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ANED-Net: Adaptive Noise Estimation and
Despeckling Network for SAR Image
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Abstract—Synthetic aperture radar (SAR) images are often af-
fected by a type of multiplicative noise known as “speckle” due to
their active imaging characteristics. This property complicates the
processing and interpretation of SAR images. While deep learning
techniques have demonstrated success in despeckling, many models
are tailored to specific noise levels. This specificity can limit a
model’s ability to generalize to real SAR images with varying
noise levels, potentially leading to oversmoothing or overfocusing
on specific details. To address these challenges, we present the
Adaptive Noise Estimation and Despeckling Network (ANED-Net).
This network consists of a noise-level estimation phase and a
noise-level-guided nonblind denoising phase. During the nonblind
denoising phase, we develop a noise-feature-guided denoising net-
work. This network integrates a hierarchical encoder–decoder
denoising module based on the Transformer block (T-unet) and
a denoising enhancement control block. Together, they skillfully
capture both local and global dependencies inherent in SAR images,
facilitating effective noise removal. Furthermore, we also introduce
a deep-attention mechanism to counteract the attentional collapse
observed when the Transformer is extended in depth, enhancing
the network’s feature extraction capability and strengthening the
model’s denoising performance. Extensive tests on synthetic and
real images show that ANED-Net is robust to different noise scenar-
ios. It effectively mitigates speckle noise even at unspecified levels
and outperforms many established methods.

Index Terms—Deep learning, noise-level estimation, speckle
noise suppression, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an all-weather, all-
day, high-resolution imaging sensor. Its unique imaging

characteristics have led to its widespread use in both military
and civilian applications, including military mapping, ocean
monitoring, resource exploration, and oil spill detection [1], [2].
However, the coherent imaging properties of SAR introduce a
type of noise known as “coherent speckle” during the imaging
process. This noise severely degrades the interpretability of
the images and poses significant challenges for downstream
SAR imaging tasks, such as target detection and classification.
Therefore, effective suppression of coherent speckle noise in
SAR images is critical for their subsequent applications.
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Since the advent of SAR, the effective mitigation of co-
herent speckle noise in its images has remained a topic of
intense interest. Over the decades, numerous algorithms have
been developed to address this challenge. Postimaging coherent
speckle suppression methods for SAR images are particularly
widespread and can generally be divided into two categories:
1) traditional denoising methods and 2) SAR image denoising
algorithms based on deep learning.

Conventional methods for coherent speckle noise suppression
can be broadly classified into three categories: 1) spatial filtering,
2) transform domain filtering, and 3) nonlocal mean filtering.
Spatial domain filtering techniques, such as Lee filtering [3],
extended Lee filtering [4], Kuan filtering [5], Frost filtering [6],
and Gamma-MAP [7], were pioneers in SAR image denoising.
They use a sliding window based on a statistical model and
exploit the correlation between image pixels for noise reduction.
However, because the spatial filtering denoising algorithm uses a
fixed window, the spatial filtering algorithm is less adaptive and
often leads to blurring of image edges and texture information
during denoising because the texture-rich regions do not satisfy
the statistical model.

To address the limitations of spatial filtering, researchers
have introduced transform-domain filtering. Typically, this ap-
proach first transforms the image from the spatial domain to
the transform domain using a specific transformation. After
adjusting the coefficients in the transform domain, the denoised
image is obtained through an inverse transformation. Techniques
under this umbrella include methods based on the wavelet
transform [8], ridgelet transform [9], curvelet transform [10],
contourlet transform [11], and shearlet transform [12]. However,
they often require complex shearlet transform, which can lead to
excessive image smoothing, blurring of details, and degradation
of image quality.

In contrast, nonlocal mean filtering exploits nonlocal similar-
ities within the image for denoising. It identifies blocks of pixels
that are similar to the current block and computes a weighted av-
erage of these blocks to reduce noise. Notable advances include
algorithms, such as SAR-BM3D [13] and PPB [14]. It should be
noted, however, that such methods are sensitive to the size of the
search window and pixel block, and the denoising performance
of NLM is degraded in the presence of severe noise.

In recent years, deep learning methods have garnered
widespread attention in the field of image processing, especially
convolutional neural networks (CNNs), which have shown sig-
nificant success in SAR image denoising due to their power-
ful nonlinear feature extraction abilities. Chierchia et al. [15]
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pioneered the combination of residual learning with a batch
normalization strategy and introduced SAR-CNN, which out-
performed traditional denoising methods. However, this method
requires processing on homomorphically transformed images,
which prevents end-to-end learning. To address this limita-
tion, researchers introduced end-to-end denoising solutions, in-
cluding SAR-DRN [16], SID-CNN [17], Wavelet-SRNet [18],
Monet [19], and G-MONet [20], with SAR-DRN employing
dilated convolutions to widen the receptive field while main-
taining a lightweight structure. Monet [19] introduced a CNN
with a multiobjective cost function, addressing the spatial and
statistical characteristics of SAR images. G-MONet [20] uti-
lizes a multicategory Gaussian simulator to generate training
data and a multiobjective cost function, enhancing despeckling
performance across various scenarios. Simultaneously, genera-
tive adversarial networks (GANs) were applied to SAR image
denoising. Innovations by Wang et al. [21] with ID-GAN and Liu
et al. [22] with a GAN-based speckle noise suppression network
both enhanced denoising capabilities while preserving image
details. Researchers have also incorporated advanced technolo-
gies such as encoder–decoder networks, dense connections, and
attention networks to better extract SAR image features. Draw-
ing inspiration from the U-Net architecture, Lattari et al. [23]
developed a deep codec network using multiple skip connections
to preserve image details. Gui et al. [24] tackled the vanishing
gradient issue in deep CNNs with the SAR-DDCN method
while Zhang et al. [25] introduced MCN-WF, using a deep
architecture for more expressive feature extraction. HDRANet
by Li et al. [26] improved detail preservation through spatial
and channel attention modules, and Malsha et al. [27] utilized
self-attention (SA) mechanisms to learn global dependencies for
enhanced denoising. In addition, some researchers started to try
unsupervised learning strategies to solve the difficult problem
of not being able to acquire speckle-free noisy SAR images. For
example, Molini et al. [28] proposed Speckle2Void, a blind CNN
approach. Dalsasso et al. [29] created SAR2SAR, a network
based on Noise2Noise. MERLIN [30] separates the real and
imaginary parts of single-look complex SAR images as paired
noisy images for Noise2Noise training to achieve significant
noise reduction.

The method of using synthetic noisy images may adversely
affect the despeckle results. However, the advantage of this
approach is that it can easily generate speckle-noise-simulated
images with clear references and can control the entire training
process. In view of this, in order to maximize the effect of noise
suppression, this study chooses to obtain robust despeckling
results for the model with a reliable training dataset using a
supervised learning approach.

Although many deep-learning-based methods have been pro-
posed to remove speckle noise, most of the supervised denoising
algorithms tend to focus on specific noise levels, and their gen-
eralization ability heavily depends on having access to extensive
training data. However, there is a significant difference between
the SAR noise in real scenes and the synthetic SAR noise at
a specific distribution level, which leads to the unsatisfactory
performance of conventional denoising methods when dealing
with SAR images with unknown noise levels. To be specific,

denoisers with high noise levels may cause the image to lose
edge and detail information [31] while denoisers with low
noise levels may leave a large amount of speckle residue after
processing [31]. This implies that the use of direct denoising
methods has a weak generalization ability when dealing with
real SAR image noise with complex noise-level distributions. To
address this issue, the study [32] used a uniform region detector
to estimate the number of looks of SAR images and a pretrained
FFDNet [33] model to achieve suppression of images with
different noise levels. However, in SAR images, the value of the
actual number of looks, L varies from pixel to pixel depending
on the roughness, scale, and randomness of the scattering in
each pixel. Therefore, the algorithm still causes the model to
ignore the texture details of the SAR image when using a uniform
number of looks.

In order to further improve the performance of the deep
learning model and strike a balance between optimizing the
denoising effect and preserving the image details, it becomes
crucial to introduce the noise-level map, also known as the
equivalent number of looks (ENL) estimation map, as the model
input. We hope that the model can perform better when the
noise-level map matches the real noise level of the input. Some
attempts have been made for ENL estimation algorithms [34],
[35], [36], but the small-sample sliding window approach based
on the homogeneity assumption leads to difficulties in obtaining
accurate ENL estimation results in the presence of increased
image heterogeneity. With the powerful and robust feature ex-
traction and learning capability of CNN, this article addresses
the earlier problem by constructing a CNN-based noise-level
estimation network. Based on this, this article proposes an
adaptive noise-level despeckling framework. The framework
consists of two main stages: First, noise-level estimation is
performed, i.e., the ENL map of the SAR image is estimated,
and then, a targeted despeckling operation is performed based
on this estimation. Throughout the denoising process, the model
is guided by the noise-level map so that it can more accurately
analyze and utilize the noise data, thus improving the image
quality. This method performs well in dealing with uncertain
noise levels in SAR images and truly achieves adaptive noise
removal.

Although CNNs are widely used in image restoration tasks,
there are still some problems. First, using a fixed convolutional
kernel may not produce optimal results in different regions
of the image, because the convolutional kernel is independent
of the image content [37]. Second, convolutional kernels can
only capture local information and may lose important global
information, especially when long-range dependencies need to
be modeled. To solve these problems, methods such as adap-
tive convolution [38], nonlocal convolution [39], and global
average pooling [40] have been proposed, but these methods
still have limitations. In contrast, the SA mechanism [41] can
comprehensively consider the information of all positions to
capture the global features, which shows more efficient and
flexible advantages. Therefore, in this article, we choose the
Transformer [42] with an SA mechanism as the main network
structure and integrate it into the UNet architecture to con-
struct a network called noise-feature-guided denoising network
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(NFGDN) for realizing denoising tasks in the noise-level-guided
nonblind despeckling phase.

In addition, in this article, a denoising enhancement controller
is designed in the NFGDN network to more accurately preserve
the detail information of the original image during the denoising
process. By controlling the denoising process more carefully, the
fine structure of the original image can be preserved.

In the Transformer architecture, the SA mechanism plays a
central role by allowing the model to focus on key regions of
the input by assigning different weights to different parts of
the input data. However, as the number of Transformer blocks
increases, the performance of the model does not necessarily
improve, but can actually degrade. This phenomenon is called
“attention collapse.” To address this problem, Zhou et al. [43]
proposed a method called reattention, which dynamically ag-
gregates the attention graphs of different heads by learning
the transformation matrix θ to generate a new attention graph.
However, the previous methods do not fundamentally change
the structure of the attention mechanism or introduce more
contextual information, and their change granularity is still not
fine enough. Therefore, we propose a deep attention mechanism
to solve this problem and achieve a better denoising effect.

Compared with the previous SAR image despeckling meth-
ods, the primary innovations presented in this article can be
outlined as follows.

1) We propose the Adaptive Noise Estimation and Despeck-
ling Network (ANED-Net) for SAR image despeckling.
This network integrates noise-level estimation with non-
blind denoising. During the despeckling phase, ANED-
Net deeply exploits and utilizes the noise information
guided under the guidance of the noise-level map to ef-
fectively counteract the varying levels of speckle noise
present in SAR images.

2) We design the NFGDN within the nonblind denoising
phase. It includes a hierarchical encoder–decoder denois-
ing module anchored on the Transformer block and a
denoising enhancement control (DEC) block. The overall
goal of this network is to refine multiscale, local, and
global representation learning. By meticulously analyzing
and recognizing local and global dependencies in SAR
images, it provides superior denoising results and further
enhances image detail clarity.

3) We propose the implementation of deep-attention, aiming
to address the issue of attentional collapse as the depth of
the Transformer network is expanded, which ensures the
efficient deep stacking of the network, thus strengthening
the denoising effectiveness of the model.

The rest of the article is organized as follows. Section II
describes the SAR image speckle noise model. Section III
introduces the proposed algorithm. Section IV analyzes the
experimental results. Finally, Section V concludes this article.

II. RELATED WORK

A. Speckle Model

When radar waves hit a rough surface, inconsistencies in the
phase of the received signal occur. This is due to variations in

the distance between the primary scatterer and the sensor. As a
result, the coherent processing of successive radar pulses leads to
granular intensity variations on a pixel-by-pixel basis in the SAR
image produced. This phenomenon is called coherent speckle
noise. The formation mechanism of this noise is very different
from the typical noise in digital image processing. The model
for coherent speckle noise is as follows:

Y = X ·N (1)

where Y represents the SAR image with coherent speckle noise.
X symbolizes the ideal target feature measurement affected by
the noise. N represents the coherent speckle noise generated
by the SAR system during imaging. In this model, X and Y
are independent. Typically, the multiplicative random noise N
follows a gamma distribution with a mean of 1 and a variance
of 1/L [44]. Therefore, the probability density function of the
noise can be expressed as

P (N) =
1

Γ(L)
LLNL−1e−L·N , N ≥ 0, L ≥ 1 (2)

where L is the ENL and Γ(·) is the gamma function.
The primary goal of SAR image denoising is to remove the

coherent speckle noise N . The goal is to reconstruct the desired
noiseless image X from the noisy image Y . This reconstruction
is a mapping from Y to X . In particular, the intensity of the
coherent speckle noise is closely related to the number of looks
in the SAR image. By adjusting the number of looks, we can
emulate speckle noise at different noise levels. This adjustment
provides rich data for network training, which subsequently
increases the robustness of the network.

B. Transformer and Attention Collapse

The Transformer [42], initially used for machine translation,
fully replaces recurrent and convolutional approaches with the
SA mechanism [45], [46]. The SA mechanism shows more
efficiency and flexibility compared to recursion and convolution
and captures global features by comprehensively considering
information from all locations. This mechanism is a core part
of the Transformer model, which achieves parallel processing
and efficient feature learning by using multihead SA. It can
be applied to a variety of visual tasks, such as image recog-
nition [47], [48], [49], image segmentation [50], [51], and target
detection [52], [53] and achieve excellent performance.

However, unlike CNNs, where performance can be improved
by stacking more convolutional layers, the performance of the
model does not necessarily improve as the number of Trans-
former blocks increases, but rather quickly saturates and even
degrades. This phenomenon is called attentional collapse. The
main reasons for this can be attributed to the following [43].

1) As the depth of the model increases, the similarity of the
attention maps generated by each Transformer block for
feature aggregation increases. This phenomenon weakens
the ability of the SA mechanism to generate attentional
diversity, thus limiting its ability to capture rich represen-
tations of the input data.
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Fig. 1. Framework of the proposed ANED-Net.

2) Due to the emergence of such highly similar attention
graphs, the Transformer block can degenerate into a mul-
tilayer perceptron.

This degeneration can trigger a phenomenon of model rank
degradation, where the rank of the model parameter tensor is
reduced by multiplying the layers. This process potentially limits
the learning ability of the model and weakens its performance
in complex tasks. Zhou et al. [43] proposed a method called
reattention, which dynamically aggregates attention maps from
different heads to generate a new attention map by learning
a transformation matrix θ. The transformation matrix θ is a
learnable parameter matrix that can be updated according to the
backpropagation algorithm. This recomputation can increase the
diversity of attention maps and solve the similarity problem of
attention maps. However, this approach only solves the similar-
ity problem of attention graphs by increasing the diversity of
attention mappings. Without fundamentally changing the struc-
ture of the attention mechanism or introducing more contextual
information, the granularity of the change is still not fine enough.
To address this problem, we propose a new design for the SA
mechanism that can extend the Transformer network to a deeper
level and improve its performance.

III. PROPOSED METHOD

This section initially outlines the adaptive noise-level de-
speckling strategy, followed by a detailed introduction to the
overall architecture of ANED-Net. Next, the two-stage network
incorporated in ANED-Net is described. It then explains how to
solve the attention breakdown problem in the Transformer with
a deep-attention mechanism and how to preserve image detail
with a denoising enhancement controller.

A. Adaptive Noise Estimation and Despeckling Network

In recent years of research, denoising algorithms such as
MRDDANet [54] and SAR-CAM [55] usually use a one-time
end-to-end approach to directly eliminate noise with a certain
distribution level. However, in real SAR images, the noise level
is closely related to the value of the number of looks L while
the actual value L of each pixel is affected by the scattering
characteristics, so the number of looks varies from pixel to

pixel. This complex noise distribution characteristic makes the
traditional denoising methods ineffective in processing real SAR
images. To address this problem, we propose a new adaptive
noise-level despeckling strategy that aims to more accurately
remove SAR images with complex noise-level distributions. The
network framework is illustrated in Fig. 1.

The strategy first estimates the noise-level map L in the noisy
image Y . Then, the estimated noise-level map is fed into the
nonblind denoising subnetwork together with the noisy image
after a special processing, so that the denoising problem for
SAR images becomes a denoising problem that can be targeted
to solve the denoising problem with a known noise-level distri-
bution. In short, the strategy is to find a noise-level map L that
helps the denoising model to produce a visually clean denoised
image X̂ .

Specifically, to derive the noise-level map, we use the pre-
diction function L̂ = P (Y ), where the noisy image Y is used
directly to predict the noise-level map L̂. The parameters of the
noise-level predictor are optimized by minimizing the l1 distance

θP = argmin
θP

‖L− P (Y | θP )‖1 (3)

where θP is the parameter of the predictor P and L is the real
noise-level map.

Owing to varying noise levels in SAR images, their statistical
characteristics display considerable variability, making it dif-
ficult for denoising algorithms to adapt and effectively process
images with different noise levels. At the same time, the stability
and convergence of denoising algorithms are affected when
faced with different noise levels. Especially when training deep
learning models, this high variability in the data can lead to
convergence difficulties or numerical stability issues during the
training process. To improve the stability and convergence of
the denoising algorithm and generalization and to make full
use of the leading role of the noise-level map, we perform a
special transformation on the original image before inputting

it. Specifically, we first multiply the original image Y by
√

L̂

to obtain a new image denoted as
√
L̂Y , which can be further

denoted as
√
L̂XN or X(

√
L̂N). As a result, the mean of

the noise
√
L̂N becomes

√
L̂ and the variance is kept at 1.
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Fig. 2. Structure of NLE.

Although this transformation effectively reduces the fluctuation
of the image noise, it also causes a shift in the overall image. To
restore the mean of the noise to 1, we further transform the entire

image toX[
√

L̂N − (
√

L̂− 1)]. As a result, the noise becomes√
L̂N − (

√
L̂− 1), whose mean is

√
L̂− (

√
L̂− 1) = 1 and

the variance is still 1. This transformation achieves data normal-
ization, ensuring that whatever the input value of L̂, the data fed
into the model are consistent in statistical distribution. Finally,
the input image can be represented in the following form:

X
[√

L̂N − (
√

L̂− 1)
]
=

√
L̂Y − (

√
L̂− 1)X. (4)

The nonblind denoising process ultimately includes two steps:
First, a preliminary denoised image X̃ is obtained using a
nonblind denoising subnetwork structure that acts as a normal
denoising network, noting that there is no noise level to bootstrap
this process

X̃ = F (Y ). (5)

Then, nonblind denoising is performed using a nonblind
denoiser network guided by a noise-level map

X̂ = F
(√

L̂Y −
(√

L̂− 1
)
X̃, L̂, X̃

)
(6)

where L̂ is the noise-level prediction map corresponding to Y ,
and X̂ is the final denoised image guided by L̂. Next, we refer

to
√

L̂Y − (
√

L̂− 1)X̃ as Ỹ for ease of presentation.
In this process, we attempt to eliminate the noise N from the

real noisy image. Since the distribution level of SAR noise in the
real image is unknown, a standard noise reduction model may not
effectively determine the mapping from the noisy image to the
clean image. Therefore, the estimated noise level, represented by
the distribution parameterL, is input during the denoising phase.
This approach allows for an accurate denoising procedure that
takes into account the noise-level distribution. The following
sections describe each substructure in detail.

B. Noise-Level Estimation Network

The primary goal at this point is to accurately estimate the
noise level of the SAR image. Therefore, we propose a noise
estimation network to estimate the noise level. The noise-level
estimation block is shown in Fig. 2. The NLE module mainly
consists of two basic convolutional layers, eight residual blocks,
and one SimAM block [56]. Each residual block contains 2
convolutional layers, which have 64 feature channels and use
a 3 × 3 filter with a step of 1. The padding is set to 1 to maintain

consistent image dimensions. The final convolutional layer has
a single output channel, representing the network output as
a single-channel feature map. This can be interpreted as an
estimate of the image noise level, L. Crucially, regions with
different noise levels from the surrounding areas require higher
weighting. SimAM attention [56] is consistent with this view.
Therefore, this article introduces SimAM attention before the
last convolutional layer in the noise-level predictor. Its incorpo-
ration before the last convolutional layer of the noise predictor
allows for more efficient noise prediction and correction without
introducing additional parameters. This network then provides
effective noise-level estimation for real SAR images, thus pro-
viding important information for the subsequent nonblind noise
reduction phase and ensuring a more accurate and efficient noise
removal process.

C. Noise-Feature-Guided Denoising Network

The NFGDN structure proposed in this article mainly con-
sists of a hierarchical encoder–decoder denoising module (T-
unet) based on the Transformer block and a DEC module. The
NFGDN is shown in Fig. 3. In the structural design, the denoising
module is based on the traditional U-net structure and is extended
and optimized. This module first inputs the corrected processed
image along with the original noisy image, and at the same
time, inspired by DeamNet [57], the image is converted from
the pixel domain to the feature domain, which can extract the
high-dimensional feature information in the image. Therefore,
this network first maps the image from the pixel domain to the
feature domain through the convolution module and fuses it to
form the initial input of the model. The specific fused features
are computed as follows:

f0 = Cf

(
C1

(
Ỹ
)
� C2(Y )

)
(7)

where f0 represents the fused features; Cr(r = 1,2) indicates
a convolutional layer with a convolutional kernel size of 3×3;
� symbolizes the feature cascade and refers to a convolutional
layer with a convolutional kernel size of 1×1 for feature fusion.
During the coding phase, the model performs a downsampling
operation and detects the long-range dependencies within the
image using multiple Transformer blocks. The feature dimen-
sions are reduced by the downsampling module, preserving
intermediate features for the decoding phase. Decoding begins
with upsampling, then enlarges the feature sizes and combines
them with the features from the coding phase. Jump connections
preserve the original detail information, facilitating efficient
feature extraction and transformation, resulting in a U-shaped
network topology. This completes the primary noise feature
processing; yet on that basis, subsequent optimization is required
to ensure denoising efficiency.

The introduction of the DEC resolves this problem. It ex-
tracts key features to guide the denoising process and achieves
global optimization of the features of the denoised image by
multiplying the output features of the denoising module with
the features of the DEC block. This approach helps preserve the
intricate structure of the original image.
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Fig. 3. Structure of NFGDN.

Specifically, this module consists of four convolutional layers
tasked with feature extraction and mapping the output control
signal to the [0, 1] range using a sigmoid activation function.
This control signal balances the denoising and noisy image in-
formation, exerting adaptive control to the subsequent denoising
process. Initially, the DEC block receives the original image
features and exports a global weight matrix that is applied to the
current denoising results. This allows for dynamic adjustments
in the denoising process, emphasizing contextual information
and maximizing detail preservation in the noisy image. The DEC
block provides a refined denoising approach that significantly
improves image quality and denoising effect.

Finally, the extracted features are remapped to the image
domain by the Tail module and merged with the preliminary
denoised image to complete the denoising process. The mathe-
matical representation is

X̂ = Ctail

(
C (fT -unet ⊗ FDec (Y )) + X̃

)
(8)

where f(T-unet) represents the features identified by the denoising
network, FDec symbolizes the DEC controller, which is the
global optimization achieved by multiple convolutional layers
and a sigmoid activation function. The symbol ⊗ represents the
convolution operation, and Ctail is the final convolutional layer
in the NFGDN network. C denotes a convolution layer with a
convolution kernel size of 3×3.

D. Deep-Attention

In the SAR image denoising task, this study introduces a
denoising module based on the Transformer block. Since the
primary computational challenge in the Transformer comes
from the SA layer, the computational complexity of this layer
increases quadratically with the number of image patches, which
limits the effectiveness of the technique for high-resolution SAR
images. In order to facilitate the denoising of high-resolution
SAR images, and following the work in [58], we chose to apply
SA on the feature dimension rather than the spatial dimension.
This approach allows the network to model the interaction of
feature channels rather than direct pixel pairs, computing the

cross-covariance to derive the attention map from the input
features projected by the keys and queries. This mechanism
of attention across feature dimensions alleviates computational
constraints while preserving the core benefits of SA.

Before computing the feature covariance, this study adopts a
local context mixing strategy as described in [58]. To be specific,
we use a 1×1 convolution for pixel-level aggregation across
channel contexts and a 3×3 deep convolution for channel-level
aggregation of local contexts.

Beginning with the tensor f0 = Cf (C1(Ỹ )� C2(Y )), we
create a query (Q), key (K), and value (V) projection abundant
in the local context. This is achieved using the 1×1 convolution
Cp for pixel-level crosschannel context aggregation and the 3×3
deep convolution Cd for channel-level local context aggregation

Q = CQ
d × CQ

p × f0

K = CK
d × CK

p × f0

V = CV
d × CV

p × f0. (9)

Here, Cp is a 1×1 pointwise convolution, and Cd is a 3×3
depthwise convolution.

It is worth noting that as the depth of the network increases,
the similarity of the attentional mapping between different
Transformer modules also increases, which hinders their feature
extraction capabilities. This phenomenon is mainly due to the
attention collapse problem. To counteract this, we propose a
“deep-attention” approach that incorporates adjustable param-
eters to dynamically refine the query and key representations.
This facilitates a more detailed attention weight calculation,
which improves the performance of the multihead attention
model. Specifically, the introduced adjustable parameters, α
and β, for query and key improve their representations during
attention weight computation. The refined attention weights are
formulated as follows:

Deep-Attention(Q,K, V )

= Softmax

(
(Q · α) · (K · β)T

γ

)
· V. (10)
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Fig. 4. Transformer block with a deep-attention mechanism.

Among them,α andβ are learnable parameters for optimizing
Q and K. They allow the model to make fine-grained adjust-
ments to query and key, which directly affects the generation
of attentional weights. This approach provides finer control
over the computation of attentional weights, thereby improving
model performance. The parameters α and β are continuously
learned and optimized during the training process. Here, gamma
is a learning scaling parameter that controls the size of the
dot product of Q · α and K · β before applying the Softmax
function.

Next, we reshape the query and key projections so that their
dot products interact to generate a transposed attention map A
of size C × C, instead of a huge regular attention map of size
(H ×W )× (H ×W ).

In summary, the module aims to address the challenges in the
SAR image denoising task by introducing feature-dimensional
SA, local context blending, and deep-attention mechanism, the
structure of which is shown in Fig. 4. Through this, the module
model overcomes the limitations of the conventional SA-based
approach in processing high-resolution images.

E. Loss Function

During the noise-level estimation stage, the objective is to
estimate the noise level of the image with precision. In the
context of the noise predictor and based on (3), the training
loss lP for noise prediction is defined as follows:

LP =
∥∥∥L− L̂

∥∥∥
1
. (11)

During the nonblind denoising stage, besides utilizing the l1
loss between the denoised and clean images as the loss function,
the total variation loss is introduced to preserve image continuity.
The expression for TV loss is as follows:

LTV =
∑
p,q

[
(F (Y )p+1,q − F (Y )p,q)

2

+(F (Y )p,q+1 − F (Y )p,q)
2

]1/2

(12)

where F (Y )(p,q) denotes the pixel value of F (Y ) at coordinates
(p, q). Therefore, the mathematical expression for the total loss
function LT is as follows:

LT =
∥∥∥X − X̂

∥∥∥
1
+ λLTV + LP . (13)

Fig. 5. Real SAR images. (a) SAR1. (b) SAR2. (c) SAR3.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To thoroughly evaluate the performance of our proposed
ANED-Net, we performed experimental validation on both syn-
thetic data and real datasets.

A. Data

Optical remote sensing images serve as the predominant
training data for speckle noise removal models. These images
are ideal references due to their high spatial resolution and
minimal noise. In particular, they exhibit a reduced susceptibility
to multiplicative noise interference found in SAR images, which
enhances their suitability for training speckle removal models.
Furthermore, given the similarities between optical remote sens-
ing images and real SAR images, these optical images allow
the model to acquire prior knowledge that is more closely
aligned with SAR data. This minimizes the domain gap between
training and real-world applications, ultimately improving the
performance and accuracy of the despeckle model. Therefore,
we used the UC Merced land use dataset [59] for our training
purposes. This dataset consists of 21 different image categories,
each containing 100 color images of 256 × 256 dimensions.
From these, 600 were randomly selected for training, and 40
different images were selected as the test set after each training
session. Since SAR images are typically grayscale, we processed
the images in our training dataset into grayscale and introduced
multiplicative noise within the range of L between [1, 20]. Fur-
thermore, L is employed as labeled data to train the noise-level
estimation network.

For testing, our dataset includes both simulated and real
images. For the simulated images, we included five different
visualization levels (L = 1, 2, 4, 8, 10) using well-known
datasets, such as McMaster [60], Classic5 [61], Set12 [62], and
Kodak24 [63]. The real image subset evaluated three different
SAR scene images as shown in Fig. 5(a)–(c). Fig. 5(a) shows the
image acquired by TerraSAR-X in StripMap mode in Barcelona,
Spain, which is a single-look. Fig. 5(b) shows an image acquired
by TerraSAR-X in StripMap mode of Uluru, Australia, which is a
single-look, and Fig. 5(c) shows a two-look X-band amplitude
image of Bedfordshire, southeast England, acquired by DRA
SAR, U.K.

B. Experimental Setup

After 400 training iterations, our network model was built
using the Adam optimization algorithm [64], with β1 and β2
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values set to 0.9 and 0.999, respectively. To diversify our training
samples, we employed random image enhancements such as
horizontal flipping and rotations (including 90◦, 180◦, and 270◦).
The learning rate strategy employed observes a cosine decay that
tapers from an initial 1e-4 to 1e-6. Within the Unet structural
layout of the denoising module, the default stages for both the
encoder and decoder N are fixed at 4. λ in our loss function
is 0.01. Our deep learning network runs on the Pytorch 1.12.1
platform under the Linux operating system, using the NVIDIA
GeForce RTX 3090 GPU for training.

C. Evaluation Index

In evaluating the performance of denoising algorithms, we
selected appropriate evaluation metrics based on the character-
istics of the data. For the synthetic dataset, we used the Peak
Signal-to-Noise Ratio (PSNR) and structural similarity index
(SSIM) as evaluation criteria [49]. PSNR mainly measures the
similarity of the denoised image to the noiseless image, and a
higher value of PSNR usually represents better noise suppres-
sion and image similarity. SSIM, on the other hand, is used
to evaluate the performance of the denoised image in terms of
preserving structure, especially edge information. SSIM is used
to evaluate the performance of denoised images in preserving
structure, especially the performance of edge information, and
higher SSIM values indicate better recovery of image details. For
real SAR images, due to the lack of noiseless reference images,
we used nonreference metrics such as ENL [65], coefficient of
variation (COV) [66], mean ratio (MOR) [67], edge-preservation
degree based on the ratio of mean degree based on the ratio
of average, EPD-ROA) [68]. ENL is calculated on a manually
selected homogeneous region; if the ENL value of the region
is higher, it indicates that the homogeneous region is smoother
and better filtered. COV is used as a measure of the ratio of
the standard deviation of pixel intensities in the homogeneous
region of a SAR image to the mean value; a lower COV value
indicates that the details and textures of homogeneous regions in
SAR images are effectively preserved. MOR is a bias indicator.
When the MOR value of the denoising algorithm is close to
1, it can be considered that the method performs excellently in
preserving the radiance information and reducing the bias of
the deblurred image. EPD-ROA is obtained by calculating the
average value of the ratio of the edge-preserving distances of
the pixels of the image and is used to evaluate the protection
capability of the denoising method of the SAR image for the
edge features. EPD-ROA is obtained by calculating the average
value of the ratio of the edge preserving distances of the pixels
of the image and is used to evaluate the ability of the SAR
image denoising methods to protect the edge features. Larger
EPD-ROA values indicate that the denoising method is better at
protecting the edge features of SAR images.

D. Comparison Methods

In order to verify the reliability and effectiveness of the pro-
posed algorithm, we compare it with other SAR image denoising
algorithms, including the PPB [14], SAR-BM3D [13], SAR-
DRN [16], MoNet [19], MRDDANet [54], SAR-CAM [55]
SAR-Transformer [27], and our ANED-Net. Finally, we will

analyze the performance of the proposed algorithms in terms of
objective metrics and subjective vision.

E. Analysis of Synthetic Data

In this experiment, synthetic datasets with different levels
of speckle noise (L = 1, 2, 4, 8, 10) are used, and several
denoising algorithms are comprehensively evaluated on four
different data sets using two performance metrics, PSNR and
SSIM. The average PSNR and SSIM values obtained by each
denoiser on these datasets are exhaustively listed in Tables I
and II, where the best results are shown in bold. In comparison,
the network structure proposed in this article performs well
in terms of average PSNR/SSIM values, improving PSNR by
0.01–0.71 dB and SSIM by 0.00–0.04 compared to the next
best method. To visualize the difference in the visual effect
of each denoiser more intuitively, Fig. 6 shows the results of
the recovery comparison at L = 1 noise level. From Fig. 6(c),
(d), and (i), it can be seen that PPB, SAR BM3D, and SAR
Transformer can effectively eliminate speckle noise, but exces-
sive smoothing occurs, resulting in the loss of high-frequency
details; from Fig. 6(e) and (f), it can be seen that SAR-DRN and
MoNet produce artifact problems, which, in turn, degrade the
image quality. MRDDANet SAR-CAM can effectively suppress
speckle noise, but some image details are lost, as shown in
Fig. 6(g) and (h). On the contrary, the denoising model proposed
in this article, by adopting the encoder–decoder architecture
and integrating the Transformer module to obtain the global
receptive field, not only successfully preserves the structural in-
formation of the image, but also achieves a significant advantage
in visual effect compared with the other seven methods through
the adaptive noise-level despeckling strategy of ANED-Net,
which successfully removes all the speckles and also recovers
the tiny textures and edges, thus achieving a more realistic image
effect.

F. Real SAR Image Analysis

In order to comprehensively evaluate the denoising capability
of ANED-Net, we selected three real SAR images as samples,
named SAR1 to SAR3, and made an in-depth comparison
with today’s mainstream denoising algorithms. Figs. 7–9 show
the performance of the three images after restoration. Fig. 7
shows the restored SAR1 image. Fig. 7(b) shows that PPB
can effectively remove noise, but an oversmoothing problem
occurs. Meanwhile, Fig. 7(c) shows that SAR BM3D has a
good noise suppression effect, but there is still a considerable
amount of noise remaining in the restored image. SAR-DRN
and MOnet have the problem of blurred edges and artifacts,
as shown in Fig. 7(d) and (e). SAR-Transformer, SAR-CAM,
and MRDDANet can suppress the noise and preserve the edge
information of the image effectively, but the details remain
flawed. In contrast, ANED-Net shows a better denoising effect
in which it successfully preserves the details and textures of
the image, achieving a good balance between denoising and
preserving the image details.

Figs. 8 and 9 show the restoration results of SAR2 and SAR3,
respectively, which are similar to those of SAR1. Compared
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Fig. 6. Denoised results of different methods for image with L = 1 speckle noise. (a) Original. (b) Noise. (c) PPB. (d) SAR-BM3D. (e) SAR-DRN. (f) MoNet.
(g) MRDDANet. (h) SAR-CAM. (i) SAR-Transformer. (j) Proposed.

Fig. 7. Performance comparison results of different methods on the real SAR image SAR1 with ratio image. (a) Noisy image. (b) PPB. (c) SAR-BM3D.
(d) SAR-DRN. (e) MONet. (f) MRDDANet. (g) SAR-CAM. (h) SAR-Transformer. (i) Proposed.
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TABLE I
AVERAGE PSNR VALUE OF SEVEN DENOISING METHODS ON FOUR DATASETS

TABLE II
AVERAGE SSIM VALUE OF SEVEN DENOISING METHODS ON FOUR DATASETS

with other algorithms, the images processed by our algorithm
are clearer, and the edges and textures are fully displayed.

In the evaluation of denoising algorithms, the ratio image is an
important tool for evaluating denoising algorithms. It is formed
by calculating the point-by-point ratio (i.e., y/x̂) between the
SAR image and the denoised image. Ideally, the ratio image
should consist entirely of noise if the denoising is completely
successful. However, if there is a visible texture structure in

the ratio image, it may indicate that important information has
been mistakenly excluded. For example, looking at Figs. 7–9,
one can find visible geometric structures in the ratio images
processed by algorithms such as SAR-BM3D and PPB, indi-
cating that they oversmoothed the image edges and textures
during the denoising process, which may have lost some of
the image details. In contrast, our ANED-Net shows excellent
performance in this aspect. It effectively suppresses speckle
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Fig. 8. Performance comparison results of different methods on the real SAR image SAR2 with ratio image. (a) Noisy image. (b) PPB. (c) SAR-BM3D.
(d) SAR-DRN. (e) MONet. (f) MRDDANet. (g) SAR-CAM. (h) SAR-Transformer. (i) Proposed.

TABLE III
OBJECTIVE EVALUATION INDEX VALUES OF DIFFERENT DENOISING METHODS

FOR SAR1 IMAGE

and hardly any structure is visible in the ratio image. This
observation shows that ANED-Net not only effectively removes
noise but also preserves the geometric content of the underlying
image.

As shown in Table III, the overall evaluation results of the
five SAR image quality metrics are presented separately in the
absence of real clean images. First, we used the equivalent visual
number of unreferenced performance metrics for quantitative

evaluation. We calculated ENL values on manually selected
uniform regions (e.g., the red boxes in Figs. 7–9). The higher the
ENL value, the better the filtering effect. ANED-Net achieved
the highest ENL values in all selected regions, highlighting its
strong speckle suppression ability. Meanwhile, the lowest COV
value indicates that the details and textures of homogeneous
regions in SAR images are effectively preserved. Second, to
further understand the performance of these methods, we also
examined the mean ratio (MOR). Ideally, the ratio image con-
tains only speckles with a mean of 1 and a variance of 1/L. In
comparison, the MOR value of ANED-Net is closer to 1 than the
other methods, demonstrating that the radiance information is
better preserved in the despeckled image, introducing less bias.
Finally, the EPD-ROA values of our method along the HD and
VD directions are closer to 1 than the other methods, indicating
that the present algorithm is better able to protect the edge
features of the image. Overall, the data in Tables III–V further
confirm the superiority of ANED-Net in its despeckling ability,
which achieves effective noise suppression while ensuring the
preservation of image detail and quality.
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Fig. 9. Performance comparison results of different methods on the real SAR image SAR3 with ratio image. (a) Noisy image. (b) PPB. (c) SAR-BM3D.
(d) SAR-DRN. (e) MONet. (f) MRDDANet. (g) SAR-CAM. (h) SAR-Transformer. (i) Proposed.

TABLE IV
OBJECTIVE EVALUATION INDEX VALUES OF DIFFERENT DENOISING METHODS

FOR SAR2 IMAGE

G. Test for Adaptation of Noise-Level Distribution

The adaptability of despeckling algorithms to the distribution
of noise levels is essential in SAR image processing for the
preservation of image details and feature quality. Recent studies,
such as the unsupervised denoising strategy adopted by MER-
LIN [30] and the diverse training data strategy constructed by
G-MONet [20], have explored different approaches to achieve
adaptation to diverse noise distributions. To demonstrate the

TABLE V
OBJECTIVE EVALUATION INDEX VALUES OF DIFFERENT DENOISING METHODS

FOR SAR3 IMAGE

effectiveness of our despeckling algorithm in adapting to noise-
level distribution, this section will analyze and compare the
denoising performance of the aforementioned methods. The
test images were acquired in StripMap mode over Barcelona,
Spain, by TerraSAR-X, with a size of 1024×1024. Fig. 10
shows that in the red-marked areas of sections (b), (c), and (d),
effective denoising is achieved by all three methods. In the blue-
marked regions, the results from the MERLIN and G-MONet
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TABLE VI
IMPACT OF THE NOISE-LEVEL ESTIMATION MODULE ON SAR IMAGE

DENOISING PERFORMANCE

Fig. 10. TerraSAR-X image (Barcelona) and the restoration results. (a) Noise
image. (b) G-MONet. (c) MERLIN. (d) Proposed.

approaches appear comparatively smoother, with some loss of
texture details. In contrast, our method, as depicted in these
sections, demonstrates an advantage in preserving more details
and features. Owing to the noise-level estimation applied during
the inference process, our algorithm excels in maintaining image
details and reducing excessive smoothing, particularly in areas
with greater variations in noise levels.

H. Ablation Study

To elucidate in depth the validity of the model proposed in
this article, we analyze in detail the role of each component of
the designed network structure.

1) Impact and Analysis of Noise Estimation: Our proposed
algorithm is an adaptive noise-level denoising method for SAR
images, which includes a critical noise-level estimation stage. In
this section, we focus on analyzing the effect and role of noise-
level estimation on SAR image denoising. To intuitively display
the noise-level estimation, we output the predicted noise-level
map during the model inference process and compare it with the
equivalent number of looks map (ENL map) of the noisy image.
Specifically, to obtain the ENL map of the original noisy image,
we first applied a 3 × 3 sliding window to the denoised image
and calculated its ENL, which is the squared ratio of the mean
to the standard deviation. In the equivalent visual number plot,
larger ENL values are typically labeled as cool colors such as
blue while smaller ENL values are labeled as warm colors such

as yellow or red. The noise-level estimation map also follows
this color coding rule.

Fig. 11(a) and (f) shows test comparison images of an image
acquired by an airborne system at Sandia National Laboratories
and a Ku-band amplitude SAR image acquired at a racetrack
in Albuquerque, New Mexico, USA, named SAR4 to SAR5.
Fig. 11(b) and (g) shows the ENL maps of the original SAR
images while Fig. 11(d) and (i) shows the noise-level maps
estimated by the model. By comparison, it is found that the
model can estimate the range value of L. Meanwhile, according
to the description in [33], when the true ground noise level is
unknown, it is preferable to set a higher input noise level rather
than a lower one, which is more effective in removing noise
to improve image quality. Our noise estimation strategy also
satisfies such a phenomenon, and the predicted noise level is
slightly higher than the true noise level.

Fig. 11(c), (h), (e), and (j) shows the denoising results of real
SAR images with and without noise estimation, respectively,
and it can be seen that the image is excessively denoised in the
bare ground region and the image is excessively smooth, but
after noise estimation in the bare ground region, the texture is
clearer. The denoising results show that our model takes into
account the differences between different textures, rather than
equally using a uniform level of denoiser for all. ANED-Net can
guide the model to achieve denoising and ensure texture details
through the noise-level map.

Second, to confirm the important role of this noise-level
estimation link in the actual image denoising process, we de-
signed corresponding ablation experiments, which specifically
analyze the scenarios with and without noise-level estimation in
a comparative manner. In the experiments, we selected images
from the BSD500 dataset and artificially added different levels
of gamma noise (levels of 2, 4, 8, and 10, respectively), and,
then, used our algorithm for the denoising process. We care-
fully observed and recorded the effect of the difference in the
denoising effect with and without noise-level estimation. The
experimental results are shown in Table VI, and it is found that
the algorithm with noise-level estimation has a more significant
advantage in removing noise. This further indicates that accurate
noise-level estimation is crucial when dealing with real image
noise. With the help of noise-level estimation, our algorithm
is able to more accurately identify and remove noise from the
image, which significantly improves the overall quality of the
image.

2) DEC Block Effect: The DEC module plays an important
role in the denoising model. It carefully controls the denoising
process and helps to preserve the detailed information of the
original image. To demonstrate the effectiveness of the DEC
module, this article trains and evaluates the models with and
without the DEC module. The comparison results are shown in
Fig. 12, where Fig. 12(a) shows the synthetic noisy image with
the number of looks added equal to 8, and Fig. 12(b) shows the
denoised image obtained by the model without the DEC module.
As illustrated by the circled area in Fig. 11(b), the denoising
process in the model, without the DEC module, relies solely on
the basic denoising operation, and although it can reduce the
image noise, it is not effective in preserving the image detail
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Fig. 11. Comparative analysis of SAR image noise-level estimation and its effect on denoising. (a) SAR4. (b) ENL of SAR4. (c) SAR denoising without noise
estimation for SAR4. (d) Noise-level map of SAR4. (e) SAR denoising with noise estimation for SAR4. (f) SAR5. (g) ENL of SAR5. (h) SAR denoising without
noise estimation for SAR5. (i) Noise level map of SAR5. (j) SAR denoising with noise estimation for SAR5.

Fig. 12. Denoising effects of denoising enhanced control block. (a) Original.
(b) Noise image. (c) Denoising without control block. (d) Denoising with control
block.

information. However, when the DEC module is introduced, the
situation changes significantly, as shown in Fig. 12(c), the texture
details are better preserved with the DEC module compared to
the denoised image without the DEC module. The experimental
comparisons are shown in Table VII, and the results show that the
DEC module significantly improves the quality and denoising
effect of the image.

In summary, the DEC block takes the denoised image features
from the previous stage as input and outputs a global weight ma-
trix. Then, this weight matrix is applied to the current denoising

TABLE VII
IMPACT OF THE DEC BLOCK ON SAR IMAGE DENOISING PERFORMANCE

TABLE VIII
INFLUENCE OF DEEP-ATTENTION ON DENOISING PERFORMANCE IN SAR

IMAGES

result, thus realizing the dynamic adaptation of the denoising
process. This design makes full use of contextual information in
the denoising process and is able to preserve as much detail of
the original image as possible during the denoising process.

3) Deep-Attention Effect: The deep-attention mechanism is
designed to solve the problem of attention collapse that occurs
in the Transformer in order to optimize the feature extraction
capability of the model. To verify its effectiveness, we com-
pared it with the original SA mechanism. First, we embedded
a different number of Transformer blocks (e.g., 2, 6, and 8) in
each layer of the structure of T-UNet. Keeping the number of
Transformer blocks constant, we compared the model perfor-
mance using the ANED-Net mechanism with the original SA
mechanism (BSD500 dataset with noise level L = 1 added).
Experimental results are presented in Table VIII, indicating
that with an equal number of Transformer blocks, the model
employing the ANED-Net mechanism demonstrates enhanced
performance compared to the one utilizing the original SA
mechanism. This result proves that our deep-attention mecha-
nism can effectively improve the attention collapse phenomenon
and enhance the feature extraction ability of the model. In our
ANED-Net mechanism, we introduce two learnable parameters
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α and β to dynamically adjust the query and key representations
to optimize the calculation of attention weights. These parame-
ters are continuously learned and optimized by the model during
the training process, allowing the model to better utilize the
multihead attention mechanism to capture different aspects of
the input data. In conclusion, by directly comparing with the
original SA mechanism, our deep-attention mechanism proves
its superiority and provides an effective solution to the attention
collapse problem in the Transformer.

V. CONCLUSION

In this article, the problem of SAR image despeckling is stud-
ied in depth, and a network called ANED-Net is proposed. This
network effectively removes unknown-level speckle noise from
SAR images by combining noise-level estimation and a nonblind
despeckling algorithm. To improve the denoising performance,
we also constructed the NFGDN, which consists of a hierarchi-
cal encoder–decoder denoising module based on Transformer
blocks and a DEC block. At the same time, considering the
problem of attention collapse when the Transformer network is
extended in-depth, we propose the deep-attention mechanism to
ensure that the model extracts features effectively even when
the depth is increased. Extensive experimental results show
that ANED-Net exhibits excellent denoising performance under
various noise conditions compared to many other mainstream
methods. In future work, we plan to conduct more in-depth
research on blind denoising networks to improve the denoising
effect on real SAR images with complex noise.
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