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A Multiscale Dual Attention Network for the
Automatic Classification of Polar Sea Ice and
Open Water Based on Sentinel-1 SAR Images

Zheng Zhang , Guangbo Deng , Chuyao Luo , Xutao Li , Yunming Ye , and Di Xian

Abstract—Automatic classification of sea ice and open water
plays a vital role in climate change research, polar shipping, and
other applications. Many deep-learning-based methods are pro-
posed to automatically classify sea ice and open water to address
this issue. Even though these methods have achieved remarkable
success, the noise phenomenon in synthetic aperture radar (SAR)
images still causes considerable limitations in the model perfor-
mance. Meanwhile, these existing methods ignore multiscale global
information from large-scale SAR images, which tends to produce
misclassification. In this article, we propose a novel multiscale
dual attention network (MSDA-Net) for the task. To tackle the
first drawback, we introduce the information of relative position
and high-pass filtering as two extra channels to reduce the noisy
effects. Moreover, we propose a patch dual attention mechanism
and embed it into the ConvNeXt blocks to capture the multi-
channel and spatial features. To address the second problem, we
propose a multiscale spatial attention module to capture multiscale
global spatial information. The experiments show that the proposed
method significantly outperforms state-of-the-art methods. In ad-
dition, comprehensive case studies are conducted, which verify the
effectiveness of MSDA-Net in different SAR scenes.

Index Terms—Deep learning, sea ice classification, synthetic
aperture radar (SAR).

I. INTRODUCTION

AUTOMATIC classification of sea ice and open water is vi-
tal in climate change research, polar shipping, navigation

in polar regions, and marine operations. The global warming
causes the reduction of the amount of polar sea ice. As an
essential indicator of global climate change [1], researchers paid
more attention to sea ice change. Besides, large areas of sea ice
melting, breaking up and drifting in summer raise unpredictable
risks for Arctic shipping and transport safety [2]. A growing
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interest in polar sea ice classification has been shown to provide
valuable information for sea ice change and safe navigation in
the Arctic.

To monitor the constantly moving and changing sea ice con-
ditions in time, satellite remote sensing technologies are used
to collect data. With the launch of the Nimbus-5 Electrically
Scanning Microwave Radiometer (EMSR), humanity began to
use passive microwave remote sensing to obtain complete ob-
servations of sea ice coverage at both poles. Since then, the
increasing launch of sensors (such as Nimbus-7 scanning mul-
tichannel microwave radiometer [3], special Sensor microwave
imager [4], advanced microwave scanning radiometer for the
Earth observing system [5], microwave radiation imager [6],
and advanced microwave scanning radiometer 2 [7]), led to
the emergence of various sea ice classification algorithms. With
the improvement of observational capabilities of the North and
South polar sea ice coverage, on-board high spatial resolution
optical-infrared sensors [8], [9] and synthetic aperture radar
(SAR) [10] provide effective means of acquiring regional sea
ice information. Unlike optical-infrared sensors, SAR, with high
spatial resolution and comprehensive coverage, is unaffected
by polar nights and can penetrate the clouds. Benefit from the
advantages of SAR, it has been extensively used for sea ice
monitoring and classification.

Based on SAR images [11], researchers devote themselves
to studying algorithms of sea ice classification. Classical meth-
ods are based on machine learning (ML) methods, including
threshold-based methods [12] and expert systems [13], neural
network (NN) [14], [15], support vector machine (SVM) [16],
[17], random forest [18], and Markov random fields [19]. By
learning from massive datasets, they can build mappings from
sea ice features to sea ice categories. However, the performances
of these methods depend on prior expert knowledge and so-
phisticated manual engineering to build model features. In other
words, these methods take extensive labor cost while having poor
generalization capability [20], which hinders their applications
in real world.

Recently, deep learning techniques shed some light on over-
coming the limitation, which directly constructs the mapping
from raw data to classification results. In this kind of method, sea
ice classification on SAR images can be defined as a pixel-level
segmentation problem. Initially, some fully connected neural
network (FC NN)-based methods are introduced to classify sea
ice and open water [21], [22], [23], [24], [25], [26]. However,
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the FC NN-based method is poor in extracting the local spatial
features. To solve this challenge, Wang et al. [27] proposed a
U-Net-based methods to exploit spatial representations on dif-
ferent scales. They provide a more precise classification between
sea ice and open water compared to FC NN. To improve the
spatial representations ability further, DAU-Net [28] combines
the advantages of residual block [29] and the self-attention
mechanism to achieve excellent performance.

With the development of deep learning, some of the latest
semantic segmentation methods achieve better performance in
pixel-level segmentation. DeepLab is a fully convolutional net-
work (FCN) developed and constantly updated by Google that
has shown good performance in pixel-level segmentation [30],
[31]. Due to the locality of convolution operation, convolutional
neural network (CNN)-based methods are usually challenging to
learn global and long-range semantic correlations. To leverage
such correlations, some transformer-based [32] methods are
introduced to the computer vision field [33], [34]. For exam-
ple, Swin-UNet has achieved great success in medical image
segmentation by hierarchical Swin transformer with shifted
windows [35], while Segformer [36] uses fewer parameters to
get better performance. In addition, some methods combine
the advantages of Transformer and the CNN network. Con-
vNeXt [37] designed the CNN network according to the archi-
tecture of Swin-Transformer and achieved better classification
performance. Visual attention network (VAN) [38] uses the large
kernel attention mechanism and achieves adaptivity not only in
the spatial dimension but also in the channel dimension.

However, the existing methods cannot effectively solve the
problem of sea ice segmentation due to the difference between
the remote sensing images and regular images. This task faces
several challenging issues.

1) Sentinel-1 SAR images are often affected by noise in-
terference, which deteriorates image clarity and contrast,
posing challenges to the segmentation of sea ice and
limiting model performance. Specifically, noise speckles,
appearing as fine-grained vertical lines or point-like noise,
are prominent in Sentinel-1 SAR images. Although several
preprocessing methods [39], [40] have been proposed
to eliminate vertical lines in the HV channel, these ap-
proaches rely on noise area identification, introducing
significant time complexity and hindering automatic and
real-time detection.

2) Mainstream segmentation methods encounter difficulties
in effectively handling sea ice objects of different scales.
Sea ice exhibits a wide range of sizes, from small blocks
to large formations, posing challenges for segmentation
tasks. Conventional semantic segmentation methods pri-
marily focus on segmenting larger objects, often labeling
smaller sea ice objects as noise or background, resulting
in inaccurate segmentation outcomes. Conversely, tech-
niques specialized in small object segmentation may not
adequately capture the intricate characteristics of large-
scale sea ice. Consequently, existing segmentation meth-
ods may fail to comprehensively express and represent the
complex features of sea ice with different scales, leading
to less precise segmentation results.

In this article, we propose a multiscale dual attention network
(MSDA-Net) for automatic polar sea ice classification to address
these two problems. First, we introduce the information of rela-
tive position and high-pass filtering as two extra channels to re-
duce the influence of noise. The former can help models classify
those regions with noise. The latter can preserve the appearance
of sea ice and reduce the disturbance by noise. Moreover, we
propose a patch dual attention mechanism (PDAM) and embed it
into the ConvNeXt blocks to capture the multichannel and spatial
features. PDAM-ConvNeXt blocks can enrich the representation
of relative position and high-pass filtering channels to focus on
the noisy position and spatial correlation. Second, we propose
a multiscale spatial attention (MSSA) module to extract global
features from SAR images. It utilizes the advantage of the trans-
former [32] to capture multiscale global spatial information.

In brief, we summarize our main contributions as follows.
1) We propose a method called MSDA-Net, which demon-

strates good robustness and the ability to capture multi-
scale spatial information in the classification of sea ice
and open water areas, achieving excellent classification
results. The MSDA-Net excels in robust edge detail detec-
tion, reduces misclassification, and demonstrates excellent
performance in detecting fragmented ice in the region.

2) Our research introduces two key modules, MSSA and
PDAM, which significantly improve the classification of
sea ice and open water, particularly in fragmented ice
detection and noisy conditions, respectively.

3) We conducted extensive experiments and ablation stud-
ies to verify the effectiveness of our proposed method.
The experimental results clearly show that our method
is significantly superior to the state-of-the-art methods.
These experimental results further confirm the feasibility
and superiority of the proposed key modules.

4) In addition, we created a novel dataset consisting of high-
quality samples with precise labels for sea ice and open
water classification. We employed a method to prevent du-
plicate samples and appropriately divided the sample pro-
portions to ensure the robustness of all models. The dataset
is accessible at https://doi.org/10.5281/zenodo.7260842.

The rest of this article is organized as follows. The related
work about sea ice classification with SAR satellite images is
introduced in Section II. The proposed method is presented
in Section III. The dataset preparation, comprehensive ex-
periments, and analysis are presented in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

The automatic sea ice classification methods can be divided
into classical methods, namely ML methods and deep learning
methods.

A. Classical Method

The earliest sea ice automatic segmentation methods are
based on threshold, probabilistic, and statistical methods. These
methods can be traced back to 1986 [11]. They mainly focus on
extracting texture from the image, and then, detecting sea ice

https://doi.org/10.5281/zenodo.7260842
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by lookup tables [41] or Bayesian classification algorithm [42],
[43], [44]. Moreover, a sea ice classification framework based on
a projection matrix is proposed to preserve spatial localities of
features from multisource images such as SAR and multispectral
images [45]. Based on these classical methods, the introduction
of incidence-angle dependent intensity decay rates achieves
better segmentation results [46]. However, the adjacent pixels
of SAR scenes change randomly in radar echo signals due to
coherence. So, these threshold based methods are not applicable
to sea ice classification.

B. ML Method

ML models usually require labeled datasets for supervised
training. However, there was no representative dataset, and only
several scenes were used in the early stage. Some ML methods
such as wavelet transforms [47], [48], Bayes classifier [19], and
Maximum likelihood [49] are introduced to classify sea ice and
open water. With the completeness of dataset, methods based
on NN and SVM further improve the accuracy of classification.
As important features of sea ice, texture, incidence angle, and
polarization features are used extensively in NN [50], [51] and
SVM [52], [53]. However, prior expert knowledge and complex
manual engineering limitations are not suitable for processing
polar sea ice data in large volumes.

C. Deep Learning Method

To address the aforementioned problem, some deep-learning-
based methods are introduced to classify sea ice and open water.
Sea ice classification can be regarded as a semantic segmentation
task, which means pixel-level classification. The FCN [54] is the
first work to solve the semantic segmentation task. U-Net [55] is
the most representative of the FCN-based segmentation model.
U-Net consists of a shrinkage path and a symmetric expansion
path. The shrinkage path is used to obtain contextual informa-
tion, and the symmetric expansion path is used to precisely locate
the segmentation boundary. Based on U-Net, the symmetric
U-shaped structure is also widely used in sea ice classification
benefitted from its applicability [24], [27].

The FCN-based semantic segmentation model is coarse and
ignores the spatial consistency relationship between pixels. To
overcome the drawback, Google proposes the series that intro-
duces Atrous spatial pyramid pooling (ASPP), which extracts
features by using multiple dilated convolutions with different
sampling rates to capture contextual information with different
scales [30], [31]. By introducing the ASPP, the model further
improves the accuracy of sea ice classification [56].

Since the classification of sea ice and open water can be
regarded as a semantic segmentation problem, here we review
some segmentation methods. Recently, the vision transformer
(ViT) [33] attracted much attention due to its superior perfor-
mance. Different from CNN-based methods, this model with the
self-attention mechanism has a larger receptive field. Therefore,
it can capture more spatial information and generate better
results. However, the high computational cost hinders their
application in semantic segmentation on a large scale. To address
this problem, researchers proposed Swin-Transformer [57] and

Swin-UNet [35], which achieved great success in the field of
image segmentation by using a U-shaped architecture and con-
volutional downsampling. Besides, Segformer [36] has designed
a more lightweight network structure. An efficient transformer
block and a simple multilayer perceptron (MLP) segmentation
reduce computational cost significantly.

Different from existing methods, the proposed MSDA-Net
combines the advantages of the CNN and transformer networks
to extract local and multiscale global spatial features of Sentinel
1 SAR images. On the one hand, to improve the local repre-
sentation ability of the model, we proposed a PDAM based on
ConvNeXt [37] blocks. It preserves local spatial information by
splitting the original feature map into independent parts, and
then, extracts their spatial representation by the dual attention
mechanism. On the other hand, to extract multiscale global
spatial information, we proposed an MSSA. It captures the mul-
tiscale global spatial semantic information by the transformer
with different window sizes. Benefiting from the PDAM and
MSSA, the model achieves effective improvement and signifi-
cantly outperforms the state-of-the-art methods.

III. PROPOSED METHODS

A. Problem Definition

The classification of sea ice and open water can be defined
as a semantic segmentation problem. It can be described as
follows. Given an image X with N channels, it aims to predict
a matrix X̂ with two channels, where these two channels denote
the probability of each pixel being detected as sea ice and open
water, respectively.

B. Overall Architecture

In this article, we propose an MSDA-Net to classify sea ice
and open water. The overall architecture of MSDA-Net is pre-
sented in Fig. 1. The MSDA-Net consists of encoder, bottleneck,
and decoder. The encoder has a convolution block for feature
exaction, three downsamples, and three PDAM-ConvNeXt lay-
ers where each PDAM-ConvNeXt layer containstwo PDAM-
ConvNeXt blocks. The shape of inputs is B ×N × 512× 512,
where B denotes the batch size. As the output of encoder,
the spatial representation with the shape B × 384× 64× 64 is
extracted. The bottleneck is compose of two PDAM-ConvNeXt
layers and an MSSA module. In the bottleneck part, the shape of
the feature map is invariable, which is also B × 384× 64× 64.
The decoder comprises of two DUpsample layers, a PDAM-
ConvNeXt layer, and a classification layer, which is a convolu-
tion layer to convert the channel to the categories counts. The
shape of the output is B × 2× 512× 512.

Besides, MSDA-Net also contains a skip connection between
the encoder and the decoder. The extracted context features are
fused with multiscale features from the encoder via skip con-
nections to complement the loss of spatial information caused
by downsampling. It contributes to reducing the loss of spatial
information caused by downsampling because the skip connec-
tions can fuse the extracted features in shallow layer where the
consumption of spatial representation is less.
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Fig. 1. Structure of MSDA-Net.

C. Patch Dual Attention Mechanism

To extract channel and spatial feature of feature map, we
propose a PDAM. The structure of the PDAM is shown in Fig. 2.
Given the input feature mapFi ∈ RB×C×H×W , whereB,C,H ,
and W denote the batch size, channel, height, and width of Fi.
According to Fig. 2(a), the original input Fi is split into 4× 4
overlapping patches, and then, they stack together to generate
a new input Fs ∈ RB×16C×H

4 ×W
4 . The output F ′ of the PDAM

can be obtained according to the following formula:

F ′ = SAM(CAM(Fs)) (1)

where the CAM, SAM, and F ′ ∈ RB×C×H×W denote the chan-
nel attention module, spatial attention module, and the output,
respectively. Here, the CAM and SAM extract channel and
spatial features of F effectively, respectively.

As Fig. 2(b) shows, the introduction of CAM is conducted
to capture channel information of the feature map. Given the
input feature map x ∈ RB×16C×H

4 ×W
4 , the output yc of CAM

is shown as

yc = x⊗ Sigmoid(AAP(x) + AMP(x)) (2)

where the AAP denotes the adaptive average pooling with FC
and RELU. The AMP represents the adaptive max pooling con-
nected to the FC and RELU, while the Sigmoid is the activation
function. The specific structure is shown in Fig. 2(b). ⊗, FC,
and RELU are the multiply operation, fully connected layers,
and the activation function, respectively. In CAM, we partition
the feature map into 4 × 4 small blocks to obtain enhanced local
information, facilitating a more detailed analysis of image details
and enabling the extraction of additional features specifically
relevant to detecting small fragmented ice. the kernel size of
pooling is set to [H4 ,

W
4 ] (the shape is same to feature map Fs)

to only preserve the channel information. Therefore, by adding
the outputs of AAP and AMP, the shape of result after activation
function is converted to B × 16C × 1× 1. By multiplying to
original inputx, the important channel ofx are enhanced further,
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Fig. 2. Details of the PDAM. (a) Structure of the PDAM. (b) Structure of the channel attention mechanism. (c) Structure of the spatial attention mechanism.

while the output of CAM with the shape B × 16C × H
4 × W

4
is generated.

The SAM is introduced to extract the spatial information
of the feature map in Fig. 2(c). Given the input feature map
x ∈ RB×C×H×W , the output ys ∈ RB×C×H×W of SAM can
be formulated as

ys = x⊗ SA(Sigmoid(Conv(Concat[GAP(x),GMP(x)])))
(3)

where the SA, GMP, GAP, Concat, and Conv denote the self-
attention module, global average pooling, global max pool-
ing, concatenate operation, and the convolution, respectively.
In SAM, the GMP and GAP are introduced to preserve the
spatial information by calculating the mean and the max value
of all pixels in each channel. Then, we obtain two feature
maps with the shape B × 1×H ×W . Then, these two fea-
ture maps are concatenated and the shape is convoluted to
B × 1×H ×W . After activation function, the shape of the
feature map is converted to B × 1×H ×W . Here, the SA is

introduced to enhance additional important spatial information.
y′s ∈ RB×1×H×W is split into H

4 × W
4 overlapping patches by

window partition, and then, they stack together to generate a new
input f ∈ R(B∗H

4 ∗W
4 )×4×4. Here, the window partition is based

on matrix transformation, which can adapt the tensors to any
shapes we need and the window reverse is the inverse operation
of window partition. f is used as query, key, and value, and the
SA can be calculated as follows:

Attention(Q,K, V ) = softmax

(
Q ·KT

√
d

)
· V (4)

where Q,K, V ∈ R(B∗H
4 ∗W

4 )×4×4 represent the query, key, and
value matrices. In SA, the shapes of the input and output are
invariable. The window reverse module transforms the shape
(B ∗ H

4 ∗ W
4 )× 4× 4 to B × 1×H ×W after SA. By mul-

tiplying to original input x, important pixels of x are en-
hanced further, while the output of SAM ys with the shape
B × C ×H ×W is generated in (3).
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Fig. 3. Structure of two consecutive PDAM-ConvNeXt Blocks.

Fig. 4. Structure of the transformer block.

As a kind of attention mechanism, the PDAM can be intro-
duced to any CNN backbone. Due to the promising performance
of ConvNeXt [37] for feature extraction, we embed PDAM
into the end of ConvNeXt block and name the new block to
PDAM-ConvNeXt in this article. Fig. 3 shows the structure of
two consecutive PDAM-ConvNeXt blocks, which is denoted
by green block in Fig. 1. Each PDAM-ConvNeXt block in-
cludes a LayerNorm (LN), a depthwise convolution module
(DwConv) [58], two convolution modules with 1×1 kernel size,
and a PDAM module. Besides, it applies the GELU activation
function and residual connection [29]. Formally, given input
xl−1, the output of two continuous PDAM-ConvNeXt blocks
can be formulated as

xl = xl−1 + PDAM(Conv(Conv(DwConv(xl−1))))

xl+1 = xl + PDAM(Conv(Conv(DwConv(xl)))) (5)

where xl represents the output of the lth block. By embedding
the PDAM, the ability to capture channel and spatial information
is significantly improved.

D. Multiscale Spatial Attention

To capture more multiscale global and long-range semantic
information interaction of SAR images, we propose an MSSA
module. It combines the advantages of the transformer [32] and
ASPP [30], [31] to capture the global spatial information and
extract multiscale context representation, respectively. MSSA is
composed of three transformer blocks that extract global spatial
features with different scales. According to window partition
with different window sizes, the feature map is split into patches
with different shapes in Fig. 1. Then, the patched feature map
is fed into transformer blocks with the same structure, which is
shown in Fig. 4. Here, LN, SA, and MLP denote the LayerNorm,
self-attention module, and MLP module, respectively.

E. Downsample and Upsample Operators

To reduce the computational cost and enlarge the receptive
field, a 2× 2 convolution is applied. Besides, upsample layers
apply DUpsampling [59] module whose structure is shown in

Fig. 5. Structure of DUpsample.

Fig. 5. Different from bilinear interpolation and transposed
convolution upsampling methods, it not only considers the
correlation between each pixel but also has high computational
efficiency. Specifically, given a scale factor s, an output channel
C ′ and a feature map F ∈ RC×H×W , where C, H , and W
denote the channel, height, and width of F , respectively. First,
convolution converts the shape of F to H ×W ×N , where N
is equal to s× s× C ′. Then, the shape of every new tensor is
converted to s× s× N

s×s . After that, the upsampled feature map
with the shape (s×H)× (s×W )× N

s×s is generated.

IV. EXPERIMENT

A. Dataset

1) Sentinel-1 Images: The data1 used in this article are de-
rived from SAR scenes from the Sentinel-1 satellite. This satel-
lite works in the C-Band, which has been verified to perform
well for discriminating between sea ice and open water due to
its high spatial resolution [60], [61]. Here, medium-resolution
level 1 extra-wide (EW) ground range detected scenes (GRDM)
have been frequently chosen because scenes with this type are
the most favorable combination of extensive coverage and high
spatial resolution in marine polar regions. Each scene contains
up to 10000× 10000 pixels. The spatial resolution of each scene
is 40 m × 40 m.

We collected 101 representative SAR scenes from Sentinel-
1 A and B sensor data. These scenes covered the period from Au-
gust 10 to August 15 in 2021. In Sentinel-1 SAR, HH- (horizon-
tal copolarization) and HV-polarized (cross-polarization) data
mean the electromagnetic waves are received from horizontal
and vertical directions, respectively. Due to the sensitivity of ice-
induced volume scattering in the cross-polarization channel, the
radar backscatter of sea ice is generally higher than that of open
water. Hence, the HV-polarization channel was usually used to
generate Arctic sea ice cover products. Moreover, the difference
between copolarization and cross-polarization data has proven
to be an optimal combination for distinguishing between sea ice
and open water [62], [63]. Therefore, in addition to incorporating
HV-polarized data directly, we employ polarization difference
(HH − HV) and polarization ratio (HH/HV) data to conduct our
data labeling and training.

2) Data Preprocessing: Due to the persistent speckle noise
and thermal noise-induced subswath transitions in Sentinel SAR

1The original Sentinel-1 SAR images can be downloaded from the website
of the Alaska Satellite Facility (https://search.asf.alaska.edu/).

https://search.asf.alaska.edu/
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scenes, some long-grained vertical lines greatly influence data
labeling and model inference.

Park et al. [39] developed an effective method for reducing
noise in Sentinel-1 GRD products by calculating the average
values of factors from five segmented azimuthal blocks and
tuning the noise vectors provided by the European Space Agency
(ESA) using empirically determined correction coefficients. Sun
and Li [40] further improved the denoising method by segment-
ing the image into a greater number of azimuthal blocks and
introducing a variance factor to distinguish between homoge-
neous and inhomogeneous blocks. This resulted in more precise
scaling and balancing factors based on the homogeneity of local
regions within each subswath. As denoising efficacy increases,
the computational resources and time required for preprocessing
increase exponentially. However, even with extensive prepro-
cessing and denoising methods, it is impossible to completely
eliminate noise interference.

First, Sentinel Application Platform (SNAP) 3.0 soft-
ware2 [64] is usually used to preprocess SAR images, which
is also used here. Specifically, we leverage SNAP 3.0 to remove
GRD border noise, reduce thermal noise, filter out speckle noise,
and perform radiometric calibration on the aforementioned SAR
images. Second, the processed images of HV, HH − HV, and
HH/HV channels can be described by the backscattering coeffi-
cient, and the formula is shown as

σ0(dB) = 10× log10σ0 (6)

where the σ0 and σ0(dB) denote the backscattering coefficient
and its log-transformed result, respectively. Third, we normalize
them to the range of 0–255 while all scenes are resized to 5120
× 5120. Finally, we use a land and sea mask to filter out the land
in each scene so that only the open water and sea ice regions are
preserved.

Since the pixel values in regions of sea ice are different in
various channels, sea ice can be distinguished from open water
by the threshold constraint of the three channels. Based on this
property, we created an annotation tool for labeling sea ice and
open water. Sea ice and open water are denoted as 0 and 1,
respectively.

Moreover, since the SAR images with 5120 × 5120 pixels are
also too costly for computation, it is necessary to crop them into
smaller patches. In order to prevent image cutting loss, the edge
part of the image is filled with zero. Each image is divided into
121 patches with 512 × 512 pixels chronologically in the same
cutting order. This operation avoids overlapping images in the
dataset so that each part of the original image appears only once
in each training iteration.

Finally, we divide the training set, validation set, and test set in
the ratio of 6:1:3 in chronological and crop order. The number of
samples in test dataset is large because more test sets can better
test the robustness of the model. Finally, we divide 7381 images
as the training set, 1210 images as the validation set, and 3630
images as the test set.

2This software can be downloaded from the website (http://step.esa.int/main/
download/snapdownload/)

3) Data Denoising: The HV, HH − HV, and HH/HV images
are chosen to be the inputs. The scanning technique TOPSAR
of Sentinel-1 SAR usually causes persistent speckle noise and
thermal noise-induced subswath transitions. These noises are
easily to be misclassified as sea ice due to their high pixel values.
To reduce the impact of these noises, we introduce two additional
channels, high-pass filter (HPF) and position encoding (PE)
channels.

The HPF channel is generated from the HV channel in
Fig. 6(c). Intuitively, the regions that change drastically belong
to the high-pass component, while the regions that change
slowly belong to the low-pass component. We can see that most
of noise areas are in the SAR scene and belong to low-pass
areas. We remove the low-frequency information and keep the
high-frequency information by using high-pass filtering. Based
on the aforementioned concepts, the next step is to describe
the process of obtaining the HPF channel, which involves the
following steps.

1) Fourier transform: Convert the input image to the fre-
quency domain using fast Fourier transform for frequency
analysis and processing.

2) Spectrum centering: Shift the zero-frequency component
(dc component) to the center of the spectrum for better
visualization and analysis.

3) Amplitude spectrum calculation: Compute the amplitude
spectrum of the frequency-domain image by taking the
absolute value and applying a logarithmic function to map
the values to the range of 0–255 for enhanced visualiza-
tion.

4) HPF matrix generation: Generate a transformation matrix
for the HPF based on a specified threshold to selectively
attenuate low-frequency components.

5) Application of transformation matrix: Multiply the
frequency-domain image by the HPF matrix to obtain an
enhanced image with emphasized high-frequency infor-
mation.

6) Inverse Fourier transform: Perform inverse Fourier Trans-
form to convert the frequency-domain image back to the
spatial domain.

In this article, the threshold of the HPF is 30. Fig. 6(a), (c),
and (e) shows the original image, the result after high-pass
filtering, and the label. From these figures, we find that most
of the long-grained vertical lines are filtered out. However, even
if the high-pass filtering filters out most of the noisy areas, the
image becomes rough and part of the ices areas are also filtered
out. We use this result as a new extra input.

Moreover, the PE channel is added to preserve the relative
positions before cropping. To record the position of each pixel,
the original image is encoded as follows:

xp = i/n (7)

where xp, i, and n denote the value of each pixel in the PE
channel, the order of image crops, and the total number of
crops, respectively. As the noise position in original image
(5120 × 5120) is fixed, cropped images preserve the location
of the noise. Once positions of noise are obtained, the model

http://step.esa.int/main/download/snapdownload/
http://step.esa.int/main/download/snapdownload/
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Fig. 6. (a) HV channel. (b) Spectrogram of the HV channel. (c) HPF channel. (d) Spectrogram of the HPF channel. (e) Label (the white part denotes sea ice).

can adaptively learn how to segment the sea ice in those regions
with noise.

B. Evaluation Metrics

In this article, to evaluate the experimental results of the sea
ice classification, several common measurements based on the
confusion matrix are used. According to the segmentation result
and ground truth, the true positives (TP, the number of pixels that
segmentation and ground truth are both sea ice), true negatives
(TN, the number of pixels that segmentation and ground truth are
both open water), false positives (FP, the number of pixels that
segmentation is sea ice and the ground truth is open water), and
false negatives (FN, the number of pixels that segmentation is
open water and the ground truth is sea ice) can be counted. Based
on these indices (TP, TN, FP, and FN), the mean intersection
over union (MIoU), accuracy (Acc), Jaccard index (Jaccard),
frequency weighted intersection over union (FWIoU), precision,
recall, and F1-score can be calculated by the following formula:

MIoU =
1

k

k∑
i=1

TP
TP + FP + FN

Acc =
TP + TN

TP + TN + FP + FN

Jaccard =
TP

TP + FP + FN

FWIoU =
TP + FN

TP + TN + FP + FN
× TP

TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− Score =
2× Precision × Recall

Precision + Recall
(8)

where the k denotes the kth category. MIoU denotes the average
value of each class after calculating their ratio of the intersection
and union. The Acc is the proportion of correctly classified pixels
in all pixels. The Jaccard is used to compare the similarities
and differences between two samples. FWIoU is the ratio of
intersection and concatenation weighted by the frequency of
occurrence of each class. The F1-score is a powerful evaluation
metric used to determine the harmonic mean of the precision
and recall metrics. The higher values of these evaluation metrics
indicate the better segmentation performance.

C. Parameter Setting

The MSDA-Net is implemented based on Python 3.8 and
Pytorch 1.7.0. For all training cases, data augmentations such
as flips and rotations are used to increase data diversity. The
input image size is set as 512×512. We train all the models on
two NVIDIA 3090 GPUs. During the training period, the batch
size is 8, and the learning rate is 0.001. The seed is set to 42,
and an AdamW [68] optimizer with a momentum of 0.9 is used
to optimize all models for backpropagation.

D. Baseline Methods

We compare the proposed method MSDA-Net with the fol-
lowing existing methods.

1) UNet [55]: UNet is a U-shape structure NN for semantic
segmentation.

2) ResUNet [29]: ResUnet is a U-shaped deep residual net-
work, where the basic block is ResNet-34. Here, ResNet
is a deep learning model for classification.

3) DenseUNet [65]: DenseUNet is a U-shaped densely
connected convolutional network, which the basic block
is dense block.

4) DeeplabV3 [30]: DeeplabV3 is a deep NN for semantic
segmentation, which is built with ResNet-34 and ASPP.

5) DeeplabV3+ [31]: DeeplabV3+ is an enhanced version
of DeeplabV3, in which the basic block is ResNet-34.

6) TransUNet [34]: TransUNet is a transformer-based U-
shaped network for semantic segmentation.

7) Swin-UNet [35]: Swin-UNet is a Unet-like pure trans-
former, in which the basic block is swin-transformer
block. Here, Swin-UNet initially uses four times down-
sampling.

8) DAU-Net [28]: DAU-Net is a dual-attention U-Net model
based on ResUNet, where the basic block is ResNet-34.

9) Segformer [36]: Segformer is a transformer-based net-
work for semantic segmentation.

10) ConvUNeXt [37]: ConvUNeXt is a U-shaped network
built upon on the ConvNeXt block.

11) VAN [38]: VAN is a visual attention network.
12) CBAM [66]: CBAM is a simple yet effective attention

module for feed-forward CNNs.
13) GeM [67]: GeM is a pooling operation based on gener-

alized mean pooling, which adapts its shape to accom-
modate features of different scales and shapes.
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TABLE I
COMPARISON RESULTS

Fig. 7. SAR scene (HV channel), the classification results of all models. (a) SAR scene (HV channel). (b) UNet. (c) ResUNet. (d) DenseUNet. (e) DeeplabV3.
(f) DeeplabV3+. (g) TransUNet. (h) Swin-UNet. (i) DAU-Net. (j) Segformer. (k) ConvUNeXt. (l) VAN. (m) MSDA-Net (Ours).

E. Result and Analysis

We compare the proposed MSDA-Net with other prevailing
models. Table I shows the evaluated metrics of all models.
The best results are indicated in bold, and the second results
are labeled by underlining. It can be obviously observed that
MSDA-Net achieves the best performance. Besides, both CNN-
based methods (DeeplabV3) and transformer-based (Segformer)
methods perform well. The results indicate that the combination
of VAN and DAU-Net can improve the performance. Moreover,
we can see that the improvements of existing models are ex-
tremely limited. The improvement of the second (DeeplabV3)
and third (VAN) highest models in terms of MIoU is 0.2%. How-
ever, compared with VAN in terms of MIoU, the improvement
of MSDA-Net is 3.2%, which is 15 times more efficient than
DeeplabV3. Similarly, the performances in terms of FWIoU,
Acc, and Jaccard all illustrate this view. Fig. 7 shows the visu-
alization of an SAR scene. It can be observed that our model
with superior performance tend to generate fewer blue regions
on the left of the results, which means the model misclassifies
less open water as sea ice. In Fig. 7, we observe that compared
with other models, MSDA-Net barely misclassifies open water
as sea ice. Besides, the highest performance of MSDA-Net in
terms of precision, recall, and F1-Score shows the robustness of
this model, which produces the fewest red and blue regions in
the figure.

We conducted two separate experiments on MSDA-Net. In the
first experiment, we replaced the PDAM module with the CBAM
module and embedded CBAM into the ConvNeXt blocks,
forming CBAM-ConvNeXt blocks. In the second experiment,
we replaced the maxpooling and avgpooling operations in the
PDAM module with the more advanced gempooling operation.
We compared the performance of these two modules, and the

TABLE II
COMPLEXITY ANALYSIS: PARAMETERS AND FLOPS COMPARISON

results are shown in Table I. The comparison results showed
that, compared to CBAM, our PDAM module demonstrated
improvements in MIoU, FWIoU, Acc, Jaccard, and precision
metrics. However, for Recall and F1-Score metrics specifically
related to open water areas, the PDAM module did not perform
as well as the CBAM module. This is because the PDAM module
focuses more on local fragmented ice features, while the CBAM
module emphasizes global information. In addition, replacing
the maxpooling and avgpooling operations with gempooling did
not result in performance improvement.

In Table II, we conducted a detailed comparison of the com-
plexities of various models, with a particular focus on two key
metrics: parameter count (Params) and floating-point operations
(FLOPs). Our proposed MSDA network exhibits a relatively
small parameter count, standing at 10.6 M. When compared
to other models, it is only larger than the parameter count of
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TABLE III
COMPARISON RESULTS OF DIFFERENT REPRESENTATIVE SCENES

the DenseUNet model (1.9 M), while being smaller than the
parameter counts of other mainstream models. This suggests
that the model demands a smaller storage footprint. However, the
MSDA network demonstrates a higher FLOPs value, reaching
153.5 G. This is attributed to the ability of the MSDA-Net’s
MSSA module and PDAM module to extract multiscale and
local information, which requires a higher computational cost
due to the increased number of calculations involved in capturing
these intricate features.

F. Case Study

Due to thermal noise, the performance of the model is by
varying factors. Therefore, to evaluate the performances of
MSDA-Net in different scenes (such as an entire block of sea ice,
the complex sea ice boundary, floes, and geographic location),
we conduct a series of case studies to validate the robustness and
accuracy of our model. The experimental results show the ad-
vantages of MSDA-Net with robust edge detail detection, minor
misclassification, and superior regional crushed ice detection.

Here, four different representative scenes are chosen to ana-
lyze the performances of the models. Table III shows the results
of evaluation metrics in these four scenes and Fig. 8 shows the
visualizations of these four scenes. In Fig. 8, the first column
is the HV channel of these scenes and the reminder columns
represent the segmentation results from various models. Here,
the first scene is an entire block of sea ice, while the second
scene includes the junction of ocean, land, and ice. The third
scene contains many small floes that could be challenging for the
classification of open water and sea ice, and the fourth scene has
a complex sea ice boundary. In Fig. 8, other columns show the
visualization of predictions from several models, which achieve
top five MIoU in Table III. Moreover, the green, blue, and red
parts denote the regions of sea ice, open water misclassified as
sea ice, and sea ice misclassified as open water, respectively,
while the whole black area of the HV channel is the land. Next,
we will analyze the aforementioned four scenes. respectively.

The first scene contains an entire block of sea ice, which is the
most explicit scene for model classifying. The results in Table III
show MSDA-Net achieves the best performance in this type of
scene. Moreover, we observe that other models contain broad
red or blue parts in the lower right of the scenes in the first row
of Fig. 8.

For the second scene, not only does the influence of thermal
noise play a role, but the presence of ocean, land, and ice
junction also causes enormous difficulty in accurately classi-
fying. DAU-Net achieves the worst results in Table III. Ac-
cording to the precision and recall, we find that DAU-Net
has misclassified a lot of sea ice as open water. The largest
red parts of DAU-Net in Fig. 8(k) also verified this view.
In the middle right of Fig. 8(j), the red parts indicate VAN
cannot identify the sea ice in the region of ocean, land, and
ice junction. DeeplabV3 and Segformer perform better than
the aforementioned two models. However, it is difficult for
DeeplabV3 and Segformer to accurately classify the edge of
the junction in Fig. 8(h) and (i). Compared with these models,
our model achieves the best performance on the whole and
edges.

In the third scene, many small floes and thermal noise are
challenging for the classification of sea ice and open water. It is
obvious that MSDA-Net achieves the best performance in almost
all indexes in Table III. For other models, the low precision of
sea ice shows that there are many water pixels misclassified as
sea ice pixels. Moreover, according to the first row of Fig. 8, we
observe that the blue regions on the left, which denote pixels
of high value, cause the misclassification. In most SAR sea ice
scenes, this phenomenon with a lot of thermal noise is common.
The better performance of DeeplabV3 and MSDA-Net indicates
the robustness of these two models. Besides, MSDA-Net not
only misclassifies less water as sea ice, but it also classifies the
sea ice of edges more accurately than DeeplabV3.

There is a complex sea ice boundary in the fourth scene, which
causes a huge challenge for the identification of the details.
DAU-Net achieves the worst results in Table III and the largest
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Fig. 8. SAR scene (HV channel), the classification results of DeeplabV3, Segformer, VAN, DAU-Net, and MSDA-Net (Ours). (a)–(f) 20210814T071803. (g)–(l)
20210814T085813. (m)–(r) 20210815T062219. (s)–(x) 20210815T093835.

red area in Fig. 8(w). Besides, the crushed ice in the lower right
corner of the scene is difficult to identify. Only MSDA-Net and
Segformer can modify the region. Moreover, according to the
results in Table III, it is obvious that MSDA-Net is superior to
Segformer.

To highlight the details of fine ice fragments captured by
our model, we divided the original image into four equal parts
vertically and horizontally, focusing on the regions where small
sea ice clusters occur. In Fig. 9, we selected four densely frag-
mented ice scenes to demonstrate our model’s ability to capture
multiscale sea ice objects. The first column here contains the HV
channel images of these scenes. The left half displays the data
in their original size, while the right half shows the data from
the zoomed-in region. The remaining columns demonstrate the
segmentation results obtained using different models within this
zoomed-in region.

In these four densely fragmented ice scenes, we observed
two primary classification errors. First, there is the misclas-
sification of blue vertical stripes, which can be attributed to
thermal noise interference in SAR images. This interference
may lead to the inaccurate classification of certain water areas
as sea ice areas, resulting in the appearance of blue regions.
Second, we identified the misclassification of small, dot-like

ice fragments, which presents as red dot-shaped errors in the
images. This misclassification could be attributed to the in-
herent challenge faced by the model in accurately capturing
the structure of fine ice fragments. Consequently, these smaller
ice fragment areas may be incorrectly identified as open-water
regions. Compared to the other four models, MSDA-Net ef-
fectively avoids the interference of thermal noise and performs
well in minimizing misclassifications of blue stripes. In addi-
tion, MSDA-Net utilizes multiscale module feature extraction,
enabling better extraction and capturing of detailed information
on dot-like ice fragments, resulting in excellent performance
in classifying dot-like ice fragments. In summary, MSDA-Net
demonstrates advantages over the other four models in dealing
with challenges such as thermal noise interference and dot-
like ice fragment classification, showing good performance and
robustness.

G. Ablation Study

In order to investigate the effects of different modules and
channels, we conducted ablation experiments and summarized
their outcomes. The ablation experiments were divided into
three parts: the first part involved further analysis of the main
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Fig. 9. SAR scene (HV channel), the classification results of DeeplabV3, Segformer, VAN, DAU-Net, and MSDA-Net (Ours). (a)–(f) 20210814T054028 (bottom
left). (g)–(l) 20210815T030415 (top left). (m)–(r) 20210815T044217 (top left). (s)–(x) 20210815T044317 (bottom right).

TABLE IV
COMPARISON RESULTS OF MODULE ABLATION STUDY

modules, PDAM, and MSSA; the second part compared the
two submodules, SAM and CAM, under PDAM; and the third
part conducted ablation experiments based on the HPF and PE
channels.

1) Analysis of PDAM and MSSA Modules: The evaluation
metrics are presented in Table IV. The baseline refers to
MSDA-Net without PDAM and MSSA, MSDA-NetM repre-
sents MSDA-Net with MSSA, and MSDA-NetP represents
MSDA-Net with PDAM. To ensure the similarity of structures
and fairness in the experimental results, we substitute MSSA
with a convolution layer for both baseline and MSDA-NetP .
The convolution layer has a kernel size, stride, and padding of
3, 1, and 1, respectively.

From Table IV, the results of MSDA-NetM and MSDA-NetP
are higher than baseline, which shows the advantage of intro-
ducing MSSA and PDAM, respectively. The lower prediction
and higher recall of sea ice indicate that MSDA-NetM and
MSDA-NetP tend to identify more accurate sea ice, although
accompanied by some degree of misclassification. However,
MSDA-Net combines the advantage of PDAM and MSSA and
achieves huge improvement on any evaluation metrics.

Besides, Table V and Fig. 10 show the influence of PDAM
and MSSA under different types of scenes. Here, Table V
presents the results of evaluation metrics in different represen-
tative scenes, and Fig. 10 shows the visualization of different
models.
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TABLE V
COMPARISON MODULE ABLATION RESULTS OF REPRESENTATIVE SCENES

Fig. 10. SAR scene (HV channel), the classification results of baseline, MSDA-NetM , MSDA-NetP , and MSDA-Net (Ours). (a)–(e) 20210814T071803. (f)–(j)
20210814T085813. (k)–(o) 20210815T062219. (p)–(t) 20210815T093835.

TABLE VI
COMPARISON RESULTS OF CHANNEL ABLATION STUDY
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For the first scene, both MSDA-NetP and MSDA-NetM
achieve superior performance than the baseline model in
Table V. According to the first row in Fig. 10, we can see that
PDAM and MSSA are helpful in improving the identity of the
lower right of the scenes.

The baseline model achieves the worst performance in the
second scene. Compared with the baseline model, it is obvious
that the introduction of PDAM and MSSA can improve the per-
formance of the classification in the ocean, land, and ice junction.
Moreover, MSDA-NetP performs better than MSDA-Net, which
implies PDAM can enhance edge identification.

In the third scene, MSDA-NetM has misclassified more open
water pixels with thermal noise as sea ice than the baseline
model, while MSDA-NetP achieves great performance in this
condition. The superior performance of MSDA-NetP can con-
tribute to PDAM, which extracts an important feature of PE and
HDF channels. Moreover, the best result of MSDA-Net shows
that the combination of PDAM and MSSA can capture more
valuable channel and multiscale spatial information.

For the fourth scene, there is a broad red region on the left
of Fig. 10(q), which implies the baseline model cannot identify
complex textures of sea ice. Both MSDA-NetM and MSDA-
NetP can enhance the identification of textures in Fig. 10(r)
and (s). Moreover, the combination of PDAM and MSSA can
generate the best performance.

2) Analysis of SAM and CAM Submodules Under PDAM:
The PDAM module effectively enhances the representation of
relative positions and high-pass filtering channels, leading to
significant improvements in all evaluation metrics when incor-
porated into the model. Within the PDAM module, there are
two submodules, CAM and SAM. To investigate the internal
functions of CAM and SAM and understand their contributions,
we conducted ablation experiments. Specifically, we denoted
the models as MSDA-NetC , MSDA-NetS , MSDA-NetMC, and
MSDA-NetMS, which correspond to MSDA-Net with CAM,
MSDA-Net with SAM, MSDA-Net with MSSA and CAM, and
MSDA-Net with MSSA and SAM, respectively.

Table IV presents the comparison of four sets of experiments:
MSDA-NetC versus the baseline, MSDA-NetS versus the base-
line, MSDA-NetMC versus MSDA-NetM , and MSDA-NetMS

versus MSDA-NetM . The results indicate a significant improve-
ment in the model’s performance in terms of MIoU, FWIoU,
Acc, and other indicators upon integrating the CAM and SAM
submodules, thus confirming their effectiveness. Specifically,
the CAM submodule has a more prominent role than the SAM
submodule in enhancing the model performance.

In the context of sea ice images, the primary issue lies in noise
interference. The CAM submodule effectively utilizes additional
HPF and PE channels to explore channel relationships and focus
on vertical regions of noise, contributing to noise removal.
Consequently, the CAM submodule exhibits more substantial
performance enhancement in sea ice images.

However, sea ice exhibits a multiscale nature, with small
ice floes potentially overlapping with noise, making accu-
rate localization of sea ice regions challenging when rely-
ing solely on the SAM submodule. The SAM submodule
emphasizes global features instead of local areas, potentially

underutilizing semantic information embedded in sea ice im-
ages. Nevertheless, synergistically combining the CAM and
SAM submodules in PDAM fully leverages their advantages.
The CAM submodule provides accurate semantic information,
while the SAM submodule focuses on global features, enabling
the PDAM to achieve enhanced sea ice region localization and
extraction.

Consequently, the combined employment of the CAM and
SAM submodules within the PDAM module effectively utilizes
rich semantic information to analyze and process sea ice images
across multiple scales, leading to improved results. The integra-
tion of these CAM and SAM submodules proves more effective
in enhancing model performance.

3) Analysis of HPF and PE Channels: To examine the impact
of incorporating additional channels into the model, we con-
ducted a series of ablation experiments focusing on the PE and
high-pass filtering channels. The effects were summarized and
are presented in Table VI. The baseline model refers to the uti-
lization of only the HV, HH − HV, and HH/HV channels within
the multiscale attention network. MSDA-Net HPF represents
the multiscale attention network that includes the HV, HH−
HV, HH/HV, and high-pass filtering channels. MSDA-Net PE

corresponds to the multiscale attention network that incorporates
the HV, HH−HV, HH/HV, and PE channels. MSDA-Net denotes
the multiscale attention network that combines the HV, HH −
HV, HH/HV, high-pass filtering, and PE channels.

The experimental findings demonstrate that both MSDA-
NetHPF and MSDA-NetPE outperform the baseline model, show-
casing the enhanced capability of the model in sea ice moni-
toring. From Table VI, it is evident that the high-pass filtering
channel primarily improves the model’s accuracy by reduc-
ing the misclassification of sea ice. On the other hand, the
PE channel not only contributes to accuracy improvement but
also performs well in recall. By leveraging the advantages of
the PE channel and the high-pass filtering channel, MSDA-
Net achieves significant improvements across all evaluation
metrics.

V. CONCLUSION

In this article, we introduce the MSDA-Net for open water and
sea ice classification. We identify two challenges and propose
corresponding solutions to address them. The first challenge
involves the common noise interference in Sentinel-1 SAR
images, while the second challenge relates to handling sea ice
objects of multiple scales.

To address the first challenge, we introduce specific measures
to mitigate noise interference, including the incorporation of
additional positional embeddings and HPF channels. These
components aid in noise filtering and localization of vertical
line noise. In addition, we introduce the PDAM to capture both
channel and spatial features, effectively leveraging the extra
channel information to reduce noise interference in Sentinel-1
SAR images. To tackle the second challenge, we develop the
MSSA module within the network’s architecture. This module
enhances the extraction of multiscale spatial features, enabling
the network to effectively handle sea ice objects at various
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scales, particularly dense small ice fragments and punctate ice
fragments.

Our comprehensive experimental results demonstrate the ef-
fectiveness and superiority of the proposed model, achieving
state-of-the-art performance among all models. We conduct
extensive ablation experiments, including independent ablations
on each module, investigating the impact of the PDAM and
MSSA modules. Furthermore, we also specifically evaluate
the contributions of the CAM and SAM submodules within
PDAM. Besides, we perform channel ablation experiments to
explore the effects of additional position embedding and HPF
channels on the model’s performance. The results indicate that
these enhancements have resulted in significant performance
improvements.

For future work, our primary focus will be on finding more
effective methods to mitigate the influence of thermal noise.
Although we have verified the effectiveness of incorporating
extra position embedding and HPF channels, we aim to explore
additional techniques and strategies to further reduce the impact
of thermal noise on our model’s performance.
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