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Abstract—Clutter removal in ground-penetrating radar (GPR)
based on deep learning has been studied in recent years. How-
ever, existing methods are primarily designed for homogeneous
background conditions and utilize only local spatial information
via the convolution operation. In order to solve these issues, a
subspace projection attention (SPA) network is proposed for GPR
heterogeneous clutter removal in this article. First, a heterogeneous
concrete dataset based on a numerical model with randomly placed
aggregates is constructed, which incorporates the complex electro-
magnetic propagation process accurately to improve the effective-
ness for heterogeneous clutter removal. In addition, the clutter basis
learning neural network is designed by integrating the SPA module
into the skip connection paths of U-Net architecture. By learning the
subspace basis vectors adaptively, the SPA exploits both local and
global spatial information to extract target features precisely. At the
same time, the feature maps are projected to the target subspace
to remove heterogeneous clutter features. Finally, the performance
and effectiveness of proposed method are validated by simulations
and experiments.

Index Terms—Clutter removal, deep learning, ground-
penetrating radar (GPR), heterogeneous clutter, subspace
projection.

I. INTRODUCTION

GROUND-PENETRATING radar (GPR) is one of the
most widely used nondestructive detection technology,

with applications in various fields, including civil engineering,
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transportation, mineral exploration, and military target detec-
tion [1]. However, during the application of high-frequency
electromagnetic waves for detection, it has been observed that
strong background clutter significantly impacts the detection
and identification of targets. This clutter takes various forms,
such as antenna direct coupled waves, reflected waves from the
dielectric surface, and scattered waves from homogeneous and
heterogeneous materials [2].

Conventional-model-based methods for clutter removal have
been extensively studied, including mean subtraction, subspace-
based methods, dictionary learning (DL) methods, and methods
based on low-rank and sparse matrix decomposition (LRSD).
Methods, such as mean subtraction or median subtraction
method [3], [4], utilize the horizontal similarity of direct waves
and surface reflected waves to remove clutter; subspace-based
methods, including singular value decomposition [5], [6], [7],
principle component analysis [8], and independent component
analysis [9], [10], decompose B-scan data into clutter and target
components and reconstruct the target subspace by selecting
target components. However, in scenarios with multiple targets
or heterogeneous clutter, targets and clutter often exist in the
same component, resulting in the inability to completely sep-
arate targets from clutter. Besides, methods based on DL [11]
and morphological component analysis [12] use different dic-
tionaries to sparsely represent the clutter and target components
of B-scans. But these methods have high algorithm complexity
and lose the target information with inappropriate dictionary
choices. The method based on LRSD theory treats the B-scan
data as the sum of low-rank matrix and sparse matrix [13].
Low-rank matrices contain clutter, while sparse matrices contain
target responses. Optimization of LRSD problems separates
these two matrices revealing the target response. Representatives
include robust principle component analysis (RPCA) [14], [15],
robust nonnegative matrix factorization (RNMF) [16], and go
decomposition [17] [18], [19]. However, optimal performance
is dependent on the selection of regularization parameters. In
short, traditional methods like LRSD have limitations, such
as; 1) they have fixed models and require manual adjustments
of parameters, or 2) high computational costs during iterative
optimization, and 3) residual clutter when applied to complex
heterogeneous concrete scenarios [20].

In recent years, deep-learning methods have shown excep-
tional feature learning capacity [21], [22], [23]. In terms of
GPR clutter removal, a dual network implements unsupervised
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Fig. 1. Illustration of the heterogeneous model. (a) Distribution and grading
curve of aggregate. (b) Visualization of distribution of individual components
of concrete in the proposed heterogeneous model.

learning via pseudo tags based on RNMF outcomes [24]. Al-
though the algorithm’s speed has improved, its performance is
similar to RNMF and it may be unstable and sensitive to the data
especially for heterogeneous concrete scenarios. Other clutter
removal techniques are based on the convolutional autoencoder
[25], cGAN [26], and CR-Net [27] network architecture. Driven
by a large amount of data, they have achieved the improve-
ment of high signal to clutter ratio (SCR) with the strong
supervised learning ability of the network. Temlioglu and Erer
[25] proposed a GPR clutter suppression algorithm based on
convolutional autoencoder, and the datasets are all based on the
simulation data of homogeneous medium and heterogeneous
soil medium, and the performance of the measured data is
reduced. Ni et al. [26] designed a conditional generative adver-
sarial network to remove clutter, and it can learn the mapping of
clutter data and the corresponding clutter-free data in the training
set. By training network data by constructing a dataset con-
taining diverse real-world clutter, clutter-free images with good
recovery target responses can be tried in [27]. However, in these
methods, simulation B-scan models are mostly based on homo-
geneous materials and hence exhibit poor removal efficiency for
heterogeneous clutter present in real scenarios like concrete con-
ditions. Only the datasets used in [26] and [27] are based on the
simulated target signal and the measured clutter signal stitched
together to simulate real-world clutter but without considering
the complex electromagnetic propagation process. However,
noise and clutter from the heterogeneous concrete background
can interfere with the features corresponding to the reflection
of the object and make the identification of the reflection pat-
tern in the B-scan difficult [35]. In addition, all these deep-
learning-based methods are based on convolutional-operation-
based network architecture, which utilizes only local spatial
information from B-scans that fail to fully exploit global spatial
information.

Therefore, we propose a clutter basis learning network for
aggregate heterogeneity models to address the above issues. The
contributions are as follows.

1) Unlike homogeneous simulated data or hybrid data in
other data-driven approaches, a heterogeneous concrete
dataset based on a random aggregate placement numerical
model is constructed. This dataset takes into account the
complex electromagnetic propagation process accurately
while improving the effectiveness for heterogeneous clut-
ter removal.

2) A clutter basis learning neural network (CBNet) for het-
erogeneous clutter removal is proposed. By combining
subspace projection with data-driven methods, our method
overcomes the traditional subspace methods’ challenge to
select target components effectively, while fully exploiting
local and global spatial information of feature maps within
the network.

The rest of this article is organized as follows. Section II pro-
vides further details on the aggregate dataset and CBNet network
architecture. In Section III, extensive experiments are presented
to demonstrate the advantages of our method in heterogeneous
conditions. Finally, Section IV concludes this article.

II. METHODOLOGY

A. Simulated Dataset With Heterogeneous Clutter

The current datasets for clutter removal only consist homoge-
neous material scenes or simple heterogeneous soil models. As a
result, it is difficult for data-driven methods to learn the complex
and random heterogeneous clutter distribution observed in real
echoes. However, when electromagnetic waves propagate in
heterogeneous materials, they cause scattering and diffraction
effects [28], which lead to clutter that always disguises the target
responses.

Concrete is a heterogeneous composite material comprising
coarse aggregate, fine aggregate, cement hydration slurry, mi-
crocracks, and pores [29], with aggregates mainly consisting of
pebbles, crushed stones, etc. The presence of multiple composite
materials results in random changes in their internal dielectric
constant, leading to alterations in the electromagnetic character-
istics of echoes. Studies have established that the weak reflection
mode in concrete can be attributed to aggregate scattering [28]
and it is directly related to the penetration depth of GPR in
concrete, manifesting as heterogeneous clutter in B-scans.

To address these issues, we constructed a heterogeneous
concrete dataset based on a random aggregate placement model.
This model serves to train data-driven clutter removal methods,
paving the way for more accurate and efficient clutter removal
in real-world scenarios. In this numerical model, materials are
represented through a matrix of electrical parameters (the per-
mittivity, permeability, magnetic, and electric conductivity) at
the nodes of cells. The effective permittivity εe is then described
by an equation defined as follows [29]:

εe = ε+
σ

iω
= ε′e − iε′′e (1)
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where ε′e is the real part of the permittivity, ε′′e is the imaginary
part of the permittivity, σ is the conductivity, ω is the angular
frequency, and i represents the complex imaginary number.

Random aggregate placement technology is a crucial com-
ponent of concrete material strength calculation research. This
method generates aggregates with shapes, sizes, and distribu-
tions that statistically match those found in actual concrete,
based on a grading curve [as shown in Fig. 1(a)]. The grading
curve describes the probability of any diameter of aggregate
appearing in the cross-section as [31]

PC(D) = PK

(
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D

Dmax

)0.5
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(2)

where PC(D) is the percentage of the cross-sectional circular
area with a diameter less than D on the cross-section; PK is the
percentage of aggregate volume and total concrete volume; and
Dmax is the maximum particle size of the aggregate.

To generate aggregates that meet specific requirements [as
shown in Fig. 1(a)], Monte Carlo sampling is used to obtain
function values that simulate aggregate sizes. After that, the
aggregates are placed in the simulation area according to an
aggregate stacking rule. This rule is mainly determined by se-
lecting the appropriate control parameters for the aggregate that
conforms to the random distribution, such as center coordinates
and radius, and checking whether the newly generated aggregate
overlaps with previously created aggregates. During the place-
ment process, the aggregates are generated as random polygons,
and the proportion of their area to the total area is recorded.
This allows for accurate monitoring of their distribution within
the simulation area. The placement process terminates when the
predetermined content value is met.

After the placement is completed, different electrical prop-
erties (e.g., the permittivity) are assigned to the aggregates and
cement in concrete. These properties area used to generate a het-
erogeneous concrete B-scan with random characteristics using
gprMax [33]. The simulation scenario is shown in Fig. 1(b). It
consists of a two-dimensional area measuring 1.1 m × 0.3 m,
with aggregate particle sizes ranging from 0.6 to 2 cm and
varying aggregate contents of 30%, 40%, 50%, and 60% of the
total concrete volume. In addition, the antenna center frequency
is set at 2.6 GHz and is located above the surface of the concrete.
The antenna is moved along the x-direction with a step of 1 cm.
To simulate a synthetic dataset that is consistent with real-world
data, concrete and aggregate permittivity are set at 7.0 and 8.5,
respectively, and with a conductivity of 0.01 and 0.01 S/m. The
radius of the target steel bar is randomly generated between
0.3 and 1.2 cm, with depths of burial ranging from 3 to 8 cm.
The number of buried targets is randomly placed from 1 to 2 to
simulate a single target scenario and a nonsingle target scenario.

Fig. 2. Illustration of the raw B-scan, the corresponding median subtraction
B-scan, and the clutter-free B-scan. The clutter-free B-scan is obtained by
subtracting the background clutter from the raw B-scan.

The distribution of various components in the visualization scene
of the proposed heterogeneous model is depicted in Fig. 1(b).

As shown in Fig. 2, the generated heterogeneous concrete
B-scans are used as raw B-scans. In order to emphasize the
heterogeneous clutter characteristics, the input of network is
preprocessed using a clutter removal method based on median
subtraction to obtain the MED B-scans. The results are shown
in Fig. 2, and the formula for median subtraction is as follows:

s̃(n, t) = s(n, t)− MEDk=1...n(s(k, t)) (3)

where s(n, t) represents the nth A-scan, MED(·) represents
the median operation, and s̃(n, t) is the nth A-scan data after
median subtraction. In other words, the median subtraction
method involves subtracting the median value of the row in
which each element is located. This effectively removes the hor-
izontal in-phase axis from the B-scan data and mitigates strong
horizontal interference. By applying this operation, direct waves
and flat surface reflection waves can be preliminarily removed,
leaving behind residual surface reflected waves that resemble
heterogeneous clutter. This approach also helps to address the
issue of inconsistent surface reflected waves, which can arise
during measurements of real-world scenes and comparisons with
simulated data.

To obtain the necessary labels for training and evaluation,
clutter-free B-scans are obtained by subtracting the background
B-scans from the corresponding raw B-scans. Their correspond-
ing cutter background B-scans are obtained by the same concrete
condition but without burying objects as shown in Fig. 2.

B. Subspace Projection Attention Module

The subspace projection attention (SPA) [32] module utilizes
the concept of image projection to learn basis vectors that can
be used to reconstruct the image feature maps. In the case
of the preprocessed B-scan input data, these basis vectors are
generated to remove clutter and noise that are not relevant to
the low-rank signal subspace (as shown in Fig. 3). However, the
subspace basis in image processing is artificially constructed,
and targets and clutter are often in a set of subspace basis that
cannot be completely separated. Therefore, our method utilizes
data-driven method to automatically learn subspace basis vectors
and introduces attention mechanism to achieve the projection
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Fig. 3. Removal via subspace projection: CBNet learns to generate a set of
basis for the signal subspace and by projecting the input into this space, signal
can be enhanced after reconstruction for easy separation from clutter.

process. Besides, it also avoids the problem of traditional CNN
networks only using local filtering to extract local spatial infor-
mation [20]. It effectively utilizes global spatial information and
better distinguishes the distribution of targets and clutter.

The schematic diagram of SPA is shown in Fig. 4. Assuming
that X1, X2 ∈ RH×W×C are two feature maps of the same B-
scan at different layers in the network. The low-level feature map
is X1 and the high-level feature map is X2. H,W,C represent
the height, width, and number of channels of the feature map,
respectively. First, the subspace basis A is derived from X1, X2

through the function fθ mapping generation

A = fθ(X1, X2) (4)

where A ∈ RHW×r is a matrix composed of basis vectors, r
is the number of subspace basis vectors, and the function map-
ping fθ : (RH×W×C , RH×W×C) → RHW×r is generated from
residual convolutional blocks. First, move X1, X2 along the
channel dimension as X ∈ RH×W×2C and input into a shallow
residual convolutional block with output channel r. After that,
the output dimension is converted toHW × r. The basis vectors
are obtained and the weights and biases of the basis vectors
generated blocks are updated end-to-end during training.

After the basis vectors are generated, the projection section
follows. It is known that the columns of matrix A are the basis
vectors of the r-dimensional signal subspace Υ, and the B-scan
image can be projected onto Υ by suitable orthogonal linear
projection. Many basis vectors contain patterns that span evenly
the entire image patch, attributed to the nonlocal correlation
created by the SPA module. And the projection reconstructs
the B-scan by combining the basis with globally determined
coefficients. Assuming Ps is the orthogonal projection ma-
trix of the target signal subspace and Ps can be calculated
from A [34]

Ps = A(ATA)
−1
AT. (5)

The normalization term (ATA)
−1

is used to ensure that the
basis vectors are orthogonal to each other. Finally, the image
feature map X1 can be reconstructed as Y in the target signal
subspace

Y = PsX1. (6)

In this article, the value of the number of subspace basis
vectors is 16, which is less than the minimum channel number
of 32 and most of the target features can be extracted. Setting K

to 8 and 16 leads to comparable performance, and the SPA mod-
ule might create a low-dimensional and classifiable subspace.
Therefore, the subspace dimension K is a robust hyperparameter
in a reasonable range. When the number of basis vectors K is
set to 32, it does not converge. In this setting, as the number
of channels in the first stage is also 32, the SPA module cannot
work effectively as subspace projection since K equals to the
full dimension size. If K equals 1, the information kept in the
subspace is insufficient and cause significant target information
loss in the skip connection [32].

C. Overall Network Architecture

The network architecture of CBNet is shown in Fig. 5, mainly
consisting of U-Net neural network combined with SPA module.
CBNet including encoders for compressed path and decoders
for extended path and the SPA module is integrated into the skip
connection process from low to high feature maps to remove
clutter through adaptive projection. By providing subspace basis
vectors close to the target, SPA can eliminate irrelevant and noisy
responses generated by skip connections.

CBNet includes four encoders and four corresponding de-
coders. As shown in Fig. 5, each conv-block contains two 3 × 3
convolutional layers, and is followed by batch normalization
operation and ReLU activation function. At the end of each
encoder, the feature map is downsampled to a 1/2 scale us-
ing the max-pooling layer with a stride of 2, and upsampled
to twice the scale using nearest neighbor interpolation before
each decoder. Compared to traditional U-Net architectures that
directly connect low-level and high-level feature maps at each
decoder stage, the main difference of CBNet is that low-level
features are projected by the SPA module before connection.

The low-level feature map is projected onto the signal sub-
space guided by upsampling high-level features, which can
remove most irrelevant clutter and noise. Then, the projected
features are connected with the original high-level features and
output to the next decoder. Finally, the output of the decoder
is passed through 1 × 1 The convolutional layer converts the
number of channels to 1 to estimate clutter free data and outputs
the results after removing clutter.

III. EXPERIMENTS

In order to validate the proposed method, extensive experi-
ments are conducted using GPR simulation data and real data
from measured environments. The median subtraction method,
the LRSD methods: RNMF and RPCA, the deep-leaning meth-
ods: CAE, cGAN, and CR-Net, and the proposed method:
CBNet are implemented for comparison. The performance of
the different methods is evaluated using quantitative metrics
including peak signal-to-noise ratio (PSNR) and improvement
factor (IF).

A. Performance Comparison on Simulated Data

PSNR is one of the quantitative metrics used in the article
to evaluate the performance of different methods for simulated
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Fig. 4. Subspace projection attention (SPA) module.

Fig. 5. Architecture of the CBNet network.

GPR data. PSNR can be calculated as follows:

PSNR(dB) = 10 · log
(

1

MSE

)
(7)

MSE =
1

M ×N

N∑
i=1

M∑
j=1

(g(i, j)− g̃(i, j))2 (8)

where g(i, j) is the clutter free B-scan label and g̃(i, j) is the
reconstructed B-scan image after clutter removal. MSE is mean
square error; and M and N are dimensions of the B-scan.
The larger PSNR values are, the better clutter removal perfor-
mance is.

The simulation B-scan data are generated using the gprMax
software based on the finite difference time-domain method,
with a time window of 5 ns and trace number of 80 with a
step of 1 cm. The targets in the data are ideal conductors PEC
with radius ranging from 0.3 to 1.2 cm, buries at depths of 3
to 8 cm. Besides, the content of heterogeneous aggregate varies
from 30% to 60%. The dataset including four types of aggre-
gate content backgrounds, each contributing 50 sets of random
heterogeneous backgrounds, and each set of backgrounds gen-
erates 20 kinds of targets, totaling 4×50×20 = 4000 pairs of
original data and clutter-free data (obtained through empty scene

cancellation, as shown in Fig. 2). The training set and the test
set were split at an 8:2 ratio. The network input is preprocessed
data with median subtraction, while the label is target-only data
under ideal clutter-free conditions (obtained by canceling with
an empty scene without targets). The output is clutter removal
results with only targets using CBNet implemented in PyTorch
on NVIDIA 3090 GPU. The size of the B-scan data and their
corresponding labels were adjusted to 256 × 80 for the training
dataset. The network weights are initialized using a standard
Gaussian function and 100 epochs are trained in total with a
batch size of 4. We use Adam optimizer with an initial learning
rate of 1e−4. The end-to-end training is performed based on the
MSE loss function.

The simulation data completes the detection of PEC in het-
erogeneous concrete. A B-scan image obtained from the data
is shown in Fig. 6(a) with a PEC target having a radius of
0.5 cm. Due to the high-intensity of antenna direct coupled
waves, surface reflected waves, and heterogeneity of the concrete
environment, the target echo signal is masked. Multiple clutter
removal methods were applied and the results are shown in
Fig. 6(b)–(h). First, the median subtraction method suppresses
direct waves and flat surface reflection waves, but it is diffi-
cult to remove heterogeneous clutter. The robust nonnegative
matrix decomposition method and the RPCA method based
on the LRSD can be seen in the figure that the hyperbola of
the target has been fully displayed, but there is still residual
heterogeneous clutter near the target. The CAE and cGAN
can both separate target component from the heterogeneous
clutter background with a reduction of target information, thus
have lower PSNR values than proposed methods. Compared
with low rank sparse methods, the CR-Net method can further
remove heterogeneous clutter. The proposed CBNet method
has the best processing effect, improving target clarity and
removing heterogeneous clutter while basically preserving the
target signal. After that, the test dataset was also evaluated using
PSNR and average performance metric as shown in Table I.
Methods based on deep learning have a better performance
than MED, RNMF, and RPCA, and the CBNet has the highest
average PSNR.

In addition, the main reason for more clutter displayed
below the hyperbola when using DL-based methods is the
presence of clutter in clutter-free B-scan for training data.
As shown in Fig. 2, the clutter-free B-scan is obtained by
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TABLE I
IF RESULTS OF SIMULATION DATA

MED RNMF RPCA CAE cGAN CR-Net CBNet

PSNR(↑)/dB 31.45 35.67 37.20 37.99 44.51 45.00 46.21

Fig. 6. Simulation B-scan data results. (a) Raw data. (b) MED. (c) RNMF.
(d) RPCA. (e) CAE. (f) cGAN. (g) CR-Net. (h) CBNet.

subtracting the background clutter from the raw B-scan and
their corresponding cutter background B-scans are obtained
by the same concrete condition but without burying objects.
The clutter from the heterogeneous concrete background can
interfere with the features corresponding to the reflection of the
object and make the reflection pattern in the B-scan different.
Therefore, there seems to be more clutter displayed below the
hyperbola, but it does not affect the effect of the DL-based
methods.

B. Performance Comparison on Real Data

Due to the unavailability of clutter-free B-scans for real
field data, IF is used to estimate the variation of SCR be-
fore and after clutter removal, and the SCR of B-scan data is

Fig. 7. (a) Schematic diagram of experimental scenarios and targets.
(b) Illustration of the experimental scenarios.

defined as [30]

SCR =

Nc

∑
i∈Rs

|X(i)|2

Ns

∑
i∈Rc

|X(i)|2 (9)

where Nc and Ns are the number of pixels in the clutter area Rc

and target area Rs, respectively, X(i) are the ith pixel of X .
The IF can be defined by the following equation:

IF = 10log10 (SCRafter/SCRbefore) (10)

where SCRbefore and SCRafter represent the signal-to-clutter ratio
of the image before and after clutter removal.

Real data for detecting rebars in concrete are collected us-
ing the GSSI SIR4000 radar system with an antenna center
frequency of 2600 MHz (as shown in Fig. 7). The targets
include a steel pipe with a diameter of 25 mm and a rebar
with a diameter of 20 mm, buried in the concrete medium.
The obtained GPR image is shown in Fig. 8(a). It can be seen
that the two horizontal lines represent the upper and lower
surfaces of the concrete, respectively. In addition, there is visible
heterogeneous clutter at the same time. Multiple clutter removal
methods were applied, and the results are shown in Fig. 8(b)–(h).
The comparison of performance metrics is shown in Table II.
After median subtraction, there are still random heterogeneous
clutter remaining. Although RNMF and RPCA can remove
directly coupled waves and surface reflection waves, there are
still many residual reflection waves that cannot be effectively
processed for underground heterogeneous medium reflection
waves. CAE and cGAN can both separate target component
from the heterogeneous clutter background but with a reduction
of target information, and they both have lower IF values than
proposed methods. Although CR-Net excelled at suppressing
surface reflections, it was marginally successful in addressing
the issue of heterogeneous medium reflection waves. However,
the CBNet architecture-based method exhibited enhanced per-
formance by significantly reducing both surface and heteroge-
neous medium reflection waves, highlighting target information
and demonstrating excellent IF values. These findings support
the effectiveness of the proposed methodology.
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TABLE II
IF RESULTS OF REAL DATA

Fig. 8. Real B-scan data results. (a) Raw data. (b) MED. (c) RNMF. (d) RPCA.
(e) CAE. (f) cGAN. (g) CR-Net. (h) CBNet.

To demonstrate the impact of the SPA module on clutter re-
moval networks, we randomly selected an example from the test
dataset and visualized the basis vectors in the same dimensions
as the output. Of the 16 basis vectors, many contain patterns that
span evenly the entire image patch, attributed to the nonlocal
correlation created by the SPA module. And the projection
reconstructs the B-scan by combining the basis with globally
determined coefficients. As can be seen from the Fig. 9, most
of the basis vectors highlight the target information due to the
orthogonal linear projection, so feature maps can be projected
onto the target subspace. The SPA module generates target
subspace basis vectors through data-driven adaptive learning,
which contain most of the target information and suppress clutter
and noise that do not pertain to the generated basis set. Then,
the feature maps are projected onto the corresponding subspace

Fig. 9. Visualization result of the basis vectors that span the projection
subspace (K = 16).

Fig. 10. Real B-scan data results. (a) Raw data. (b) U-Net. (c) CBNet.

to enhance the target signal, effectively utilizing global spatial
information and better distinguishing the distribution of target
and clutter. To verify its performance on real data, we compared
CBNet to the base U-Net network architecture (Fig. 10). The
CBNet performs superiorly in removing heterogeneous clutter
due to the addition of the SPA module, as well as exhibiting
higher IF values as Table III shows.

We have tested the proposed approach on different datasets
with various levels of heterogeneous clutter and compare it with
a wide range of existing methods to verify the robustness of the
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TABLE III
IF RESULTS OF REAL DATA (DB)

Fig. 11. PSNR values for different methods under different aggregate contents.

Fig. 12. Real B-scan data results for 1.6 GHz antenna. (a) Scene 1. (b) Result 1.

methods. As Fig. 11 shows, the aggregate contents are varied
from 30% to 60% of the total concrete volume and comparison
methods include RNMF, RPCA, CAE, cGAN, CR-Net, and
the proposed CBNet. It can be seen that RNMF and RPCA,
as traditional low-rank sparse decomposition methods, have
poor suppression effect on heterogeneous clutter and have lower
PSNR, while the method based on deep learning performs
better, among which, our method can have the best performance
regardless of heterogeneous clutter at all levels, and PSNR is
the highest. Therefore, it is proved that the proposed method has
strong robustness.

Furthermore, to verify the generalization ability of the net-
work, we changed the antenna center frequency to 1.6 GHz and
the B-scan data are shown in Fig. 12. It is a concrete wall in
a real-world lab scene and the results presented in Fig. 12(b)
indicate that the proposed CBNet can achieve good clutter
removal effects. In addition, we tested another set of concrete
data with an effective permittivity of about 4.5 and a rebar radius
of about 13 mm, in which the electrical information of concrete
material and the size of targets are different from the strategy
used in the simulation scenario. It can be seen from Fig. 13
that the proposed method can still remove most of the clutter,
showing a clear target hyperbolic signal.

Fig. 13. Real B-scan data results for new scenario. (a) Scene 2. (b) Result 2.

TABLE IV
TRAINING AND TEST TIME FOR DIFFERENT NETWORKS

Table IV lists the training time and test time comparison
for different methods. Due to the combination of the subspace
projection module, the CBNet network has a superior clutter
removal capability as the training time increases, but this has
little impact on the test time. All the test time is within 1 s in CPU.
After this work, we will investigate network lightweighting ef-
forts to reduce the training and test time of the proposed method.

IV. CONCLUSION

In this article, we propose a novel CBNet for removing
heterogeneous clutter in GPR. A heterogeneous concrete dataset
containing aggregate scattering is built to train the network. This
approach reduces the requirement for field data and improves
the effectiveness of the dataset. Moreover, CBNet combines
subspace projection module and data-driven methods for the first
time in GPR clutter removal, solving the challenge of traditional
subspace methods that often encounter difficulties in selecting
target components. In addition, CBNet fully exploits local and
global spatial information available from feature maps in the
network. Extensive experiments show that when the echo signal
contains target signal and heterogeneous clutter, our method can
provide high-definition target signal and obtain high IF values
which is superior to the existing methods. Moreover, experi-
ments concerning multitarget scenarios validate the generaliza-
tion ability of our method, underscoring its potential applications
in practical environments.
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