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Multilevel Pyramid Feature Extraction and Task
Decoupling Network for SAR Ship Detection

Yanshan Li , Wenjun Liu , and Ruo Qi

Abstract—Synthetic aperture radar (SAR) target detection plays
a crucial role in both military and civilian fields, attracting signifi-
cant attention from researchers globally. CenterNet, a single-stage
target detection method, is known for its high detection speed and
accuracy by eliminating anchor-related calculations and nonmax-
imum suppression. However, directly applying CenterNet to SAR
ship detection poses challenges due to the distinctive characteristics
of SAR images, including lower resolution, lower signal-to-noise
ratio, and larger ship aspect ratios. To address these challenges, we
propose MPDNet. which introduces a multilevel pyramid feature
extraction module (MP-FEM) to replace the encoding–decoding
structure in CenterNet. MP-FEM employs multilevel pyramid and
channel compression to fuse multiscale SAR image features and
acquire deep features quickly. Second, we propose the convolution
channel attention module, which improves the multilayer percep-
tron in the common pooling attention mechanism into a multistage
and 1-D convolution. Therefore, the feature extraction capability of
MP-FEM is further refined. Furthermore, we propose the detection
task decoupling module (DTDM), which considers the characteris-
tics of SAR ships and effectively detects smaller targets of different
sizes, distinguishing the centers and sizes of densely arranged ships.
DTDM extracts task-related features from the original feature
map before inputting it into the three detection headers, thereby
addressing the problem of task coupling in CenterNet’s detection
header module for SAR ship detection. Finally, the experimental
results on SSDD dataset and SAR-ship-dataset show that the pro-
posed network can significantly improve the SAR target detection
accuracy.

Index Terms—CenterNet, multilevel feature pyramid, synthetic
aperture radar (SAR) image, target detection.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR), due to its unique imag-
ing mechanism, enables data acquisition under all-weather

and all-day conditions, unaffected by factors, such as weather
and lighting [1], [2], [3]. Therefore, target detection algorithms
based on SAR images find extensive applications in military
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fields, such as situation analysis and strategic defense, as well as
in civilian fields, including marine monitoring, maritime search
and rescue, and disaster monitoring [4]. Numerous scholars
worldwide have conducted research on target detection methods
based on SAR images [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14]. These algorithms improve the YOLO [9], [10], [11]
and CenterNet [12], [13] networks on RGB images that are
adopted for SAR image target detection [4], [5], [6], [7]. How-
ever, due to the fundamental differences in imaging principles,
shooting angles, and shooting distances between SAR images
and conventional optical images, the research on SAR image
target detection presents numerous challenges beyond those in
typical target detection. Zhang et al. [8] proposed a miniaturized
plug-and-play module to select target areas from SAR images
and filter out large areas of ocean and coastal backgrounds with
minimal computation. Qu et al. [15] introduced transformer
encoding and mask guidance modules to address issues in tradi-
tional methods, effectively learning dependencies between ship
targets and reducing false alarms from complex backgrounds.
Ma et al. [16], through the design of an anchor-free framework,
key-point estimation module, and channel attention module,
successfully alleviated challenges in detecting multiscale and
dense ship targets in SAR images. Fig. 1. illustrates typical SAR
images with significant challenges in target detection.

1) SAR images exhibit a vast range of target sizes and
substantial variations in aspect ratios, as evidenced by
the contrasting example image sets in Fig. 1(a), (b), and
(e)–(h).

2) SAR images feature complex target environments with
background interference from suspected targets and dense
target arrangements. Examples include ships near the
coastline and coastal structures, ships at sea, and small
islands, as shown in Fig. 1(g) and (h).

3) SAR images suffer from low resolution and low signal-to-
noise ratios, as evident in Fig. 1(c) and (d). Therefore, con-
ventional target detection algorithms cannot be directly
applied to ship detection in SAR images, highlighting
the significance of developing target detection networks
tailored to SAR image characteristics.

CenterNet, known for its low model complexity, fast inference
speed, and capacity to extract distinct features for detecting large
objects, holds great promise for SAR ship detection. Based
on the characteristics of SAR images, this article proposes
multilevel pyramid feature extraction and task decoupling net-
work (MPDNet), which is a single-stage and anchor-free ship
detection network. MPDNet can effectively detect SAR ships
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Fig. 1. (a), (b) and (e)–(h) correspond to images with significant variations in target size and large aspect ratios, where (g) and (h) depict images with complex
target environments, dense target presence, and severe background interference, while (c) and (d) illustrate images with low resolution and low signal-to-noise
ratio.

Fig. 2. Architecture of the proposed MPDNet.

with large aspect ratio and dense arrangement in SAR images
featured by low resolution and low signal-to-noise ratio. The
main contributions of this article are as follows.

1) A new ship detection network in SAR images (MPDNet)
is proposed. The MPDNet consists of multilevel pyramid
feature extraction module (MP-FEM), detection task de-
coupling module (DTDM) and detection header module
(DHM). MP-FEM combined with convolution channel at-
tention module (Conv-CAM) can effectively extract SAR
image features with low resolution and low signal-to-noise
ratio. DTDM and DHM are used to accurately detect ships
with large aspect ratio and dense arrangement.

2) Considering SAR image is characterized by low resolu-
tion, low signal-to-noise ratio, and large aspect ratio of
ships, MP-FEM is introduced to extract SAR image fea-
tures with strong representational power. The MP-FEM is
composed of the residual module (RM) and the multilevel
pyramid channel compression module (MP-CCM).

3) Taking the lack of selectivity during the channel compres-
sion of MP-CCM into account, we design Conv-CAM to
improve the feature extraction ability of MP-FEM.

4) DTDM is put forward to accurately detect ships with
large aspect ratio and dense arrangement in SAR images.
DTDM decouples the target size, center point, and class
prediction tasks, respectively, thus effectively improving
the detection accuracy of ships.

II. MPDNET NETWORK

A. Structure of MPDNet

MPDNet mainly consists of three parts: MP-FEM, DTDM,
and DHM. The overall network structure is shown in Fig. 2.

The MP-FEM is composed of the RM and the MP-CCM, as
shown in the gray box in Fig. 2. First, the input SAR image
feature Iin is extracted by RM, and then the feature map P with
256 channels is obtained. Second, the feature map P is further
extracted and enhanced by MP-CCM, and the feature channel is
compressed step by step at the same time. Each level of pyramid
compression helps reduce the number of channels by half, result-
ing in a more refined feature map. After MP-CCM compresses
the feature through the three-level pyramid structure, the final
feature map F with the number of channels compressed to 64 is
output.

DTDM involves size path, center path, and class path, as
shown in the blue box in Fig. 2. These three paths, respectively,
carry on the shunt adaptive optimization processing to the feature
map F according to the task dimension so as to achieve the
effect of task decoupling. After decoupling by those three paths,
DTDM outputs three feature maps—Fwh, Foffset, Fcls, which are
used to predict the size of the target, the offset distance of the
center point and the target class, respectively.

The DHM consists of size header, center header, and class
header, as shown in the orange box in Fig. 2. Unlike in CenterNet,
where the header module has only one input, MPDNet’s header
has three feature maps inputs. The size header takes the output
Fwh of size path as input, and calculates the length and width of
the target by regression. The center header takes the center path
outputFoffset in DTDM as the input, and calculates the horizontal
and vertical offset distance of the target center by regression. The
class header takes the class path output Fcls in DTDM as input
and calculates the probability of the target belonging to each
class by regression. Finally, MPDNet aggregates the predicted
output of the three headers and sorts and filters them to get the
final target detection result Iout.
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Fig. 3. (a)(b)and(e)-(h) correspond to images with significant variations in
target size and large aspect ratios, where (g) and (h) depict images with complex
target environments, dense target presence, and severe background interference,
while (c) and (d) illustrate images with low resolution and low signal-to-noise
ratio.

Fig. 4. Architecture of the proposed MP-CCM.

B. Multilevel Pyramid Feature Extraction Module

Considering SAR images with low resolution, low signal-to-
noise ratio and ships with large aspect ratio, MP-FEM is pro-
posed to improve feature representational ability by extracting
and fusing multiscale features. The MP-FEM consists of the
RM and the MP-CCM. Among them, RM contains a 7 × 7
convolution and a ResNet residual block [17]. The detailed
network structure is shown in Fig. 3. RM carries out the feature
extraction of input SAR image Iin in two stages, and outputs
feature map P . The formula is expressed as follows:

P = fres2(fres1(Iin)) (1)

where fres1(·) and fres2(·) are feature extraction functions of two
stages, respectively, and their major convolution kernel sizes are
7 × 7 and 3 × 3.

In order to further extract, enhance and compress features,
we design an MP-CCM, whose network structure is shown in
Fig. 4. MP-CCM takes the output feature map of RM as input,
and outputs the feature map after three feature pyramid networks
blocks (FPN Blocks) [18]. In addition to feature extraction
and enhancement, MP-CCM also completes the feature map
compression. That is to say, the channel of the feature map
is compressed by half after each FPN Block. Through the
compression of three FPN Blocks, the feature map with 256
channels is compressed into with 64 channels. The processing
of feature map by FPN Block consists of five parts: feature
extraction from bottom up, feature extraction from top down,
lateral connection operation, additive fusion feature, and channel
attention emphasis feature. To begin with, the feature extraction
capability of FPN Block is mainly realized by its bottom-up

operation. One block contains two bottom-up operations, each
of which doubles the number of channels of the feature map
while reduces the length and width of the feature map to half,
as described in the following:{
Pi−1 = Pi−1

Pi−k=fbottom2up (Pi−k−1)
i=1, 2, 3; k = 1, 2, 3; P0=P

(2)

where fbottom2up(·) is the bottom-up transformation function,
consisting of the convolution layer, the batch normalization layer
(BN layer) and the pooling layer; and Pi−k represents the kth
layer feature diagram of the bottom-up process of the ith FPN
Block.

Then, the top-down and lateral connection operation in FPN
blocks fuse high-level semantic features with high-resolution
spatial features to achieve feature map enhancement. Among
them, the topmost feature mapCi−3 is obtained from the topmost
feature map Pi−3 in the bottom-up process after one lateral
change. It is shown in the following:

Ci−3 = flateral(Pi−3) (3)

where flateral(·) is the lateral change function, the embodiment of
the essential difference between the whole FPN Block and the
ordinary FPN. The input feature map is scaled up by flateral(·)
to the same size as Pi−1. Therefore, in addition to common
convolution, transposed convolution is also involved. Besides,
flateral(·) is the core structure to complete channel compression,
which compresses the number of channels to half of that of
Pi−1. The proposed Conv-CAM also participates in this process,
which will be detailed in Section C. Different from the topmost
feature map, the generation of the middle layer and the bottom
layer feature map in the top-down process requires both lateral
connection and top-down feature extraction, as shown in the
following:

Ci_k = flatera1(Pi_k)+fup2down(Ci_k+1) i = 1, 2, 3; k = 1, 2
(4)

where fup2down(·) is a top-down operation function, mainly com-
posed of a 3 × 3 convolution, BN layer and ReLu activation
layer, and Ci_k represents the kth layer feature diagram of the
top-down process in the ith FPN Block.

Finally, FPN Block completes the aggregation and fusion of
various scale information. Specifically, the three feature maps
Ci_1, Ci_2, and Ci_3 generated from the top-down process are
added pixel by pixel, and the calculated results are further
emphasized by Conv-CAM. It is illustrated in the following:

Fi = fCAM

(
3∑

k=1

Ci_k

)
(5)

where fCAM(·) represents the channel attention function, Fi is
the final output feature map of the ith FPN Block. MP-CCM
consists of three FPN blocks, and its feature map and channel
changes are as follows:{

P → F1 → F2 → F3 → F
256 → 256 → 128 → 64 → 64.

(6)
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Fig. 5. Architecture of the proposed Conv-CAM.

It is worth noting that the first FPN Block of MP-CCM
does not carry out channel compression, which ensures that
the network will not be compressed until sufficient features are
extracted. As a result, it is beneficial to avoid inadequate feature
extraction. The feature map F is the final output of MP-CCM
and also the final output of MP-FEM.

C. Convolution Channel Attention Module

In order to selectively extract features, emphasize useful
features, and eliminate interfering features when MP-CCM com-
presses channels, Conv-CAM is put forward, whose structure is
shown in Fig. 5.

First, Conv-CAM conducts mean-pooling and max-pooling
operations on the input feature map X to obtain ρavg and ρmax.
Different from adding the pooling feature map of CBAM [19],
this article concatenates ρavg and ρmax to obtain mixed weight
map ρmix, as shown in the following:

ρmix=concat(ρavg,ρmax)=concat(favg_pool(X),fmax _pool(X))
(7)

where concat(·) denotes the concatenation function according to
the vertical direction of the tensor, favg_pool(·) and fmax_pool(·) are
the average channel pooling function and the maximum channel
pooling function, respectively.

Second, Conv-CAM replaces the MPL layer in the channel
attention module of CBAM with two 1-D convolutions. This
change not only reduces the number of parameters and the
amount of computation, but also makes full use of the prior
knowledge of relevant information of adjacent channels. There-
fore, it is more conducive to mining important feature informa-
tion. After two convolution operations, Conv-CAM maps ρmix

into a 1-D weight map ρ. It is shown in the following:

ρ = conv1d3(conv1d7(ρmix)) (8)

where conv1dk(·) is the 1-D convolution function, whose sub-
script k is the convolution kernel size.

Finally, Conv-CAM multiplies the weight map ρ with the
original input feature map, and then emphasizes and cull the
original feature map in channel dimension to obtain the final
output feature map X ′, as expressed in the following:

X ′ = ρ×X. (9)

D. Detection Task Decoupling Module

SAR ships are characterized by small size, dense arrangement
and large aspect ratio, so it is required that the target detection
network can effectively detect the smaller targets of different

sizes and distinguish the center and size of the densely arranged
ships. However, the input feature maps of the size header,
center header, and class header in CenterNet are the same. And
the DHM only performs simple convolution operation with a
convolution kernel of 3 before the output. As a result, the DHM
has serious task coupling, and the headers of different tasks
have a great influence on each other during parameter updating.
Therefore, it is not conducive to the regression convergence of
each task and it reduces the detection accuracy of the targets,
especially of the small targets. This article holds that although
the prediction of these three tasks is regression calculation, there
are great differences among them for they belonging to different
types of regression tasks. Extracting corresponding features for
different tasks can effectively improve the detection accuracy of
each task.

Therefore, we introduce detection task decoupling model
(DTDM). Before the feature map is input into three detection
headers, task-related features will be further extracted to send to
the size header, center header, and class header, respectively, to
achieve task decoupling.

As shown in the blue boxes in Fig. 2, the DTDM has three
paths that modify, align, and optimize the input feature maps of
the size header, center header, and class header according to the
different prediction tasks. Fig. 6 expresses the specific structure
of the three paths. Block A is center path, block B the size path,
block C class path, and block D is the concrete structure display
of the modules used in the first three network structures. There
are similarities and differences among the three detection tasks.
Accordingly, the three paths of DTDM share similarities and
differences in structural design. In terms of common ground, the
three paths all use multistream structure, residual connections
and feature fusion mechanism. First, DTDM enhances the fea-
ture map by distinguishing different angles and receptive fields
through multistream structures. Then, the multistream structure
is aggregated and fused through the channel dimension concate-
nation and fusion, spatial pixel dimension addition and fusion,
and residual jump connection. Finally, the comprehensive and
refined feature map is output. In regard to the difference, these
three paths do corresponding decoupling design according to the
characteristics of their specific tasks.

1) Center path: For the offset distance predication task of the
target center point, the size, span, offset sensitivity, and
the size of the receptive field of the targets to be detected
are different. That is to say, the size of the convolution
kernel used to extract the feature should also be different.
Therefore, the scheme of multiscale convolution kernel is
adopted, as shown in block A of Fig. 6.
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Fig. 6. Structure of three paths of DTDM.

First of all, in order to reduce the amount of computation,
it is necessary to downsample the channel of input feature
mapF to obtain the lightweight feature mapFcp for center
path. It is shown in the following:

Fctp = fchn_down(F ) (10)

where fchn_down(·) is a channel downsampling function
formed by a 2-D convolution with the kernel size of 1.
Then, center path uses convolution kernels with sizes of
1, 3, and 5 in the multistream structure to shunt, and
obtains three shunt feature maps Fctp_s1, Fctp_s2, and
Fctp_s3, which has small, medium, and large receptive
fields, respectively, as expressed in the following:⎧⎪⎨

⎪⎩
Fctp_s1 = conv

1×1
(Fctp)

Fctp_s2 = conv
3×3

(Fctp)

Fctp_s3 = conv
5×5

(Fctp)

(11)

where conv
k×k

(·) denotes the combination of the convo-
lutional layer, BN layer, and ReLu activation layer, and its
subscript k denotes the size of the convolutional kernel.
Next, the shunt structure is aggregated through the con-
catenation of channel dimensions, and the multistream
aggregation feature map Fctp_ms is obtained, which has
a wide receptive field, as shown in the following:

Fctp_ms=fchn_adjust(concat(Fctp_s1,Fctp_s2,Fctp_s3,Fctp))
(12)

where fchn_adjust(·) is the channel adjustment function and
concat(·) is the channel dimension concatenation function.
Finally, the original lightweight feature map Fctp is en-
hanced by the attention mechanism. Besides, it is aggre-
gated and fused with the multistream aggregation feature
map Fctp_ms. Foffset is output, as shown in the following:

Foffset = ffuse(Fctp_ms + fam(Fctp)) (13)

where ffuse(·) is the feature alignment fusion function
composed of 3 × 3 convolution, fam(·) is the attention

module composed of CBAM, and Foffset is the output of
the center path.

2) Size path: For the target size prediction task, the detector
needs to obtain the target boundary information, whose
specific structure is shown in block B of Fig. 6. First, like
center path, size path downsamples the channel dimension
of input feature map F to obtain the lightweight feature
map Fsp. It is expressed in the following:

Fsp = fchn_down(F ). (14)

Second, the method of deformable convolution [20] is
used to obtain the enhanced feature map that can adapt to
targets of different shapes. The conact function is adopted
to concatenate the enhanced feature map withFsp. And the
convolution layer is utilized to align their fusion features.
Thus, the multistream aggregation feature map Fsp_ms of
Size Path is obtained. It is shown in the following:

Fsp_ms = conv3×3(concat(dfconv3×3(Fsp), Fsp)) (15)

where dfconvk×k(·) denotes deformable convolution
functions, and its subscript k denotes the size of the
convolution kernel.
Finally, the lightweight feature map Fsp is enhanced by
the attention mechanism and aggregated as well as fused
with Fcp_ms, as shown in the following:

Fwh = f fuse(Fsp_ms + fam(Fsp)) (16)

where Fwh is the final output feature map of size path.
3) Class path: For the target class prediction task, the detector

needs to obtain the texture and contour of the target and
other specific details, whose specific structure is shown in
the block C in Fig. 6. The reasoning process of class path
is similar to that of center path.
First, the class path undersamples the channel dimension
of the input feature mapF to obtain the lightweight feature
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Fig. 7. Number of images and ships in SSDD dataset.

map Fclsp. It is expressed in the following:

Fclsp = fchn_down(F ). (17)

Second, dilated convolution [21] with a dilated rate of 0, 1,
and 2 is used to build a multistream structure of class path,
which is conducive to obtaining high-frequency spatial
structure information of targets, as shown in the following:⎧⎨

⎩
Fclsp_s1 = dlconv0(Fclsp)
Fclsp_s2 = dlconv1(Fclsp)
Fclsp_s3 = dlconv2(Fclsp)

(18)

where dlconvr(·) represents the dilated convolution func-
tion, and its subscript r represents the dilated rate. Then,
the multistream aggregation feature map Fclsp_ms is ob-
tained by aggregating the shunt structures. It is expressed
in the following:

Fclsp_ms=fchn_adjust(concat(Fclsp_s1,Fclsp_s2,Fclsp_s3,Fclsp)).
(19)

Finally, the feature map Fclsp emphasized by the attention
mechanism is aggregated and fused withFclsp_ms, as shown
in the following:

Fcls = f fuse(Fclsp_ms + fam(Fclsp)) (20)

where Fcls is the final output feature map of the class path.

III. EXPERIMENT RESULTS AND ANALYSIS

A. Datasets and Evaluation Indicators

Considering the diversity and universality of the dataset,
SSDD dataset [22] is selected to test the effect of our proposed
algorithm. The characteristics of SSDD dataset are as follows.

1) Abundant data sources. The images in SSDD dataset are
from RadarSat2, TerraSARX, and Sentinel-1 data sources.
It contains 1160 images and 2456 ships in total, meaning
that each image contains 2.12 ships on average. The spe-
cific distribution is shown in Fig. 7.

2) Large resolution span and large size span. Image resolu-
tion varies from 1 to 15 m, with the smallest object having
7 × 2 pixels and the largest object having 368 × 69 pixels.

3) Diverse target background and distribution. Such as: near
shore, far shore, multiship dense arrangement, multiship
sparse distribution, and so on.

4) Wide versatility. At present, lots of relevant studies are
carried out on SSDD dataset to verify the validity of the

TABLE I
RESULTS OF THE COMPARISON EXPERIMENT BETWEEN MPDNET AND

BASELINE

different proposed models. Mao et al. [23] verified the
effectiveness of the advanced algorithms on SSDD dataset.
Our experiments will be based on their findings.

Referring to the work of Mao et al. [23], in this article, images
with file names ending in numbers 1 and 9 are used as the test
set, while the remaining images are used as the training set. We
get a test set of 232 images and a training set of 928 images.

This article adopts the same evaluation indicator as Mao et
al.: MS COCO evaluation matrix [24]. In order to verify the
effectiveness of the proposed method in detecting multiscale
targets, especially to verify the ability of the MP-FEM to ex-
tract multiscale features, four indicators from the MS COCO
evaluation matrix, AP 50, APS , APM , and APL, are selected
as the experimental validation criteria, among which the most
important indicator is AP 50.

B. Setting

In this article, pytorch framework is adopted to implement
the proposed algorithm. The version of torch is 1.10.1+cu111
and torchvision is 0.11.2+cu111. The program is trained and
tested on a 64-bit Linux system and accelerated using a 24 G
GeForce RTX 3090 GPU. In the training process, the minimum
value of learning rate is 2.5 × 10−6, the maximum value is 5 ×
10−4, and the initial value is 2.5 × 10−4. The learning rate is
updated by combining the exponential trend and the cos function
trend. At the initial stage of training, that is, the first 5% of
the total iteration, the model belongs to the “warmup stage”
[25]. The learning rate increases exponentially until it reaches
the maximum learning rate, and then the maximum learning
rate is maintained for further training. At the middle and late
stages of training, that is, the last 95% of the total iterations, the
models belongs to the “annealing stage” [25]. The learning rate
decreases in monotonously decreasing tendency with respect to
cos function until it reaches the minimum learning rate, which
is maintained for all subsequent training iterations.

C. Performance Evaluation

1) Comparison Experiments Between MPDNet and Center-
Net: We conduct a comparison experiment between MPDNet
and CenterNet to verity the effectiveness of our proposed algo-
rithm. The experimental results are shown in Table I, where the
bold column of Method represents the method in this article, and
each bold indicator is the optimal result in the experiment.

As shown in Table I, MPDNet greatly improves in all indi-
cators compared with CenterNet. The most important indicator
AP 50 increases by 4.6%, the average precision of small targets
increases by 7.7%, the average precision of medium targets
APM increases by 3.4%, and the average precision of large
targets APL increases by 4%. It is obvious that compared with
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Fig. 8. Visual comparison of test results in the nearshore and densely arranged scenes in SAR images.

CenterNet, the proposed MPDNet effectively solves the diffi-
culties of target detection in SAR images and comprehensively
improves the detection accuracy. In order to further verify and
analyze the effectiveness of the proposed method, visual analysis
of detection results is also carried out on five representative SAR
images in this section, as shown in Figs. 8 and 9.

Fig. 8 shows the detection visualization results in the
nearshore and densely arranged scene of the targets. There
are three rows (a), (b), and (c) from top to bottom, showing
three representative images, respectively, and three columns
from left to right, representing detection results of ground-
truth, CenterNet, and MPDNet. Ground-truth uses green boxes
to mark the target location. CenterNet and MPDNet use red
boxes to mark the target location, and the upper left corner
of the red box shows the target confidence, ranging from 0
to 1. When CenterNet is dealing with nearshore and densely
arranged targets, its detection results produce false alarms due
to the interaction between suspected target buildings on shore
and target detection. The three ships on the left in Fig. 8(a)
and (c) are detected as four ships by CenterNet, while MPDNet
can accurately detect three ships. In addition, when the size of
nearshore and densely arranged targets is small, the detection re-
sults of CenterNet is missed due to the lack of feature extraction
capability of backbone. In Fig. 8(b), CenterNet misses the mid-
dle two targets, while MPDNet could accurately detect the five
targets.

Fig. 9 shows the visualization results of detection under the
multiscale target scene. Fig. 9(a) contains a large number of
small targets, and (b) contains two large targets, both of which
jointly verify the detection results of MPDNet for multiscale
targets. Due to CenterNet’s weak feature extraction ability and
lack of feature enhancement process, it is difficult to deal with
multiscale scenes, leading to false alarm detection. CenterNet
detects false alarms in the upper right corner of the target in
Fig. 9(a) and false alarms in the upper left corner of the target
in Fig. 9(b). In contrast, our proposed method handles those
problems well. But MPDNet also has defects. Because of the
influence of suspected target buildings on shore, the detection
results of MPDNet also have false alarms, as shown in the lower
right corner of the MPDNet detection results in Fig. 9(b).

2) Comparison Experiments Between MPDNet and Other
Single-Stage Methods: MPDNet is a single-stage target detec-
tion network. We conduct comparison experiments between
MPDNet and other representative single-stage methods,. The
results are shown in Table II. The comparison methods are:
FCOS [27], SSD [28], YOLOv3 [29], YOLOv7 [30], Reti-
naNet GA [31], Reppoints Moment [32], Fovea Align [33],
Deformable_DETR [34], PVT [35], and PyCenterNet [36]. Py-
CenterNet, proposed by Duan et al., is an enhanced bottom-up
CenterNet variant that detects each object as a triplet of key-
points, enabling it to locate objects with arbitrary geometries
and perceive global information within objects.



LI et al.: MULTILEVEL PYRAMID FEATURE EXTRACTION AND TASK DECOUPLING NETWORK FOR SAR SHIP DETECTION 3567

Fig. 9. Visual comparison of test results in multiscale target scene in SAR image.

TABLE II
COMPARISON BETWEEN MPDNET AND OTHER SINGLE-STAGE ALGORITHMS

(THE BOLD REPRESENTS THE OPTIMAL RESULT AND THE UNDERLINED

REPRESENTS THE SUBOPTIMAL RESULT)

As shown in Table II, in terms of the detection of small targets,
although MPDNet has a great improvement compared with
CenterNet, CenterNet and MPDNet are slightly less effective
than other algorithms. Lin et al.’s method, Fovea Align, gets the
best results in APS . CenterNet decreases 15.7% and MPDNet
falls 8% compared to Fovea Align. This is because CenterNet
takes targets as points for detection. When the network depth is
too large, small targets will be lost on the feature map, result-
ing in missing detection. Compared with CenterNet, MPDNet
improves by 7.7% inAPS , which indicates that the proposed al-
gorithm alleviates the problem of small target missing detection.

Meanwhile, MPDNet achieves 95% in AP 50, the highest of
all comparison methods. This shows that detection effect of
MPDNet is greatly improved thanks to the refinement, enhance-
ment and compression of feature maps by multilevel pyramid
and channel attention mechanism, as well as the alignment
optimization of task decoupling modules. Therefore, MPDNet

is very competitive compared with other single-stage methods
in terms of the comprehensive performance.

In addition, for medium and large targets detection, MPDNet
also achieves the best results. APM and APL are 63.6% and
68.7%, respectively. It should be noted that compared with other
single-stage methods, MPDNet does the best job in multiscale
feature extraction and balance, showing strong comprehensive
detection performance.

3) Comparative Experiments Between MPDNet and Other
Representative Single-Stage Methods in the SAR-Ship-Datasets:
To further validate the model’s generalization performance,
we conducted a comparative analysis of MPDNet against sev-
eral representative single-stage methods using the extensive
SAR ship detection dataset, SAR-ship-dataset. The SAR-ship-
dataset, created by researchers from the Institute of Electronics
at the Chinese Academy of Sciences, is designed for deep
learning-based SAR ship detection.1 This dataset comprises 102
images from the Gaofen-3 (GF-3) satellite and 108 images from
the Sentinel-1 satellite, all of which have been meticulously
annotated. Within this dataset, you will find 39 729 ship chips,
each measuring 256 pixels, showcasing variations in scale and
background. The dataset is thoughtfully partitioned into a train-
ing set and a test set, with a 4:1 ratio between them.

To verify the superiority of the MPDNet proposed in this
article, we compared it to several representative approaches,
including the transformer-based method Deformable_DETR,
YOLOv7, the baseline method CenterNet, and other enhanced
techniques, such as PyCenterNet. These methods are all anchor-
free object detection approaches. The results are presented in
Table III.

MPDNet achieved an outstanding result of 95.9% on the
AP 50 metric. Thanks to a series of enhancements specif-
ically designed for SAR images, MPDNet demonstrates a
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TABLE III
COMPARISON BETWEEN MPDNET AND OTHER REPRESENTATIVE

SINGLE-STAGE ALGORITHMS USING SAR-SHIP-DATASET (THE BOLD

REPRESENTS THE OPTIMAL RESULT AND THE UNDERLINED REPRESENTS THE

SUBOPTIMAL RESULT)

TABLE IV
VERIFICATION EXPERIMENT RESULTS OF THE PROPOSED MP-FEM (THE BOLD

REPRESENTS THE OPTIMAL RESULT AND THE UNDERLINED REPRESENTS THE

SUBOPTIMAL RESULT)

substantial improvement in detection performance compared to
the baseline network. In the domain of small object detection,
YOLOv7 yielded the best results, with MPDNet achieving the
second-best performance. Compared to CenterNet, MPDNet
exhibited an 11.1% improvement in APS , addressing the issue
of small object feature loss that was prevalent in CenterNet.
For medium and large object detection, MPDNet also delivered
the best results with APM and APL reaching 67.4% and
74.1%, respectively. MPDNet excelled in multiscale feature
extraction and balance compared to other single-stage methods.
Consequently, when considering comprehensive performance,
MPDNet exhibits strong competitiveness when compared to
other single-stage methods.

D. Ablation Experiments

1) Verification Experiments of MP-FEM: In order to verify
the effect of MP-FEM, two backbone networks, ResNet50 and
ConvNeXt-S[37], are chosen for comparison. ResNet50 is the
backbone adopted by CenterNet original text. ConvNetXt was
put forward in 2022, which refers to the structure design and
training method of transformer network. It makes a series of
improvements on the basis of ResNet50. With a very small
number of parameters and computation, ConvNetXt achieves
better results than transformer on the ImageNet-1 K dataset.
Here, we choose ConvNeXt-S, which has the same number of
ResNet50 parameters, for comparison.

The experimental results demonstrating the impact of the
MP-FEM enhancement module on the final outcomes are pre-
sented in Table IV. These results unequivocally showcase the
outstanding detection capabilities of MP-FEM when applied
to the SSDD dataset. Notably, the most critical metric, AP 50,
exhibits a noteworthy increase of 2.4%, while APS and APM

show respective improvements of 2% and 3.1%. Impressively,
the metric APL demonstrates a substantial increase of 8.7%.

The above-mentioned experimental results show that MP-
FEM has very strong feature extraction ability. Specifically,
MP-FEM can mine multiscale target information from images.
With MP-CCM, the extracted multiscale target feature map is

TABLE V
VERIFICATION EXPERIMENT RESULTS OF THE PROPOSED CONV-CAM (THE

BOLD REPRESENTS THE OPTIMAL RESULT AND THE UNDERLINED REPRESENTS

THE SUBOPTIMAL RESULT)

TABLE VI
VERIFICATION EXPERIMENT RESULTS OF THE PROPOSED DTDM (THE BOLD

REPRESENTS THE OPTIMAL RESULT AND THE UNDERLINED REPRESENTS THE

SUBOPTIMAL RESULT)

extracted and compressed by multistage FPN Block, so that
the final output feature map contains multiscale information. It
effectively solves the detection difficulties caused by the ships
with large aspect ratio and complex background in SAR images.
Besides, it also addresses the problem of missing detection of
small targets and false alarm of large targets caused by the
backbone network of single-scale feature extraction. Therefore,
the comprehensive detection effect of the network has been
greatly improved.

2) Verification Experiments of Conv-CAM: Experimental re-
sults of Conv-CAM are shown in Table V. The table reveals the
impact of integrating Conv-CAM into the MP-FEM, resulting
in a significant improvement in the final detection performance
indicators. Specifically, it is observed that the inclusion of Conv-
CAM results in a 0.1% increase in AP 50, a 0.4% increase in
APS , an additional 0.4% gain in APM , while there is a 2%
decrease in APL.

In conclusion, Conv-CAM enables MP-FEM to selectively
screen and fuse multiscale features in channel dimensions, and
extract features of various scales more efficiently and accurately.
Therefore, it makes the overall network performance more bal-
anced and the detection effect better.

3) Verification Experiments of DTDM: The experimental re-
sults of DTDM are shown in Table VI. In this context, CenterNet
is the baseline model, and CenterNet with DTDM refers to the
task-decoupled CenterNet based on our proposed DTDM. The
effects of our proposed enhancements on the model’s final quan-
titative results are demonstrated in Table VI, showing notable
improvements in the performance metrics of CenterNet when
influenced by the task decoupling impact of DTDM. The most
crucial metric, AP 50, has increased by 0.6%, while APS has
seen a 1.6% improvement, APM has increased by 1.1%, and
APL has witnessed a significant increase of 5.2%.

The obvious performance improvement shows that the DTDM
can distinguish different types of prediction tasks better.
Before the feature map is input to the corresponding detection
header, the feature map can be modified and optimized according
to the characteristics of the prediction task. Therefore, the feature
map in line with the characteristics of the task can be generated
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for different detection headers to maximize the role of the
detection header. The proposed DTDM can effectively detect
smaller targets of different sizes and distinguish center and size
of densely arranged ships.

IV. DISCUSSION

We conducted research on target detection algorithms in SAR
images, starting from the detection concept of “treating targets
as points” in CenterNet, and designed the MPDNet detection
network. MPDNet exhibits several advantages as follows.

1) MPDNet possesses robust feature extraction and enhance-
ment capabilities. It can extract multiscale features from
SAR images, effectively addressing the challenge of de-
tecting targets with varying sizes in SAR images.

2) MPDNet can acquire more accurate target features. In
addition, it considers the contextual information of tar-
get backgrounds, enabling it to handle cases where SAR
targets near the coastline may be affected by suspected
shore-based objects.

3) MPDNet offers higher resolution, allowing for precise
detection of densely arranged targets. In terms of overall
performance, MPDNet outperforms CenterNet and other
mainstream single-stage target detection algorithms when
applied to SAR images. However, MPDNet still has some
limitations.

One of the significant advantages of center-point-based de-
tection methods is their lightweight nature. However, they
often exhibit poorer performance in detecting small targets.
SAR images are frequently captured from high-altitude plat-
forms or satellites, resulting in smaller target pixel sizes, pos-
ing a considerable detection challenge. In the future, we in-
tend to address this specific challenge by conducting further
research.

V. CONCLUSION

In this article, MPDNet is proposed. It could effectively solve
the problem that the CenterNet-based model is still difficult to
achieve good results under the conditions of images with low
resolution and low signal-to-noise ratio and ships with large as-
pect ratio and dense arrangement. The proposed MPDNet mainly
consists of MP-FEM, Conv-CAM, and DTDM. First, MP-FEM
carries out feature extraction, enhancement and compression
of SAR images, and extracts multilevel features. It deals with
the problems that SAR image is characterized by low resolu-
tion, low signal-to-noise ratio, and large aspect ratio. Second,
Conv-CAM is embedded into the channel compression process
of MP-CCM, making the process of refining and compression
feature map more selective. Third, DTDM decouples the target
size prediction task, the target center offset distance prediction
task and the target class prediction task. Therefore, the proposed
network can effectively detect the smaller targets of different
sizes and distinguish the center and size of the densely arranged
ships. Finally, all proposed methods are experimentally verified
on SSDD dataset and are compared with other single-stage
methods. Furthermore, additional validation was conducted us-
ing the SAR-ship-dataset. The results show that the detection

performance of MPDNet is significantly improved compared
with CenterNet. MPDNet also achieves the best results in several
indicators compared with other mainstream algorithms, among
which AP 50 reaches 95.0%.
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