIR finds widespread application in ground ob-
servation platforms, including the National Oceanic and At-
mospheric Administration’s Earth System Research Laboratory
(NOAA ESRL), Total Carbon Column Observing Network (TC-
CON), Global Greenhouse Gas Reference Network, Compre-
hensive Observation Network for Trace Gases by Airborne In-
struments (CONTRAIL), Intercontinental Chemical Transport
Experiment–North America, In-service Aircraft for a Global
Observing System, and the Carbon in Arctic Reservoirs Vulner-
ability Experiment. Among these, the TCCON system stands
out as one of the most extensively deployed global observation
systems.

B. TCCON System

The Total Carbon Column Observing Network (TCCON) was
established in 2004 as a ground-based FTS network to measure
the precision and validate the accuracy of CO2. These instru-
ments record solar absorption spectra, providing high-precision
greenhouse gas time series data. TCCON aims to enhance car-
bon cycle understanding, validate satellite data, and serve as a
standard for satellite-ground comparisons [69].

TCCON sites worldwide, strategically placed for impact on
CO2 concentrations, utilize Bruker 120HR or 125HR spectrom-
eters equipped with sun trackers. Gold-plated mirrors reduce
photon noise, achieving a 2 cm spectral resolution [70]. While
TCCON offers high-precision validation data, its limited spatial
coverage is a drawback. Few stations exist in desert areas, and
there is no representation in the Pacific or Central Asia [71]. TC-
CON’s location in low-emission areas may not capture changes
in CO2 concentrations in regions with significant emissions,
presenting a need for real-time detection methods with broader
coverage. Here is Fig. 12 illustrating the global distribution of
TCCON sites.1

1https://tccon-wiki.caltech.edu/

https://tccon-wiki.caltech.edu/
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C. Measuring, Reporting, and Verification

The Bali Roadmap, established during the 13th Conference
of the Parties to the UNFCCC in December 2007, urges coun-
tries to undertake Nationally Appropriate Mitigation Action
to combat climate change. This entails devising strategies and
implementing measures tailored to each country’s circumstances
for reducing greenhouse gas emissions. Ensuring transparency
and accountability, the Bali Roadmap highlights the significance
of MRV for tracking and reporting progress toward emission
reduction targets.

Carbon verification is crucial for effectively monitoring
greenhouse gas emissions, ensuring accurate data for carbon
emissions supervision, management, and trading. The MRV
mechanism, mandated by the United Nations, guides this pro-
cess. In the measurement stage, standardized guidelines and
accounting methodologies are employed for accurate and scien-
tifically valid greenhouse gas emissions data. The reporting stage
involves making the reporting process public, with specified
enterprises or facilities participating based on set thresholds.
Third-party verification ensures periodic checks, maximizing
data accuracy and credibility [73], [74]. Developed countries
have established robust greenhouse gas measurement policies.
China, in 2007, introduced the “China National Program for
Addressing Climate Change” and adopted standards like the
“IPCC Guidelines,” “ISUCA,” and “Enterprise Standard” for
greenhouse gas accounting. However, these estimates need val-
idation, and their frequency falls short for real-time carbon
emissions estimation [75], [76].

D. Section Summary

In the third section, we delved into the detection principles
of ground-based fixed emission sources, comparing the ad-
vantages and disadvantages of different detection principles.
Currently, ground monitoring systems primarily employ the
Fourier-transform infrared spectroscopy principle, with a par-
ticular focus on analyzing the widely used TCCON system
globally. TCCON has garnered attention due to its high precision
and global distribution. Through a comparative analysis of its
superior detection principles, we gained a deeper understanding
of its role in monitoring ground carbon emissions. Furthermore,
Table VI provides a summary of these three methods.

IV. SATELLITE DATA RETRIEVAL

The technique of using atmospheric retrieval modeling to
infer greenhouse gas carbon sources and sinks originated in the
1980s [77], while the retrieval of carbon concentrations using
satellite remote sensing began in the early 21st century.This
section introduces atmospheric retrieval algorithms and the g-b
FTS retrieval algorithm.

A. Atmospheric Retrieval Algorithm

The physically-based retrieval algorithms proposed in this
section are as follows:

1) Weighted Function Modified Differential Optical Absorp-
tion Spectroscopy (WFM-DOAS);

2) Bayesian Error Subsequent Diffusion (BESD);
3) National Institute for Environmental Studies (NIES);
4) Remote Sensing Technology Company (RemoTeC);
5) Atmospheric CO2 Observations from Space (ACOS).
We have introduced these algorithms, compared their advan-

tages and disadvantages, and indicated the satellites they are
suitable for, as detailed in Table VIII.

1) WFM-DOAS Algorithm: The WFM-DOAS retrieval algo-
rithm was developed in 2006 to calculate the column concen-
tration of target gas using an unconstrained linear least squares
method based on scaling preselected vertical sections. It was
initially developed for the SCIAMACHY on the European Space
Agency’s Envisat-1 satellite. The reference spectrum used for
linear fitting includes trace gas total column weighting func-
tion, temperature section displacement weighting function, and
low-order polynomial.The retrieval formula for XCO2 is as
follows [78]:

XCO2 =

∑
(W (j) ·ΔXCO2(j))∑

W (j)
· (2)

XCO2 represents the retrieved column-averaged CO2 mixing
ratio. W (j) represents the weight factor at wavelength point
j. ΔXCO2(j) represents the change in XCO2 at wavelength
point j.

In 2012, Heyman et al. [79] discovered a bias in the early
WFMDv2.1 version, as it overlooked the impact of intractable
scattering in thin cloud layers. To address this, version v2.2 was
developed, specifically correcting biases in thin cloud layers,
particularly in the presence of strong water vapor absorption
and the O2-A band. This improved treatment of clouds enhances
XCO 2 dataset accuracy, considering height-correlated effects of
temperature and pressure. It also corrects variations in absorp-
tion cross-section, ensuring higher measurement precision. This
algorithm is designed for the SCIAMACHY satellite [80].

2) RemoTeC Algorithm: The RemoTec algorithm was devel-
oped in 2009 by the Netherlands Institute for Space Research in
collaboration with KIT. It retrieves the total column of CO2 by
parameterizing the number of particles, their height distribution,
and microphysical properties [81]. The retrieval formula for
XCO2 is as follows:

XCO2 = f · α · β. (3)

f is a correction factor used to adjust for measurement biases.
α represents atmospheric profile parameters, including temper-
ature profiles, humidity profiles, and atmospheric composition
profiles. β represents the sensitivity function of XCO2, describ-
ing the response of measurement wavelengths to XCO2.

RemoTec algorithm has two versions: 1) Simplified Retrieval
Proxy (SRPR); and 2) Full Physics Retrieval (SRFP). SRPR
is a simplified and efficient version suitable for scenarios with
lower precision requirements. SRFP is more comprehensive,
considering atmospheric aerosol parameters and particle height
distribution, making it suitable for research and applications
requiring detailed information [82]. Both versions use TANSO-
CAI/GOSAT cloud screening and are compatible with GOSAT
and OCO-2 satellites [83].
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TABLE VII
NIR SPECTRAL BANDS USED IN THE ACOS SEARCH

3) NIES Algorithm: In 2011, NIES in Japan developed an
algorithm to extract column abundances of greenhouse gases
efficiently from short infrared spectra obtained by TANSO FTS’s
thermal infrared and near-infrared sensors [84].

NIES algorithm continually enhances retrieval accuracy by
updating data sources, improving physical models, and refining
processing methods [85]. It can simultaneously retrieve multiple
atmospheric parameters such as CO2 concentration, CH4 con-
centration, and aerosol optical thickness. This versatility posi-
tions NIES algorithm favorably for comprehensive atmospheric
component research and monitoring. The algorithm incorporates
metrics like DFS, MSR, and AOD to assess its performance [84],
[86]. However, it has some drawbacks, including data depen-
dency and sensitivity to missing or noisy observational data,
and its complexity is rooted in sophisticated physical models
and retrieval methods. Overall, the NIES algorithm demonstrates
improved atmospheric retrieval accuracy compared to the pre-
ceding algorithms [87]. It is compatible with GOSAT, OCO-2,
and SCIAMACHY satellites.

4) BESD Algorithm: In 2010, Buchwitz et al. [88] the BESD
algorithm. The BESD algorithm is an optimal estimation algo-
rithm developed for evaluating SCIAMACHY measurements, it
is used to retrieve XCO2 from the SCAMACHY nadir measure-
ments.

BESD algorithm employs the principle of optimal estima-
tion to minimize differences between simulated and observed
measurements. It can retrieve independent parameters across
multiple bands. However, the algorithm has some drawbacks,
such as sensitivity to data gaps leading to inaccurate results. It
relies on prior information to improve retrieval accuracy and is
specifically developed for the SCIAMACHY satellite.

5) ACOS Retrieval Algorithm: In 2012, Crisp et al. [74] in-
troduced the ACOS algorithm which utilizes the best estimation
method to optimize the input parameters of the forward model
to match the simulated spectra with the observed spectra, while
constrained by a priori information. The matched spectra are
obtained from three OCO NIR bands: band 1 near 0.76μm, band
2 μm near 1.6 μm, and band 3 μm near 2.1 μm. The wavebands
and their spectral ranges can be found in Table VII. The state
vector x comprises the forward model parameters that are to be
optimized.

All channels in the three bands are aggregated into an ob-
servation vector y. Mathematically, the observed value Y of the
simulated state vector x takes the following form:

Y = F (x, b) + ε. (4)

In the ACOS algorithm, the forward model of the retrieval is
denoted as F in formula (4). The fixed set of input parameters
is represented by b, and ε contains estimates of the instrument

Fig. 13. Flow of the basic steps of the ACOS Level 2 algorithm.

noise and forward model error. The flow of the ACOS 2-stage
retrieval algorithm is illustrated in Fig. 13 [51]. The first input is
the “Level-1B Product,” which contains calibration, spectrally
resolved emissivity, and geometric information for each of the
three spectral bands. In the prescreening step, poor-quality data
and cloudy scenes are removed. The filtered data is then passed
to the core of the algorithm, which is the XCO2 retrieval step.
Here, a priori states are constructed based on meteorological
inputs and observed spectra.

The ACOS algorithm is a commonly used method for retriev-
ing atmospheric CO2, offering global-scale CO2 distribution
information. Utilizing spectral data from multiple near-infrared
bands, it provides richer information for estimating CO2 con-
centrations. The algorithm streamlines the process, avoiding the
need for complex models and external data, and relies relatively
less on prior information. ACOS enables nonintrusive observa-
tion of atmospheric CO2 concentrations without perturbing the
atmospheric system or local adoption. However, the algorithm
is influenced by observational conditions such as cloud cover
and atmospheric optics. It is suitable for GOSAT and OCO-2
satellites.

B. g-b FTS-Based Retrieval Algorithm

The Ground-Based Fourier Transform Spectrometer (g-b
FTS) has been operational at the Amiens site since 2014, as part
of the TCCON network. Using the Fourier transform principle,
g-b FTS decomposes spectral signals of different wavelengths
into frequency signals, obtaining spectral information on various
chemical substances in the atmosphere. It provides detailed
vertical profiles of the atmosphere near or at the ground level.
With a time resolution of approximately 2 min, g-b FTS offers
observational data over short periods, facilitating the monitoring
of short-term variations in atmospheric components. Compared
to satellite greenhouse gas remote sensing measurements, g-b
FTS is less affected by atmospheric factors. However, ground-
based observations are constrained by geographical location,
potentially limiting the comprehensive monitoring of global at-
mospheric changes. In addition, ground observations are suscep-
tible to weather conditions such as cloud cover and precipitation,
leading to potential data gaps and inaccuracies [73].
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TABLE VIII
SUMMARY OF RETRIEVAL ALGORITHMS

Fig. 14. Validation of the retrieval of XCO2 from satellite observations based
on ground-based TCCON observations (adapted from [69].

The retrieval algorithms represented by this instrument in-
clude the GFIT retrieval algorithm developed by the Jet Propul-
sion Laboratory [89], the PROFFIT retrieval algorithm from
the Karlsruhe Institute of Technology [90], and the SFIT re-
trieval algorithm developed by RINSLANDC and others [91].
The PROFFIT and SFIT retrieval algorithms, based on the
optimal estimation approach, are widely used and continuously
updated. PROFFIT is suitable for retrieving gas concentrations
in the near-infrared spectral range, while SFIT is applicable
for retrieving gas concentrations in the midinfrared spectral
range. To assess the accuracy of algorithm products, various
widely used evaluation metrics were employed, with different
benchmark TCCON measurement points selected as reference
data. Accuracy assessment metrics include Root Mean Square
Error (RMSE), Central Root Mean Square Error (CRMSE), Bias
(BIAS), Correlation Coefficient (R), and Standard Deviation
(SD).

C. Section Summary

This section discusses the pros and cons of different atmo-
spheric retrieval algorithms and their use cases, as outlined
in Table VIII. It also analyzes the distinctions between the
g-b FTS retrieval algorithm and other atmospheric retrieval
methods. In conclusion, each algorithm has its strengths and
limitations. For detailed insights into CO2 concentrations at
a specific regional site, the g-b FTS retrieval algorithm may
be suitable. For global-scale climate monitoring and research,
atmospheric retrieval algorithms provide more comprehensive
data. The choice of the appropriate algorithm depends on factors
like research scale and data quality. Section V will delve further
into Method 3 from Fig. 3.

Fig. 14 shows how carbon satellites use retrieval algorithms
to generate XCO2 products by identifying absorption spectra.

Fig. 15. Flowchart for estimating anthropogenic emissions.

These products are then validated against high-resolution XCO2

data from ground-based Fourier transform spectrometers, using
metrics like RMSE, CRMSE, SD, and Bias to assess accuracy.
The validated XCO2 results are sent back to the satellite for
storage.

V. APPLICATION OF MACHINE LEARNING IN CARBON

EMISSION ESTIMATION

In recent years, there has been increasing attention on esti-
mating CO2 emissions at national, regional, and global levels,
gradually becoming a crucial component of public policies and
strategies to address climate change.

Currently, many studies employ machine learning techniques
for estimating CO2 emissions. While these studies provide over-
all estimates, they primarily focus on assimilation techniques,
emission inventories, or other auxiliary data. However, there are
reliability issues in assessing ground emission data, prompting
the need to establish an independent, objective, and comprehen-
sive system for measuring CO2 emissions.

To overcome these limitations, researchers propose a method
that uses machine learning to directly infer ground carbon emis-
sions from satellite monitoring of CO2 concentration, validated
against ground emission inventories. However, compared to
ground inventory data, the application of machine learning in
monitoring CO2 concentration from satellite observations is
relatively limited, leading to a less comprehensive understanding
of emission distributions in different geographical locations or
spatial dimensions. Future developments include using satellite
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TABLE IX
ACRONYMS

XCO2 data to finely depict the spatial distribution of ground
carbon emissions, thereby enhancing monitoring precision and
comprehensiveness.

A. Estimation of Anthropogenic Carbon Emission Inventory
Data Based on Machine Learning

1) Carbon Emission Prediction Based on Classical Statis-
tics: Over the past few decades, researchers have used classical
statistical and econometric methods to model or predict the

growth of carbon emissions [92], [93]. Regression-based analy-
sis has been an effective method to study carbon emissions, in-
corporating other independent variables such as economic devel-
opment, energy consumption, technology and innovation, and
population [94]. However, given that the independent variables
of carbon emissions are often nonlinear and nonstationary [95],
some commonly used time series models, such as Grey Model
(GM), Nonlinear Grey Bernoulli Model (NGBM), and Au-
toRegressive Integrated Moving Average (ARIMA) model [93],
aim to enhance the accuracy and reliability of predictions. By
combining these time series models with regression analysis
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TABLE X
ACRONYMS

methods, a more comprehensive understanding and prediction
of the growth trends in carbon emissions can be achieved [96].

For instance, Pao et al. [99] utilized the GM to predict the
dynamic changes in three variables in Brazil from 2008 to
2013, including pollutant emissions, energy consumption, and
output. The model’s input data comprised pollutant emissions,
energy consumption, and output, while the output data was the
carbon dioxide emissions. This model exhibited advantages in
prediction over the ARIMA model [98]. In another study, Pao
et al. in 2012 used the NGBM to forecast carbon emissions in
China from 2004 to 2009. They proposed a numerical method
to optimize the parameters of NGBM and compared it with the
ARIMA and GM models. The NGBM model showed smaller
RMSE and stronger predictive ability compared to the ARIMA
model [100]. Furthermore, Zheng et al. [97] analyzed the spa-
tiotemporal distribution of near-surface and midtropospheric
carbon dioxide concentrations globally using GOSAT L2 dataset
and ground observations from atmospheric background stations.
They employed the ARIMA model to predict the future changes
in carbon dioxide concentrations in near-surface regions of
China. The results indicated a slight advantage of the ARIMA
model in fitting and predicting GOSAT remote sensing dataset.

These three classical statistical methods do not have an ab-
solute ranking in terms of superiority or inferiority; instead,
they each have scenarios in which they are more suitable.
The ARIMA model is suitable for linear and stationary time
series data, demonstrating good fitting capability for trends and
seasonality but may perform less effectively for nonlinear and
nonstationary data. The GM model is appropriate for situations
with limited data and challenges in establishing precise models.
However, it may not perform as well as other complex mod-
els in cases of long-term prediction and large datasets [101].
The NGBM model is mainly used for long-term prediction,
particularly well-suited for large-scale data compared to the
traditional GM model [102]. It exhibits better generalization

capabilities but requires parameter optimization, and its fitting
effectiveness is limited for certain types of data. Nevertheless,
the challenge for CO2 emissions lies in dependence on historical
data and the difficulty of accurately capturing complex non-
linear relationships. In situations influenced by various factors,
statistical-based methods may not comprehensively consider the
impact of these factors. In 2015, Falat et al. [103] conducted
multiple comparative experiments and found that artificial neural
networks outperformed statistical regression analysis, simple
time series models, and other methods. Artificial neural net-
works were considered a more suitable choice for estimating
the carbon dioxide emissions of each country.

2) Neural Network-Based Carbon Emission Prediction: Ar-
tificial Neural Networks (ANNs) are computational models
inspired by the human brain’s structure. Comprising intercon-
nected neurons arranged in layers, including input, hidden, and
output layers, ANNs utilize adjustable weights and activation
functions for information processing [104]. Common types in-
clude backpropagation neural networks (BPNN), feedforward
neural networks (MLP), radial basis function networks, and long
short-term memory (LSTM) neural networks. ANNs find appli-
cations in diverse tasks such as pattern recognition, classifica-
tion, and prediction. They have shown promising results in pre-
dicting carbon dioxide emissions for different countries [105],
[106]

Jiang et al. [107] utilized a backpropagation (BP) neural
network to analyze environmental factors for CO2 flux in urban
forestland. Input variables included wind speed, air temper-
ature, water vapor concentration, atmospheric pressure, and
water vapor pressure. The model predicted CO2 flux based
on these inputs. Alex et al. [74] expanded on World Develop-
ment Indicators (WDI) data, introducing variables like popu-
lation, financial development, and industrialization. They used
a BP neural network to study carbon emissions in countries
like Australia, Brazil, China, India, and the United States.
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Shabani et al. [108] enhanced prediction accuracy for Ira-
nian agricultural CO2 emissions using a multimodel neural
network approach, integrating multiple models for superior
results.

In 2021, Rezaei et al. [109] achieved an R2 value of 0.98 for
Southeast Asian countries’ CO2 production using neural radial
basis function (NRBF) and tansig function neural networks. As-
sad forecasted carbon dioxide levels in Middle Eastern countries
with a Multilayer Perceptron (MLP) network, finding logsig
activation provided the highest accuracy. Jassim et al. [110]
used artificial neural networks to predict CO2 emissions from
highway trucks. Other methods, like Support Vector Machines,
have been applied to model CO2 emissions [111]. In 2022, Hu
et al. [112] employed LSTM neural networks to predict China’s
total carbon emissions. Comparing with an ARIMA-BP model,
they found LSTM neural networks had superior predictive per-
formance.

These examples illustrate the gradually maturing application
of neural networks in the field of ground carbon emissions.
This development is reflected not only in technological up-
dates and optimizations, but also in the more comprehensive
and accurate modeling and prediction of CO2 emissions for
different countries, regions, and specific industries. Researchers
are transitioning from traditional BP models to LSTM models
and experimenting with different activation functions in the
models, continually exploring and optimizing deeper neural
network architectures. Such efforts aim to better adapt to com-
plex environmental factors and variable data, thereby achieving
significantly improved predictive outcomes for the models.

B. Machine Learning for Ground Carbon Emission Analysis
With Carbon Satellite Data

When conducting this research, several technical and data-
related challenges were encountered:

First Challenge. Limitations in Measurement Orbits: Due
to the restricted measurement orbits of carbon satellites, data
collection faced challenges, limiting the possibility of multiple
measurements of ground carbon sources. Matching with fixed
monitoring stations for multiple comparisons may present con-
siderable challenges.

Second Challenge. Discrete Imaging in Strip-Like Patterns:
Carbon satellites typically image in a strip-like manner, resulting
in discontinuous data. Carbon concentration is recorded at dis-
crete positions, posing a challenge for machine learning methods
that typically handle continuous data. Researchers often need to
consider how to fill or estimate XCO2 data for unobserved areas
during data processing and modeling.

Third Challenge. Difficulty in Obtaining Wind Field Informa-
tion: Obtaining accurate wind field information is difficult, and
wind conditions can impact the quantification of ground carbon
emissions. However, obtaining precise wind field information is
extremely challenging, and usually, only average wind speed and
direction data over larger spatial and longer temporal scales are
available. These challenges collectively increase the complexity
of studying ground carbon emissions.

These challenges collectively increase the complexity of
studying ground carbon emissions. The following section intro-
duces innovative approaches currently adopted by researchers
to address these technical and data-related challenges.

1) Ground Carbon Emission Estimation Based on Clustering
Methods: K-means clustering relies on the average Euclidean
distance between data points, assigning them to clusters based
on proximity to the mean. EM clustering, based on a Gaussian
distribution mixture, involves iterative assignment and updating
steps. In this study, K-means clustering, driven by NO2 levels,
initially divides data into four groups based on increasing NO2

tropospheric column values. The results are then used for EM
clustering, offering finer refinement, and a better understanding
of the correlation between XCO2 anomalies and NO2 tropo-
spheric columns [113].

Unlike directly estimating ground carbon emission data, es-
timating ground carbon emissions by combining satellite mon-
itoring data poses significant challenges due to the complexity
introduced by trends, seasonality, long lifetimes, and the large-
scale atmospheric background of CO 2 compared to short-term
air pollutants like NO2. The analysis of anthropogenic CO2

emissions becomes intricate as CO2 plumes generated by ground
emission sources may cause local enhancements in near-source
observational data from carbon satellites. Diffusion and flow of
gases lead to the separation of these local enhancements from
the background XCO2. Such local enhancements are considered
reflections of ground carbon emission data.

In 2016, Hakkarainen et al. [2] first proposed that to high-
light regions relevant to ground carbon dioxide emissions, it
is necessary to calculate the anomaly (ground carbon emis-
sions) of XCO2 by subtracting the median XCO2 from
daily observations at a particular moment. The formula is as
follows:

XCO2(anomaly) = XCO2(specific moment)−XCO2.
(5)

First, ground carbon emission data were computed by sub-
tracting daily background concentrations from each satellite
observation. This process helps eliminate seasonal variations
and mitigates the spatial distribution impact on data points.
The daily median is determined when there are at least 100
measurements available on the same day within the selected
study area.

Second, the average of all XCO2 anomalies within defined
grid cells is calculated. This average is computed only when
there are at least ten available measurement values in each
grid cell. The study utilized 1◦ × 1◦ grid cells for interpolation
analysis, using OCO-2 XCO2 version 7r data. As an auxiliary
dataset, NO2 tropospheric column measurement data from the
Ozone Monitoring Instrument (OMI) were employed. ODIAC
data served as a basis for comparing with XCO2 anomalies. Two
unsupervised machine learning methods: 1) k-means clustering;
and 2) expectation-maximization clustering, were applied in the
analysis.

These methods reveal that the spatial features of detected
CO2 emission regions in the XCO2 anomaly map align closely
with the ODIAC emission inventory. The study establishes a
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positive correlation between average XCO2 anomaly values and
CO2 emission values, marking the first research to directly dif-
ferentiate ground carbon emissions from OCO-2 observations.
However, the study notes the oversight of seasonal variations’
impact on ground carbon emissions, suggesting the need for
seasonal considerations for a more comprehensive analysis.

2) Ground Carbon Emission Estimation Based on the GRNN
Method: GRNN is a neural network employing radial ba-
sis functions and kernel regression. Unlike backpropagation,
GRNN doesn’t need iteration and can estimate functions be-
tween input and output datasets directly from training data. It
consists of the following four layers:

1) input;
2) pattern;
3) summation;
4) output.
The number of input variables depends on observed and

collected datasets, and this information is sent to the pattern
layer. To follow neural network computations, it is essential to
standardize all training data initially, as per the formula [114].

d(x0 − xi) =

p∑
j=1

(
x0j − xij

σ

)2

(6)

p represents the dimension of the variable xi, and σ is the diffu-
sion parameter. Its optimal value is determined by minimizing
the RMSE between the training data and the predicted values
of the dependent variable. The predicted target variable is the
emission of ODIAC CO2, defined by the following equation:

ŷ(x0) =

∑n
i=1 yie

−d(x0,xi)∑n
i=1 e

−d(x0,xi)
. (7)

xi is the input of a training sample, yi corresponds to the
target output for the respective training sample. The weights are
determined by e−d(x0,xi). Hakkarainen et al. did not consider
seasonal variations causing periodic CO2 fluctuations. Its struc-
tural flowchart as shown in Fig. 15. They calculated three-day
interval anomaly values and derived annual averages, elimi-
nating regional seasonal changes and minimizing atmospheric
transport effects. Yang generated monthly and annual average
dXCO2 datasets, validated against ODIAC emissions. Notably,
Yang introduced GRNN model to illustrate the nonlinear rela-
tionship between dXCO2 and ODIAC, a novel approach in this
study [14].

Yang used dXCO2 and ODIAC emission data from 2010
to 2014 for training, comprising 5415 samples. The model
predicted 2015 ODIAC emissions using dXCO2 from that year,
validated against preprocessed ODIAC data. The correlation
between GOSAT XCO2 anomalies and Chinese ODIAC CO2

emissions showed an R2 of 0.82, supporting ground carbon
emission validation and regional estimation based on XCO2

variation, especially in high-emission regions. However, the
model had higher uncertainty in low/no emission and point
source areas. Annual dXCO2 estimation was influenced by
biosphere CO2 absorption and flux, requiring auxiliary data like
primary productivity and nighttime light. Yang’s method offers
rapid ground carbon emission updates and a new approach. In

2021, Mustafa et al. [16] improved on Yang’s dataset, focusing
on East and West Asia, using ACOS V10r and adding net
primary productivity (NPP) data. Results showed a smoother
CO2 emission distribution with a 13% increase in R2. Detection
in deserts remains challenging. The study introduced NPP data,
enriching the model’s information on ecosystem CO2 dynamics.

Incorporating meteorological data may enhance the model,
especially in special regions. Considering factors like wind
speed and temperature improves atmospheric CO2 simulation
accuracy. Including meteorological data enhances ground car-
bon emission estimation, particularly in complex surface feature
regions.

3) Ground Carbon Emission Estimation Based on Deep
Learning: The Transformer model, based on self-attention
mechanisms in deep learning, has shown effectiveness in pro-
cessing sequential data, making it a valuable tool for handling
satellite remote sensing data. Unlabeled data were used to mask
each input sequence with a masking ratio ρ, inputting the masked
data into the Transformer-based neural network architecture to
output representations of the masked data [115].

Studies utilizing machine learning for satellite-based estima-
tion of ground carbon emissions often overlook crucial factors
like wind speed, humidity, and temperature. In 2022, Zhao
et al. addressed this gap by integrating multiple data sources,
developing a data processing algorithm, and proposing a novel
deep learning model for estimating carbon dioxide emissions
from individual ground sources. The methodology involved
three main steps: 1) retrieval based on carbon sources; 2) han-
dling anomalous data; and 3) linear prediction. The study effec-
tively leveraged carbon satellite data characteristics, employing
a Transformer model for mask pretraining and linear regression
for supervised modeling, establishing a mapping from satellite
data to carbon emissions [17].

C. Section Summary

This section covers two main aspects of machine learning in
carbon emissions research. The first part focuses on modeling
the relationship between ground variables (such as fossil fuel
consumption, population, and GDP) and carbon emissions, us-
ing classical statistics, time series models, and neural networks.
The second part explores the application of machine learning in
analyzing carbon satellite data, addressing challenges like lim-
ited measurement orbits and discrete strip imaging. Researchers
employ innovative methods, including clustering and GRNN, to
estimate ground carbon emissions directly from satellite obser-
vations. The introduction of deep learning, specifically Trans-
former models, presents new possibilities for data processing.
However, challenges such as satellite data gaps and improving
model adaptability remain areas for future development.

VI. SUMMARY AND PERSPECTIVE

This review focuses on three main aspects of machine learning
in the current field of carbon dioxide monitoring: 1) ground
observation; 2) satellite observation; and 3) the integrated appli-
cation of satellite and ground observations. We comprehensively
discuss widely used ground carbon emission inventories and
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the development stages of XCO2 datasets derived from carbon
satellite retrievals. Utilizing the Citespace software, we provide a
comprehensive review of global research in the carbon emission
domain. The subsequent sections offer detailed analyses of
different ground observation stations, their applicable scopes,
adopted algorithms, and an introduction to the widely used MRV
system. We delve into atmospheric retrieval algorithms, clarify
the strengths and weaknesses of various algorithms, and guide
the selection of algorithms for different carbon satellites. The
final focus is on the application of machine learning in carbon
emission estimation, covering direct estimation methods for
ground carbon emissions, such as using ARIMA, GM, and ANN
to establish relationships between various variables and carbon
emissions. Despite the effectiveness of these models, their re-
liance on self-reported information makes them subjective.

The estimation of ground carbon emissions based on satellite
carbon columns provides an impartial measurement system.
Researchers have successfully retrieved ground carbon emission
data using carbon columns, distinguishing background concen-
trations and seasonal variations in emissions through clustering
and GRNN models. In addition, using Transformer models with
multisource data to estimate emissions from individual ground
sources shows promise. While these methods have achieved
some success, challenges related to satellite limitations, discrete
imaging, atmospheric dynamics, and satellite noise necessitate
further research in this nascent field.

Future CO2 monitoring research faces both challenges and
opportunities. To advance, researchers may consider focusing
on the following.

1) Enhanced Remote Sensing: Improve data techniques, re-
fining algorithms to reduce aerosol and cloud interference.
Fill data gaps using neural networks for better spatiotem-
poral resolution.

2) Integrated Ground Emission Modeling: Combine diverse
datasets for comprehensive emission models, considering
semantic, elevation, and meteorological data for a nuanced
understanding of spatial distribution.

3) Continual Machine Learning Improvement: Evolve ma-
chine learning for better precision. Explore deeper levels
of algorithms to model intricate carbon emission relation-
ships effectively.

4) Satellite Technology Innovation: Innovate satellites for
higher spatiotemporal resolution, catering to diverse mon-
itoring needs. These advancements will bolster the accu-
racy and real-time capabilities of carbon emission esti-
mation methods, supporting in-depth climate studies and
policy formulation.

5) To achieve the goal of carbon neutrality in the future, it is
not only necessary to monitor carbon emission sources,
but also to conduct in-depth research on the complex
interactions between carbon sinks and carbon sources.

In summary, future research will focus on improving re-
mote sensing precision, integrating diverse emission model data,
advancing machine learning technologies, innovating satellite
technologies, and conducting comprehensive studies on the
relationship between carbon sinks and sources in the context
of future carbon neutrality goals.These comprehensive research

methods will provide a more scientific and practical foundation
for achieving carbon neutrality, addressing climate change, and
promoting sustainable development.
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