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Improving ATMS Imagery Visualization Using Limb
Correction and AI Resolution Enhancement

Xingming Liang , Lihang Zhou , Mitch Goldberg, Satya Kalluri , Christopher Grassotti , Ninghai Sun ,
Banghua Yan , Hu Yang , Lin Lin , and Quanhua Liu

Abstract—The advanced technology microwave sounder
(ATMS) is an important satellite instrument that provides vital
data on atmosphere temperature and moisture for weather
forecasting and climate research, and helps us plan for extreme
weather. However, its coarse resolution and angular dependence
have long been a challenge for improving image visualization. This
article proposes a method to enhance the imagery visualization
for ATMS, combining limb correction (LC) with artificial
intelligence (AI) resolution enhancement (RE). Measurement
data from the ATMS onboard NOAA-20 were utilized to train
the LC method, which were then validated using newly acquired
NOAA-21 ATMS data. The AI RE was performed using enhanced
super-resolution generative adversarial networks, which increased
the pixel resolution by a factor of four. The high-resolution
(HR) Advanced Microwave Scanning Radiometer 2 data served
as a reference to initially and quantitatively evaluate the RE
method. The combined method of LC and AI RE produced an
angular-dependence-free and HR ATMS image, resulting in a
significant improvement in image visualization, including surface
and atmosphere information, and allows for clear identification
of severe weather events. For the swift identification and analysis
of tropical cyclones in the upcoming season, as of this writing,
this proposed method has been routinely employed to produce
high-quality global ATMS images, and these images are showcased
and tested in the NOAA internal HR imagery visualization
system—JSTAR Mapper. Moreover, concentrated efforts are
being made to further enhance these images in preparation for an
official release.

Index Terms—Advanced technology microwave sounder
(ATMS), convolutional neural network (CNN), enhanced super-
-resolution generative adversarial networks (ESRGAN), generative
adversarial network (GAN), image visualization, limb correction
(LC), weather event.
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I. INTRODUCTION

THE advanced technology microwave sounder (ATMS)
[1] produces imagery products from sensor data records

(SDRs) that provide a preliminary view of surface and atmo-
spheric information. This enables users to quickly and directly
identify and analyze extreme weather events, such as tropical
cyclones (TCs), and respond to disasters in a timely manner.
However, there are two limitations of ATMS imagery for this
application that hinder the usefulness of surface and atmospheric
information and the clear identification of extreme weather
events. First, the measurement data from ATMS SDR products
are highly dependent on the sensor scan angle [1], [2], which is
a characteristic of the cross-track microwave sensor of ATMS.
This angle dependence reduces the accuracy of the view of
surface or atmospheric information and identification of weather
events from ATMS imagery products, as the atmosphere’s op-
tical path length varies from the nadir to the swath edge. Sec-
ond, most microwave sensors have low spatial resolutions. For
example, the nadir spatial resolution of ATMS is 75 km for
channels 1–2, 32 km for channels 3–16, and 16 km for channels
17–22, which is lower than visible and infrared sensors. The
resolution is further decreased as one moves toward the swath
edge (off-nadir). The low resolution (LR) of microwave channels
significantly limits the depiction of surface and atmospheric
information and the clear identification of extreme weather
events, especially at the swath edge.

Efforts to correct the scan angle dependence of cross-track
microwave sensors, also known as limb correction (LC), have
been extensively researched at NOAA. Wark [3] first introduced
the linear regression method for adjusting the limb effect at each
scan angle, and Goldberg et al. [4] further developed the LC
method and applied it to the advanced microwave sounding unit
(AMSU). Liu and Weng [5] validated Goldberg’s LC method
using AMSU on NOAA-16 and NOAA-18.

Zhang et al. [6] applied the algorithm to ATMS onboard
the Suomi National Polar-Orbiting Partnership (S-NPP), and
Tian et al. [7] used the method on the Microwave Temperature
Sounder 2 onboard FengYun 3C. These LC efforts for microwave
sensors have minimized the scan angle dependence of the sensor
measurements and improved the microwave sensor imagery.
Meanwhile, efforts have also been made at NOAA to improve
the capability of microwave sensor imagery visualization for
accurately capturing weather events. Yan et al. [8] filled gaps in
ATMS SDR data in low latitude regions to help visually observe
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realistic warm core structures of a hurricane system. Zhou et al.
[9] presented the atmospheric features of the Hunga Tonga
volcano eruption using ATMS, together with three other ad-
vanced sensors onboard the Joint Polar Satellite System (JPSS)
satellites. However, the lack of fine resolution footprints for
cross-track microwave sensors still prevents accurate capturing
of surface and atmosphere information and weather events,
particularly when the important information or weather event
is located at coarser footprints close to the swath edge.

NOAA-20, formerly known as JPSS-1, was launched in
November 2017, and operates in the same orbit as the S-NPP
satellite, with a lead time of approximately 50 min. NOAA-20
ATMS has the same channel set, polarizations, scan geometry,
and calibration approach as the S-NPP ATMS and is currently
operational at NOAA [10]. It is valuable to develop and validate
the limb adjustment algorithm for NOAA-20 ATMS in order
to improve NOAA’s imagery products and Environmental Data
Record (EDR) products. The recently launched NOAA-21, also
carrying the ATMS sensor, will be operational at NOAA as part
of the JPSS satellites series. This article adopts a similar linear
regression method as previous article, but with slightly altered
parameterization, to limb-correct NOAA-20 ATMS SDR data.
The newly acquired NOAA-21 ATMS data will be utilized to
validate the LC algorithm through a comparison of measure-
ments from NOAA-20 and NOAA-21.

Artificial intelligence (AI) and deep learning (DL) are rapidly
evolving fields that have had a significant impact on numer-
ous areas of science and engineering. DL, in particular, has
become one of the most widely used AI methods. Its appli-
cations in remote sensing and numerical weather prediction
are currently being investigated [11], [12], [13], [14], [15],
[16]. The remote sensing image processing using a state-of-art
convolutional neural network (CNN) [17], [18], [19], [20], [21],
[22] method has also become popular [23], [24]. The recent
advancements in AI have led to the development of various
methods for generating super-resolution (SR) images from LR
images using CNN methods. Single image SR is a fundamental
image processing task that aims to enhance image resolution
by recovering high-resolution (HR) images from LR images.
Traditional resolution-enhancement methods, such as bicubic
interpolation and Lanczos filtering [25], have limitations in
terms of generating high-quality images with fine texture de-
tails. To overcome these limitations, researchers have developed
various CNN-based SR models. The first SR method was SR
CNN [26], which used only two simple convoluted layers but
opened the door for later evolution of SR model development.
It was soon discovered that a very deep CNN is good for the
SR method and a very deep super-resolution method [27] was
proposed in 2015. With the emergence of state-of-the-art genera-
tive adversarial networks (GAN) [17], new SR methods, such as
the super-resolution generative adversarial networks (SRGAN)
[28] and enhanced super-resolution generative adversarial net-
works (ESRGAN) [29], were developed to improve SR image
at larger upscaling factors and recover finer texture details in
images. While this is a brief summary of the evolution of SR
technique, there have been many other SR methods developed
in recent years. ESRGANs, in particular, have been praised

for their high level of detail and natural appearance, making
them well-suited for applications in computer graphics, video
compression, image processing, and remote sensing. One area
of this article is exploring the enhancement of spatial resolution
in ATMS imagery using ESRGAN. This seminal work has the
capability to generate realistic textures from a single image that
has undergone resolution enhancement (RE).

The rest of this article is organized as follows. Section II
outlines the LC algorithm, RE method, and data used for both
methods. Section III demonstrates and evaluates the results.
Specifically, the NOAA-20 LC algorithm is examined by newly
acquired NOAA-21 data, and its compatibility is checked by
S-NPP. In addition, the accuracy of the generated RE image
is initially assessed using HR Advanced Microwave Scanning
Radiometer 2 (AMSR2) data. Section IV discusses the merits
and drawbacks of applying ESRGAN to ATMS imagery. Finally,
Section V concludes this article.

II. METHODOLOGY AND DATA

The LC and RE algorithms were both utilized in this article
and processed sequentially to generate combined LC and RE
images. In this section, the algorithms will be described individ-
ually along with the corresponding data used.

A. Limb Correction for ATMS NOAA20

As described in the previous section, NOAA-20 ATMS has the
same channel set, polarizations, scan geometry, and calibration
approach as the S-NPP ATMS. However, they have slightly
different noise equivalent to differential temperature (NEDT,
https://www.star.nesdis.noaa.gov/jpss/ATMS.php).

Despite operating in nearly the same orbit, there is 50-min
difference between the two satellites. In addition, the coefficients
generated in previous articles may have become outdated and
may need to be upgraded for recent brightness temperature
(BT) adjustments. Thus, it is necessary to redevelop the LC
algorithm to adjust NOAA-20 ATMS BTs and reduce its scan
angle dependence.

The scan angle dependencies of ATMS measurements are
caused by the satellite limb effect, which results from an increase
in the atmosphere optical path between the satellite and the earth
surface as the satellite zenith angle (SZA) increases, while the
sensor scans from nadir to swath end. The objective of the LC
method is to adjust the off-nadir BT to the nadir-like BT for
each scan angle using a linear regression method with selected
neighboring channels. It is based on an empirical hypothesis
that the limb effect for a target channel can be eliminated or
minimized by a linear combination of its neighboring channels
and itself [3], [4]. This can be expressed as follows:

Tbm,j, nadir = Tbm,i +
∑

mk

αmk,i ∗
(
Tbmk,i,j − Tbmk,i

)

(1)
where Tbm,j, nadir is the mean BT at channel m at the ATMS
nadir field of views (FOVs), specifically positions 47 and 48. The
index j represents each latitude bin group, where each latitude
group represents the angular variation of a single metrological

https://www.star.nesdis.noaa.gov/jpss/ATMS.php
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TABLE I
MEAN BIASES AND SDS BETWEEN THE LC BTS AND NADIR BTS IN NOAA-20 ATMS 22 BANDS AND 7 FOVS FOR TRAINING DATASET

condition, such as temperature, humility, ozone, and clouds.
Unlike previous articles that binned the data into 2° latitude
bands, this article bins the train data into 1° to provide more de-
tailed metrological conditions and bring more cases to the model
training, which can improve the model ability to capture the
underlying relationship between variables and help in estimating
the regression coefficients more accurately. Consequently, this
update in latitude binning makes it possible to improve the LC
algorithm. Tbm,i represents an average BT at FOV i and channel
m. Tbmk,i,j is the mean BT for selected channel mk and FOV
i at the latitude bin position j, and Tbmk,i is the corresponding
average BT in all latitude bins. αmk,i are the coefficients to be
determined. The adjacent channel selection process for a target
channel can be found in previous article [6]. The coefficients
can be obtained by a simple linear regression algorithm fed by
a precollected training dataset. Once the αmk,i are obtained, the
LC BTs (Tb_LCm,j,i) can be calculated using right terms of
(1) and replacing the Tbmk,i,j with original SDR measurements
(Tbmk,i,j) as follows:

Tb_LCm,j,i = Tbm,i +
∑

mk

αmk,i ∗
(
Tbmk,i,j − Tbmk,i

)
.

(2)
This article used six months of NOAA-20 ATMS SDR data

from June 1, 2021 to December 1, 2021, which were accu-
mulated and grouped into 1° latitude bands to generate LC
coefficients for each channel and each FOV position. The data
were further separated into land and sea groups to avoid potential
biases from different surfaces, especially for surface-sensitive

window channels, due to the significant surface emissivity
difference between land and sea. A newly developed 0.05°
horizontal-resolution global surface type model used in the
NOAA Microwave Integrated Retrieval System (https://www.
star.nesdis.noaa.gov/mirs/) was employed to separate the dataset
to land and sea groups. To further validate the accuracy of the
generated coefficients, the mean biases between the LC-adjusted
BTs and nadir BTs for training dataset and corresponding stan-
dard deviations (SDs) were calculated. Table I shows these mean
biases and SDs across all 22 channels and 7 FOV positions
in ocean domain between latitudes of −60° and +60°. Higher
latitudes were excluded from the error analysis as they introduce
more noise due to snow and ice, and increase SDs for window
bands.

The small biases and SDs suggest that the LC adjustment
works well and the uncertainties from cloud and surface emis-
sivity are almost minimized or eliminated after averaging six
months data. Most biases and SDs are smaller or comparable to
NOAA-20 ATMS NEΔTs, except for window bands at swath
end, which show uncertainties up to 2.5 K, mainly due to the
effect of complex surface emissivity. The angular dependences
are observed for both mean biases and SDs, but SDs are more
pronounced, attributed to the increase in atmosphere optical
path from nadir to swath end. Certainly, when applying the
LC algorithm to individual ATMS measurements, both mean
biases and SDs in term of nadir BTs are expected to be larger
than those for training dataset, due to the contribution from
the specific metrological condition and surface state in each
measurement. However, the angular dependences are considered

https://www.star.nesdis.noaa.gov/mirs/
https://www.star.nesdis.noaa.gov/mirs/
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Fig. 1. Flowchart of ESRGAN.

to be eliminated or minimized after LC adjustment. Further
discussion will be in the next section.

The mean biases and SDs for land (no shown) were found
to be similar to those for the ocean, except that the SDs are
slightly larger for window bands. This is because that the surface
emissivity differs for different surface type and atmospheric
optical properties for land are more complicated and nonuniform
than those for the ocean. Nevertheless, the patterns of the biases
and SDs in term of ATMS channels and FOV positions, including
angular dependence, were similar to those for the ocean. The
snow and ice surface produced even larger biases and SDs as
the surface emissivity varies more rapidly with frequency under
snow and ice conditions. Moreover, most ice data is located
in dry-air polar areas, making the effect on LC from the sur-
face emissivity is more significant. However, for high-peaking
sounding channels, such as band 12–15, which are not sensitive
to atmosphere conditions of surface and low troposphere, the
LC adjustment can still work for ice surfaces. In this article,
we focused on LC adjustment for land and ocean surfaces
and left the option of LC for ice in the algorithm for future
investigation.

B. Overview of ESRGAN

ESRGAN [29] is a DL algorithm designed to generate SR
image, representing an upgraded version of its “sister” model,
SRGAN. Its core architecture is based on a cutting-edge neural
network known as GAN, which consists of two independent
learning networks: the generator and the discriminator. The
generator is trained to create SR images, while the discriminator
attempts to classify these SR images as either real or fake.
Both networks are very deep CNNs and are trained using a
large dataset of LR and HR image pairs. The objective of the
ESRGAN is to produce SR images that are as close to nature HR
images as possible from LR inputs, as demonstrated in Fig. 1.
Initially, the LR image is input into the generator network to
generate an HR version, known as SR image. This generated
image, along with the original HR image, is then fed into the
discriminator network, which is responsible for distinguishing
between real and fake images based on the GAN loss function.
During backpropagation, the GAN loss function is utilized to
update model’s weights and biases. The generator network learns
to generate SR images that are as realistic as possible, with the
aim of deceiving the discriminator network, which is trained

to distinguish real and fake images. Together, both models
work collaboratively to make ESRGAN capable of generating
SR images that are indistinguishable from their original HR
counterparts.

A vital advantage of SRGAN and ESRGAN is the incorpora-
tion of the perceptual loss function [28] in the generator model.
This is in addition to the common pixelwise mean square error
(MSE) loss used in earlier SR image models as follows:

LG = Lpercep + λLRa
G + ηL1. (3)

Here, L1 is the content loss, which is the well-known pixelwise
MSE-based loss. Lpercep is the perceptual loss, and remaining
term is the adversarial loss [30]. The coefficients λ and η balance
different loss terms.

In SRGAN, the perceptual loss is calculated using the after-
activation feature map of a pretrained, very deep CNN archi-
tecture developed by visual geometry group, the so-called VGG
network [31]. By incorporating the perceptual loss into generator
network, the generated SR images recover finer texture details
of the original HR images, compared to pixelwise MSE loss,
which often lacks high-frequency content and results in overly
smooth textures in the generated SR images. ESRGAN further
improves the perceptual loss by using features before activation,
which can lead to better brightness consistency and texture
recovery.

The common adversarial loss used in SRGAN is defined based
on the probability that the generated SR image is a natural HR
image, as shown in (4). It was updated to the relativistic generator
loss in ESRGAN as follows:

LSR
G = − Exf

[log(D (xf ))] (4)

LRa
G = − Exr

[log (1−DRa (xr, xf ))]

− Exf
[log (DRa ( xf , xr))] . (5)

In these equations, xr and xf represent the real HR image and
the generated fake image, respectively. D(xf ) is the probability
that the reconstructed SR image xf is real and natural. This
probability needs to be maximized to generate a realistic HR
image. So LSR

G needs to be minimized. However, the relativistic
loss aims to predict the probability that a real image is relatively
more realistic than a fake one, as shown in (5), which aids in
learning shaper edges and more detailed textures.

Furthermore, ESRGAN removes batch normalization [14],
used in SRGAN, to further minimize artifacts in the generated
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image and employs a residual-in-residual dense block instead
of the original residual block to improve training stability. All
these advantages enable ESRGAN to effectively enhance image
resolution at larger upscaling factors.

C. ATMS Resolution Enhancement With ESRGAN

There are several challenges in applying ESRGAN to ATMS
imagery. One challenge is that ESRGAN requires both LR
and HR image pairs for model training. In the case of ATMS,
HR reference data are lacking, and using the original ATMS
imagery as HR imagery and resolution-lowered images as LR
imagery is not effective as the coarse resolution original ATMS
images have been blurred and will lose much high-frequency
information, particularly in the off-nadir region. In addition,
most current SR methods are designed for single images, making
it difficult to enhance the resolution for the multiple ATMS
channels simultaneously.

To overcome these challenges, the high-quality image set, DI-
Verse 2K (DIV2K, https://data.vision.ee.ethz.ch/cvl/DIV2K/)
was used to train the model in this article. The DIV2K dataset
contains 1000 2K resolution high-quality images with different
scenes and was split into 800 for training, 100 for validation, and
100 for testing. It was collected from Internet for the New Trends
in Image Restoration and Enhancement (NTIRE) 2017 [32] and
NTIRE2018 SR challenges to encourage research in image SR
with more realistic degradation. As a result, a four-times RE
model pretrained with the DIV2K dataset was used to generate
ATMS images for the subsequent evaluation. While considering
a larger upscaling factor is possible, our offline tests suggest that
it may not effectively recover detailed texture and information
of LR, off-nadir pixels.

ATMS SDR data are used as inputs for the RE model to
generate HR images. Ideally, the RE model requires that the
size of each pixel in the input image be identical, as the images
in the DIV2K dataset used for model training are composed of
same-size pixels. Consequently, it would seem more reasonable
to use a gridded ATMS image as an input for the RE model to
generate HR image. However, if ATMS SDR data are gridded,
the resolution of the input images would be significantly reduced
and the gridded pixel will be inconsistent with original one,
making the benefits of to enhancing gridded ATMS data far
less impactful than using ATMS SDR data directly. Moreover,
compared to SDR data, the use of gridded data degrades surface
and atmosphere information, particularly for the severe weather
events. Therefore, the original resolution SDR data are initially
selected as the model input. Although the resolution of ATMS
SDR data changes from nadir to swath edge, it does not affect the
four-fold RE after RE processing, excepted that the generated
images maintain unequal resolution across the scan swath. For
instance, an ATMS image that originally has a resolution of 16
km at the nadir but 60 km at the swath edge would be refined to
4 km at the nadir and 15 km at the swath edge after undergoing
RE processing. Therefore, after RE processing, the ATMS nadir
spatial resolution will be improved to 18.75 km for channels 1
and 2, 8 km for channels 3–16, and 4 km for channels 17–22,
from their original resolutions described in Section I.

Since the DIV2K dataset comprises photos with a 256 RGB
colors scale, the BTs from ATMS SDR data should be normal-
ized and convert to photo scale before being input into RE model.
A Min–Max scaling technique is used as follows:

Xnorm =
X −Xmin

Xmax −Xmin
∗ 255. (6)

Here, Xmax and Xmin are maximum and minimum BTs of the
input SDR data, respectively. As the BT range are approximately
100 to 350 K for all ATMS bands, which is nearly the same order
of magnitude as the DIV2K image scale, the error resulting from
this conversion can be ignored.

The RE model was designed to accommodate the input of
multiple SDR granule BTs. Each granule contains 12 sample
lines and 96 FOVs. To enhanced processing efficiency, BTs
from several contiguous ATMS SDR granules are combined
and fed into the RE model after being normalized using (6).
As a result, after RE processing, a 4 × lines by 4 × 96 SR image
is generated, in which each 4 × 4 pixel block is reconstructed
from one SDR pixel. Subsequently the produced data will be
inverse-normalized and converted back to BTs as follows:

X = Xnorm ∗ (Xmax −Xmin) /255 +Xmin (7)

D. Combination of Limb Correction and Resolution
Enhancement

Given the newly generated LC coefficients and a well-trained
RE model, both methods can be combined to process ATMS
images. Fig. 2 presents the flowchart of ATMS image processing
that combines both methods. First, the ATMS SDR data are input
into the LC module to generate the LC image, and then the LC
image is input into the RE module to generate high-quality LC
and RE images, which are used to accurately view the surface
and atmospheric state and clearly identify extreme weather
events. Another option is to perform the RE algorithm first to
generate the RE image and then conduct the limb adjustment to
produce RE and LC images. However, the latter procedure
is more complex and time-consuming as the LC processing
requires the use of multiple RE images of selected channels
to generate the LC image for a single target channel. This
alternative approach will serve as an option to supplement the
primary processing strategy.

III. RESULTS AND EVALUATION

The generated NOAA-20 LC coefficients and well-trained RE
model were used to generate LC and RE images, and is further
evaluated in this section.

A. Limb-Correction BTs

Fig. 3 presents the global maps of BTs before and after
limb adjustment for NOAA-20 ATMS in channels 1, 6, and 18,
which cover the window, temperature, and water vapor sounding
channels. The corresponding FOV position dependencies of the
BTs are shown in the right panels. The clear scan dependence in
the original SDR BTs [Fig. 3(a), (b), and (c)] are significantly
reduced or eliminated after LC [Fig. 3(d), (e), and (f)], resulting

https://data.vision.ee.ethz.ch/cvl/DIV2K/
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Fig. 2. Flowchart of ATMS image processing.

Fig. 3. Global maps of NOAA-20 ATMS brightness temperatures without (a), (b), (c) and with (d), (e), (f) limb correction for channel 1, 6, and 18 in 09/27/2022
and corresponding FOV position dependencies (g), (h), and (i). In panels (g), (h), and (i), the lower (upper) x-axis values refer to the ocean (land) curves.

in a more natural and smooth distribution of global BTs. As
a result, the global atmospheric and surface features are more
pronounced after limb adjustment.

The FOV position dependencies of the BTs were obtained by
averaging the BTs in each FOV position and dividing into land
and ocean in a range of [−60°, 60°] latitude to avoid possible
biases from snow or ice. For the window channel 1, the FOV
position dependencies, up to 15 K from nadir to the swath end
for the ocean domain, were corrected to nearly flat, and all off-
nadir BTs were adjusted to the nadir value. Although the angle
dependence for land is not pronounced and the limb-corrected
BTs are somewhat noisy, they still provide a near free-angular-
dependence across the entire swath. After LC adjustment, the
BTs over ocean are about 100 K smaller than over land, mainly
due to low sea surface emissivity for window channels, although
the surface emissivity may slightly increase away from nadir,
which is attributed to the polarization effect in channel 1 [4].
There is a 15–20 K dependence in the temperature sounding
channel 6, but it becomes completely flat in the entire FOV range

for both land and ocean after LC processing, indicating that the
LC works well for the temperature sounding channels as they are
seldom affected by surface state. For the humidity channel 18,
the BTs are slightly noisy after LC processing, but still result in a
near free-angle-dependence and the corrected BTs are up to 7 K
for both land and ocean. The LC for the other ATMS channels is
comparable to the three channels presented. Overall, the initial
analysis indicates that LC works well for NOAA-20, and most
of off-nadir observations are adjusted to the nadir value.

B. NOAA-20 LC BTs Evaluation With NOAA-21

In this section, we evaluated the NOAA-20 limb-corrected
BTs using the data from the recently launched NOAA-21 ATMS.
The NOAA-21 satellite, formerly known as JPSS-2, was suc-
cessfully launched on November 10, 2022 and will provide
operational continuity for satellite-based observations and prod-
ucts for several environmental satellite programs. Shortly after
launch, the orbit of NOAA-21 was gradually adjusted such that
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Fig. 4. Orbit tracks for S-NPP, NOAA-20, and NOAA-21 on 11/24/2022. NOAA-20 and NOAA-21 orbits are nearly coincident.

it would eventually fly roughly 50 min ahead of the NOAA-20
satellite. This provided an opportunity to evaluate the LC perfor-
mance on NOAA-20 using NOAA-21 as a reference when the
two satellites orbits were nearly collocated in space and time
during the NOAA-21 orbit adjustment.

Fig. 4 illustrates that the close proximity between NOAA-21
and NOAA-20 orbits on November 24, 2022, which allowed
for the comparison of the off-nadir observations of NOAA-20
ATMS with the nadir observations of NOAA-21 ATMS.

ATMS SDR data from November 24–25, 2022 were selected
and approximately 60 000-pixel pairs between NOAA-20 and
nadir observations of NOAA-21 were collected each day using
a ±5-min time collocation window and a 10-km spatial colloca-
tion window. The difference between the original and LC BTs,
minus the NOAA-21 BTs, as functions of the FOV positions
for eight ATMS channels is shown in Fig. 5, along with the
corresponding distribution of pair pixels. As the two satellites
are in close proximity, the collocated pixels only include the FOV
scan positions 39 to 56. An offline test showed that the range
of collocated FOV positions did not change significantly even
if the time window was expanded to ±10-min and the spatial
window was expanded to 30 km, although the number of pair
pixels increased significantly.

The distribution of collocated pixels (bottom right panel of
Fig. 5) was concentrated at nadir on November 25, 2022, but
was reversed on November 24, 2022, which suggests that the
orbit of NOAA-21 was closer to NOAA-20 on November 25,
2022. For channels 1, 2, 7, 8, and 16, the difference in BTs
showed a clear FOV position dependence before NOAA-20 LC
adjustment, but were close to flat with some slight noise after the
LC adjustment. The mean biases between the BTs of NOAA-
20 LC adjustment and NOAA-21 nadir are not zero and the
values are depended on the channels. These remaining biases
will be further investigated after the NOAA-21 SDR is well
calibrated and reprocessed. Temperature sounding channels 7
and 8 demonstrated the best LC adjustment with the least noise
among the eight analyzed channels. Channel 11 also exhibited

a noticeably reduced angle dependence after LC, although with
significant instability and noise. Similarly, channels 18 and 21
displayed more oscillation along with the FOV position, which
could be partially attributed to the differences in atmosphere
water vapor content between the matchup pixels. This is because
the collocation was not conducted at the exact same time and
location. Nonetheless, we observed that the angle dependencies
were almost completely removed or reduced after LC adjustment
for these channels.

C. Applying NOAA-20 Limb Correction for NPP

In this section, we assess the compatibility of the LC coeffi-
cients obtained from the NOAA-20 with other satellites, such as
S-NPP and NOAA-21. Although there are some differences in
the NEDTs of the ATMS channels between the different satel-
lites, these differences are generally smaller than the amplitude
of the angle-dependent BTs as showed in Fig. 3. Hence, it is
possible to use NOAA-20 coefficients to limb adjust S-NPP
and NOAA-21 ATMS measurements. To test the compatibility
of the NOAA-20 LC coefficients, we calculated LC BTs for
S-NPP using the NOAA-20 coefficients, and show the results in
Fig. 6. Both global distribution and angle dependencies after
LC adjustment for S-NPP showed comparable patterns with
Fig. 3 for all three channels, indicating that the NOAA-20 LC
coefficients still work well for S-NPP. In an offline test, we also
tested NOAA-20 LC coefficients applied to NOAA-21 and found
that the adjusted BTs reduced the angle dependence, which is
similar to Figs. 3 and 6, further indicating that the NOAA-20
coefficients can be applied to its sister satellites. The reason for
this compatibility is that the scan angle dependencies for the
ATMS can reach 10–20 K for most channels, as seen in Figs. 3
and 6, while the NEDTs are approximately one to two orders
of magnitude smaller. Therefore, the NOAA-20 LC coefficients
trained for one satellite are still applicable and perform well for
both SNPP and NOAA-21.
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Fig. 5. Different BTs of ATMS paired pixels between NOAA-20 LC adjustment and NOAA-21 nadir as a function of FOV position and corresponding the
distribution of number of pixels.

D. Combined LC and RE for Visualization Enhancement of
Extreme Weather Events

The limb-adjusted BTs were input to the RE module to
enhance image resolution by a factor of four. One objective of
RE module is to clearly identify extreme weather events, such
as TCs.

The ATMS channel 16 (88.2 GHz) and 17 (165.5 GHz) are two
high-frequency window channels with over twice the resolution
of channel 1 and 2. The features associated with the TCs become
more distinct in these channels. Channels 18–19 (183 GHz)
are water vapor channels that have an even higher resolution
than window channels and are sensitive to lower tropospheric
humidity. Both channel groups are suitable for capturing weather
events near the surface. Fig. 7 shows an extreme weather event
captured by the NOAA-21 ATMS channel 16 and channel 18
on November 27, 2022, located over the North Atlantic Ocean
near the North American coast. It is important to note that the
color scale for channel 18 is opposite to channel 16 to better
highlight the features in the extreme weather event. Top panels
show the event using the original SDR BTs. The event captured
by channel 16 was impacted by complex surface reflection,
while the humidity sounding channel 18 showed a clearer rep-
resentation of the weather event. After LC adjustment in the

middle panels, the features in the weather event are more defined,
particularly for the window channel 16. However, the resolution
of the depiction of the event remains blurred, particularly for
channel 16 at off-nadir locations, due to linear interpolation
used to enhance image resolution. The bottom panels of Fig. 7
show that the resolution of the ATMS image was enhanced
four-fold by the RE model. The event became much clearer
after being enhanced by ESRGAN and retained more detailed
textures. Fig. 8 further enlarges the subregion of the middle and
bottom panels of Fig. 7 from (55°W, 25°N) to (50°W, 30°N),
which is close to the end of the rainbands. It is observed that the
rainbands in both LC images are blurred, but become finer in
structure after RE processing, making the benefits of RE image
clearer.

Fig. 9 depicts Hurricane Ian near Western Cuba and south of
Florida, captured by NOAA-20 ATMS channel 17 on September
26, 2022, and channel 19 of S-NPP ATMS on September 27,
2022. The pattern of the hurricane appears similar to Fig. 7. The
images after LC and RE processing provide a clearer depiction
of hurricane eye and rainbands compared to the original images.

Overall, these initial results suggest that limb-corrected and
ESRGAN-enhanced images provide a clearer and more detailed
representation compared to the raw ATMS SDR images.
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Fig. 6. Same as Fig. 3, but for S-NPP.

E. Preliminary Evaluation of RE BT Accuracy

Although the previous subsection demonstrated that the RE
BT could improve the image visualization, the accuracy of the
generated RE BT still needs to be quantitatively verified for its
application in EDR products. Currently, no HR ATMS images
are available to verify the RE model. However, a comparison
between ATMS BTs and AMSR2 [33] onboard the Global
Change Observation Mission-W1 satellite can be used to check
the accuracy of the BT after RE, as the AMSR2 provides a
channel at 89.0 GHz, similar to ATMS channel 16 (88.2 GHz),
but with a higher spatial resolution of 5 km.

Unlike the cross-track scanning of ATMS, AMSR2 has a
conical scan mechanism, with a fixed incidence angle of 55° at
Earth surface, corresponding to a scan angle of 47° for channel
89.0 GHz. As a result, only the BTs at a 47° scan angle for
ATMS channel 16 can be used for comparison with the AMSR2
channel at 89.0 GHz. In addition, AMSR2 measures both ver-
tically and horizontally polarized BTs, while ATMS measures
combined quasivertically polarized BTs. To compare the ATMS
with AMSR2 BTs, the quasivertically polarized AMSR2 BTs
(cBT) need to be calculated from their vertically and horizontally
polarized BTs using the following formula:

cBT = vBT ∗ cos2 (θ) + hBT ∗ sin2 (θ) (8)

where vBT and hBT are horizontally and vertically polarized
measurements from AMSR2, respectively, and θ is the scan an-
gle of AMSR2, which is constant at 47.0° for channel 89.0 GHz.

As the AMSR2 BTs are not limb corrected, only the original
SDR and RE BTs can be used for comparison, not limb-corrected
BTs.

Fig. 10 displays RE image during the extreme weather event
on November 27, 2022 and the corresponding AMSR2 image.
Although the AMSR2 swath is narrower than ATMS and there
are large gaps between the two adjacent orbits, the comparison is
not significantly affected, as only the ATMS BTs at the 55° SZA
are considered. This corresponds solely to the FOV scan posi-
tions of 5 and 89 in ATMS swath. To remove the effect of clouds,
an approximate cloud detection algorithm, similar to the one
used in the NOAA operational Integrated Calibration/Validation
System (https://www.star.nesdis.noaa.gov/icvs/) was applied
using ATMS SDR BTs for channels 1 and 2 [34]. Note that
including cloudy and precipitating regions in the analysis may
be better to identify the active extreme weather, as the RE
method is most valuable in these conditions. However, it may
introduce more noises and make quantitative analysis unstable.
The collocation was performed under the rough assumption that
the ATMS pixel size at a certain SZA is equivalent to the size
at nadir, divided by the cosine of the SZA. This results in an
approximate size of 56 km at 55° SZA for channel 16. Con-
sequently, each ATMS pixel was paired with multiple AMSR2
pixels within a distance constraint of 56 km. For the RE ATMS
pixel, this distance constraint was reduced to 14 km. The mean
of the AMSR BTs for each pair was calculated and used for
comparison with the corresponding ATMS BT. After collocating
the ATMS and AMSR2 data, cloud screening, and removing 2σ

https://www.star.nesdis.noaa.gov/icvs/
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Fig. 7. Extreme weather event captured by NOAA-21 ATMS channel 16 (Left) and channel 18 (right) over the North Atlantic Ocean on 11/27/2022. Upper: SDR
BTs; middle: LC BTs; and bottom: LC and RE BTs.

(SD) outliers, 396 ATMS-AMSR2 pair pixels were collected
before RE and 6282 after RE. The data matchup was not subject
to a time window constraint, with the exception of selecting only
descending orbits for both sensors. These rough assumptions
made during the collocation could introduce biases, particularly
in the region of extreme weather events and variable surface
states. While a more detailed analysis with accurate collocation

and a large number of cases is necessary for the precise accuracy
at the pixel level, the preliminary analysis may be considered ac-
ceptable for the imagery visualization objectives for this article.

The upper panels of Fig. 11 display the global distribution
and scatter plot between ATMS SDR BTs and AMSR2 BTs.
The lower panels compare the RE BTs with AMSR2. It was
observed that a significant number of pair pixels at FOV position
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Fig. 8. Same as the middle and bottom panels of Fig. 6, but for subregion from (55°W, 25°N) to (50°W, 30°N).

89 (data close to 55°W longitude) were missing due to the gaps
in the AMSR2 data and the region close to the weather event,
where some pair pixels were removed by cloud screen algorithm.
However, FOV position 5 (data between 30°W and 45°W) had all
pair pixels. It is also found that larger biases and noises between
ATMS BTs and AMSR2 BTs exist at position 89, partly due to
the region’s proximity to the weather event. The mean biases
between RE BTs and AMSR2 BTs were found to be 0.038 K,
smaller than those obtained before the RE (−0.92 K). The SDs
for both cases were slightly large (around 3.9 K), which may
be partly due to AMSR2 Level 1B used in this comparison.
The Level 1R product [33] corrected BT in sensor footprint
size, maybe suppressing some noise compared to Level 1B.
However, both correlation coefficients were high (around 0.98),
indicating a strong correlation between ATMS and AMSR2 BTs,
particularly in regions with intense atmospheric changes.

This preliminary quantitative analysis might require fur-
ther investigation and detailed evaluation. For instance, the
application of LC and RE ATMS data in the retrieval of total

precipitation water over ocean [6], or in the assessment of warm
core parameters of TC [35], could offer additional insights into
the model’s accuracy when compared to the original ATMS
SDR. Nonetheless, after RE processing, the image becomes
clearer, while the mean biases between RE BTs and AMSR2
BTs were reduced, and both SDs and correlation confidences
either decreased or remained similar. This further supports the
effectiveness of the RE algorithm for ATMS data.

F. Full-Global LC RE Images in JSTAR Mapper

In anticipation of the upcoming weather season, and with the
objective of rapidly identifying and analyzing TCs on a global
scale, a test version of ATMS LC RE images is consistently being
produced. These images cover the full globe and are plotted in
an HR (9600 dpi × 4800 dpi) format for channels 6, 16, and
18. They are showcased on NOAA’s internal JSTAR Mapper
website, a web-based tool for visualizing NOAA satellite data.
The generated near-real-time HR global images facilitate the
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Fig. 9. Hurricane Ian observed in ATMS channel 17 on NOAA-20 (09/26/2022, left panels) and channel 19 on S-NPP (09/27/2022, right panels). (Upper) ATMS
SDR; (lower) with LC and RE adjustment.

Fig. 10. RE NOAA-21 ATMS image for channel 16 (left) and AMSR2 image for 89.0 GHz (right) in 11/27/2022.

monitoring of ATMS SDR product and specific events like
TCs, providing a detailed view both globally and regionally.
Notably, these HR ATMS images are overlaid with true-color
images from another essential JPSS sensor, the visible infrared
imaging radiometer suite (VIIRS), in the visible bands. This
combination enables users to distinguish possible precipita-
tion from the dense cloud area surrounding the warm core of
the TC.

Fig. 12 presents a global LC RE image on JSTAR Mapper
from May 31, 2023 for ATMS water vapor sounding—channel
18, overlaid with the VIIRS true-color images. It highlights Ty-
phoon “Mawar” in the vicinity of Taiwan (Box a). The intricacies
of the event become more pronounced when zooming in on
this specific region (Box b). Upon reducing the opacity of the
ATMS image, it becomes evident that the typhoon’s structure
is congruent with the VIIRS true-color image (Box c). Such



LIANG et al.: IMPROVING ATMS IMAGERY VISUALIZATION USING LIMB CORRECTION AND AI RESOLUTION ENHANCEMENT 4275

Fig. 11. Distribution of the ATMS-AMSR2 BT differences (a), (c) and corresponding scatter plots (b), (d) between ATMS BTs and AMSR2 BTs. (a), (b) Before
ATMS RE. (c), (d) After ATMS RE.

Fig. 12. Full-global LC RE Image in JSTAR mapper.
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alignment allows for clear visualization of the warm core and
the rainbands, details that may not be provided by the VIIRS
visible image alone. Therefore, the combination of the ATMS
LC RE image and VIIRS visible true-color image on the JSTAR
Mapper provides a more comprehensive view of weather events.

Currently, significant efforts are underway to enhance ATMS
LC RE images, steering them toward to an official release.

IV. BENEFITS AND LIMITATIONS OF APPLYING RE MODEL IN

ATMS

The RE model, also known as the ESRGAN model in this
article, generally works well for the ATMS data for several
window and near-surface temperature and humility sounding
channels. However, it has certain limitations when it comes to
all ATMS channels.

First, the RE model is limited by its lack of specific remote
sensing and atmospheric information. This makes the RE unsuit-
able to predict realistic and detailed textures for very LR window
channels in ATMS, which are affected by complex surface states
and near-surface atmospheric changes. When the RE model
was tested on channel 1 and 2, the RE images were showed
minimal improvement, and in some areas, additional noise was
observed. Second, the RE model does not take into account
the different size of sensor footprint from nadir to off-nadir.
In cross-track ATMS sensors, the footprint size at swath end
is 3–4 times larger than that at nadir, which means that the
RE model may not be able to fully capture the details in these
larger footprints. All limitations require additional surface and
atmosphere information to be resolved and improved, such as
surface emissivity, wind speed, or atmosphere profiles, maybe
including fine simulations from radiative transfer models, which
is so-called integrating physical model in DL [36], [37]. This
highlights the need for future article to further improve the RE
model by finding the HR image used as reference in the model
and incorporating remote sensing and atmospheric information
into the training data.

In addition, the imagery for the higher peaking temperature
sounding channels were not discussed here as these channels
are not as effective in showing surface state and near-surface
atmospheric changes as channel 16 and near-surface sounding
channels.

Despite some limitations in RE application in ATMS win-
dows channels, the RE model generally works well for most of
humidity sounding channels, and in some cases for the window
channels and low-peak temperature sounding channels, such as
channel 6 and 16, as were discussed in the last section. For
the current situation where HR images are lacking, ESRGAN
is still deemed to be a suitable method to quickly and directly
provide multichannel RE images, which is an effective method
to improve ATMS imagery together with LC methods to assist in
the identification of surface states and extreme weather events.
Moreover, the RE model can be easily expanded to visible and
infrared sensors, or other microwave sensors, to improve sensor
imagery visualization. as the model itself and trained data are
not dependent on the specific sensor or channel.

V. CONCLUSION

A method combining LC and RE was developed to im-
prove ATMS imagery for clearer visualization of surface and
atmosphere information and accurate identification of extreme
weather events. The LC coefficients were generated through
linear regression with NOAA-20 ATMS SDR data. The RE
model was trained using an HR image set—DIV2K, and the
well-trained model was applied to enhance ATMS image reso-
lution by a factor of four.

The generated LC coefficients were used to generate LC
images for both NOAA-20 and S-NPP ATMS to assess the
accuracy and compatibility of the LC method, and the generated
NOAA-20 LC BTs were further evaluated using data from the
recently launched NOAA-21 satellite during a time when its
orbit was nearly coincident to NOAA-20. The RE model was
used to generate LC and RE BTs for multichannels after LC
adjustment, and the accuracy of RE BTs was further evaluated
quantitatively using HR AMSR2 data.

After LC adjustments, the angle dependence between the
differences of the original NOAA-20 BTs and NOAA-21 BTs
was eliminated or reduced, and performing best for temper-
ature sounding channels, followed by water vapor sounding
and window channels. Applying NOAA-20 LC coefficients to
generate LC BTs for S-NPP or NOAA-21 produced similar
patterns in scan angle dependence, implying good compatibility
of NOAA-20 LC algorithm.

Extreme weather event became much clearer after LC ad-
justment and being enhanced by ESRGAN, retaining more
detailed textures for channels 16–19 for S-NPP, NOAA-20, and
NOAA-21. These qualitative analyses suggest that the LC and
RE models are effective for most of ATMS water vapor sounding
channels and window channel 16. The RE BTs for NOAA-21
were further initially and quantitatively evaluated using 5-km
resolution AMSR2 data in channel at 89.0 GHz, which is the
similar ATMS channel 16. After careful comparison between
ATMS and AMSR2, we found that the mean biases for RE BTs
minus AMSR2 BTs were smaller than those for the original SDR
BTs minus AMSR2 BTs, and corresponding SDs and correlation
confidences are comparable. While this quantitative analysis
may require further investigation, the initial findings support
the effectiveness of the RE algorithm when applied to ATMS
data. It also encourages continued exploration of the accuracy
and the LC and RE model, which can assist in improving ATMS
image virtualization. As of this writing, the generation of global
ATMS LC and RE imagery is routinely processed and tested in
the NOAA internal HR imagery visualization system—JSTAR
Mapper, to quickly identify and analyze TCs in the upcoming
weather season. Concurrently, ongoing efforts are underway for
an official release.

Overall, combining the LC and RE methods greatly improves
the image visualization, including surface and atmosphere in-
formation, and enables clear identification of extreme weather
events. Future article will involve improving the RE model
by finding the HR image to use as reference in the model,
such as radiative transfer model simulations or AMSR2 images,
which will allow for the incorporation of remote sensing and
atmospheric information into the training data.
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