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Abstract—In recent years, deep learning algorithms, particu-
larly convolutional neural networks, have significantly improved
the performance of the hyperspectral image (HSI) classification.
However, due to the high dimensionality of HSI and limited training
samples, the deep neural network causes model overfitting. In ad-
dition, considering all the bands of HSI datasets equally for feature
learning and being unable to distinguish between the edge and the
center pixels of a neighborhood reduces classification accuracy.
Thus, in this article, we propose an end-to-end deep spectral–spatial
residual attention network (DSSpRAN) motivated by the attention
mechanism of the human visual system for HSI classification. The
DSSpRAN considers input HSI data as a 3-D cube instead of using
dimensionality reduction methods. The proposed model simulta-
neously incorporates spectral and spatial features by considering a
spectral residual attention network (SRAN) and a spatial residual
attention network (SpRAN). In SRAN, the weights are assigned
and learned adaptively to select essential features from each band.
The SpRAN enhances the importance of classifying each nearby
pixel to the center pixel. It assigns the same label as that of the
center pixel to the surrounding pixels, thus limiting pixels with
different labels. The proposed method has been evaluated on five
different datasets to prove the state of the art for various land use
land cover scenarios. A comprehensive qualitative and quantitative
analysis of the results shows that the proposed method significantly
outperforms other state-of-the-art methods.

Index Terms—Attention network, convolutional neural network
(CNN), deep learning framework, hyperspectral image (HSI)
classification, remote sensing, residual network, spectral–spatial
classification.

I. INTRODUCTION

HYPERSPECTRAL images (HSI) consist of hundreds of
contiguous and spectrally narrow wavelength bands. Each

pixel in the HSI consists of a different spectrum in terms
of wavelength, which relates to the material composition of
the features [1]. HSI, with its high spectral resolution, has
been widely used in many applications, such as crop monitor-
ing [2], [3], urban development [4], [5], the mining industry [6],
[7], environmental and natural resources management [8], [9],
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surveillance [10], [11], etc. This article mainly focuses on HSI
classification, which intends to assign every pixel in the HSI to
a specific thematic class. In HSI classification, having abundant
spectral information and ensuring a precise pixelwise classifi-
cation are important characteristics. However, HSI with limited
labeled training samples, high dimensionality, and redundancy
in adjacent spectral bands increases the challenges of high-
accuracy image classification. The Hughes phenomenon (curse
of dimensionality) also leads to overfitting on the training data,
reducing the generalization ability of the classifier [12]. Thus,
many feature extraction and dimensionality-reduction methods,
such as principal component analysis [13], linear discriminant
analysis [14], local linear embedding [15], sparse representa-
tion [16], manifold learning [17], [18], etc., have been proposed
to reduce the noise and redundancy in the data. However, these
methods require experts to manually tune parameters and select
spectral bands with maximum information to avoid significant
information loss [19].

These traditional methods can extract only low-level hand-
crafted features that fail to handle unknown/unseen and complex
scenes [20]. Moreover, factors, such as sensor configuration,
atmospheric hindrance, and spectral variability, influence HSI
data to deal with high intraclass variability and interclass simi-
larity [21], [22]. This increases the challenges for HSI classifi-
cation, thus demanding more developed techniques. Learning-
based algorithms, such as deep learning, models have been
widely considered recently due to their adaptive characteristics
and enhanced classification results. Deep learning models can
extract high-level abstract features using end-to-end hierarchical
frameworks. With flexible architectural characteristics, deep
neural networks incorporate spectral and spatial information
from the acquired data [20], [23], [24], [25].

In recent years, many HSI classification frameworks have
incorporated spatial information to maximize the usage of hy-
perspectral data and retrieve better classification performance.
Extended morphological profiles (EMPs) [26], [27], stacked au-
toencoder (SAE) [28], [29], deep belief networks (DBNs) [30],
[31], recurrent neural networks (RNNs) [32], [33], convolutional
neural networks (CNNs) [34], [35], [36], generative adversarial
networks [37], [38], etc., are such examples of a few deep
learning methods. SAE and DBN are unsupervised methods
where Chen et al. [39] proposed to use a multilayer architec-
ture with SAE to classify HSI. Li et al. [40] also proposed a
single restricted Boltzmann machine for classifying HSI using
multilayer DBN. However, SAE and DBN methods focus only
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on spectral features by ignoring nearby pixel information, thus
reducing the overall accuracy (OA) in terms of spatial features.
Hang et al. [33] proposed a cascaded recurrent neural network to
generate discriminative spectral features while keeping the same
patch size as the input, leading to the loss of spatial information.
Liu et al. [41] introduced a hybrid approach that combines
CNN and graph convolutional networks for hyperspectral image
classification. This article includes a pixel and superpixel-level
feature fusion by leveraging both CNN and GNN mechanisms,
showcasing a synergistic approach for improved classification
performance in hyperspectral image analysis. However, the fea-
ture fusion in their method is relatively simple, thus limiting
the model’s ability to capture complex spatial-spectral features.
EMP with 3-D CNN proposed by Chhapariya et al. [42] shows
an effective way to incorporate spectral and spatial features
simultaneously but is limited in extracting salient features from
an image.

Among all the different methods, the CNN has shown efficacy
in achieving satisfactory performance for HSI classification.
With its weight-sharing capability, the CNN reduces the re-
quired parameters for image classification [43]. Hu et al. [44]
introduced 1-D CNN (1-D CNN) to extract spectral information
of each pixel. However, the number of training pixels was
limited, thus restricting the extraction of complex features. Many
researchers combined 1-D CNN with other efficient networks,
such as Mou et al. [32] proposed RNN with 1-D CNN. However,
this method lacks in extracting spatial information required for
land use land cover classification. Furthermore, joint spectral–
spatial feature extraction by combining 1-D CNN and 2-D CNN
was introduced [45]. A 3-D CNN has also been used in recent
works for HSI classification considering spectral and spatial
features [21], [46], [47], [48]. Spectral–spatial residual network
(SSRN) [49] is an example that learns deep discriminative
features using spectral features and spatial information from
HSI. Similarly, Tu et al. [50] proposed a fusion of spectral–
spatial features using a global–local hierarchical weighted fusion
end-to-end classification architecture. Recently, Roy et al. [51]
proposed a self-attention mechanism with a vision transformer
to introduce a morphological transformer and implement the
learnable spectra-spatial network. The attention network con-
sidering spectral and spatial information is also being used to
solve many hyperspectral unmixing problem statements. Spatial
attention-weighted unmixing network [52] and spatial–spectral
attention bilateral network for hyperspectral unmixing [53] are
examples of recent work in this domain. Similarly, Yu et al. [54]
proposed a spatial–spectral dense CNN framework with a feed-
back attention mechanism for HSI classification. Adding to
this, Shu et al. [55] introduced a spectral–spatial split atten-
tion network for local features with long-range dependencies.
However, many parameters in dense CNN to integrate local
features increase the memory requirement and, thus, the memory
cost.

All the abovementioned CNN-based HSI classification
methods have shown fulfilling results in one way or another,
but some questions still need definite answers.

1) Is there any method to optimize the parameters for CNN-
based HSI classification?

2) How much spectral information does each band in HSI
contribute? Is the contribution equally distributed?

3) How does the classification accuracy change considering
nearby pixel information with the center pixel?

This article proposes an end-to-end deep spectral–spatial
residual attention network (DSSpRAN) for HSI classification
to answer these questions. The main focus of our work is to
propose a network that can enhance the spectral and spatial fea-
tures of the HSI. For extracting discriminative spectral features,
we design a spectral residual attention network (SRAN) using
1-D convolutional layers. In SRAN, the weights are assigned
and learned adaptively for selecting features from each band.
The spatial residual attention network (SpRAN) is designed for
extracting spatial features using 2-D convolutional layers. The
SpRAN enhances the importance of classifying each nearby
pixel to the center pixel. It assigns the same label as the center
pixel to the surrounding pixels, thus limiting pixels with different
labels. The SRAN and SpRAN models are embedded parallelly
into a CNN block to simultaneously emphasize spectral and
spatial features. The residual connection addresses the problem
of vanishing and exploding gradients in the deep neural network.
The batch normalization (BN) and full preactivation rectified
linear unit (ReLU) have been used along with the CNN block
to avoid model overfitting and increase the training speed of the
proposed model. To validate the model’s accuracy and gener-
alization ability, we tested our model on five different datasets.
Experimental studies show that the proposed model can achieve
excellent classification results on all five datasets.

The main contribution of this article is summarized as follows.
1) A two-branch spectral-SpRAN is proposed for HSI classi-

fication. The first branch is an SRAN proposed to enhance
the importance of individual spectral bands by generating
a spectral weight vector. The second branch is a SpRAN,
which extracts the spatial features by emphasizing the
importance of nearby pixels with the center pixel for image
classification.

2) An end-to-end DSSpRAN is proposed, parallelly stacking
the spectral and spatial features from SRAN and SpRAN.
This channel escalates the classification accuracy by com-
bining spectral and spatial information simultaneously to
extract more discriminative features.

3) The effectiveness and generalization ability of the pro-
posed model are demonstrated experimentally on five dif-
ferent datasets that outperform eight compared methods.

The rest of this article is organized as follows. Section II
explains the proposed model of this research work. Section III
presents the quantitative and qualitative results with the pro-
posed model. Sections IV shows the discussions. Finally,
Section V concludes this article with future directions.

II. METHODOLOGY

In this section, we first give an overview of the proposed
architecture. Further, we explain residual attention networks and
illustrate SRAN and SpRAN along with the main framework,
i.e., DSSpRAN. We further explain the loss function and opti-
mization method for the proposed work.
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Fig. 1. Proposed DSSpRAN for HSI classification.

A. Framework of the Proposed Architecture

The overall architecture of the proposed method is divided
into two sections, feature extraction and feature classification,
as shown in Fig. 1. Further, the feature extraction section consists
of two core modules, SRAN and SpRAN, which extract spectral
and spatial features, respectively. The features extracted from
spectral and spatial attention networks are stacked simultane-
ously in the feature classification module. Residual learning
maintains the original spectral and spatial information intact
without increasing the feature operations. The feature classi-
fication block consists of a convolutional layer, BN, ReLU,
and dropout layer to learn low-level features. Further, to learn
high-level joint spectral–spatial features, a fully connected layer
is used with a softmax function for prediction and classification.

Let HSI data be represented as I ε RH×W×D, where I
represents input HSI data, and H , W , and D represent height,
width (spatial dimension), and the number of spectral bands in
HSI, respectively. Suppose there are n labeled pixels with P =
(p1, p2, . . .. . ., pn) ε R1×1×D and their corresponding one-hot
encoding vectors as V = (v1, v2, . . .. . ., vn) εR1×1×C , where C
represents number of classes. The labeled datasets are randomly
divided into training, validation, and test sets. The trained models
are validated, and the best trained models are used for the
performance evaluation on the test dataset. We have not used
any dimensionality reduction method to avoid information loss.
The spectral vector represented as Pi is considered as input for
the SRAN. A 1-D CNN is used to extract the spectral features,
which can be formulated as follows:

X = Cov1−D(Pi) (1)

Fspectral = Pi

⊕
SRAN(X) (2)

where Fspectral represents extracted spectral features from
SRAN. Cov1−D is the 1-D convolutional block,

⊕
is the elemen-

twise addition, and the SRAN(.) denotes the extracted spectral
features from the spectral residual attention network. A spatial
patch centering the pixel Pi represented as Spi

is considered
as an input for SpRAN. A 2-D CNN is used to extract spatial

features, which can be formulated as follows:

Y = Cov2−D(Spi
) (3)

Fspatial = Spi

⊕
SpRAN(Y ) (4)

where Fspatial represents extracted spatial features form SpRAN.
Cov2−D is the 2-D convolutional block,

⊕
is the elementwise

addition, and the SpRAN(.) denotes the extracted spatial fea-
tures from the SpRAN.

B. Residual Attention Network

In HSI, with a limited number of labeled training samples,
there is a decrease in classification accuracy with a large number
of convolutional layers because of its representation capacity and
increased training complexity [56]. However, the decreasing ac-
curacy with increasing convolutional layers can be resolved us-
ing a skip connection after every CNN block. Using elementwise
addition, these shortcut connections between two CNN blocks
build a residual network. The residual network has also solved
the vanishing gradient problem. A typical residual connection
is represented as

Rl = Rl−1 + F (Rl−1) (5)

where Rl and Rl−1 represent the input and output of the resid-
ual unit of lth layer. The function F (.) represents nonlinear
transformation operations, such as pooling, ReLU, BN, etc. In
the proposed architecture, skip connections are used to deepen
the network where errors of each layer can be transferred to the
previous layer. The skip connections through its shortcut path
use a backpropagation stage for faster training as they do not
have any additional parameters, thus resolving the vanishing
gradient problem.

The attention mechanism has played an essential role in
human visual perception. As the name implies, the attention
mechanism was introduced into deep learning models to redirect
the models to focus more on important features and discard un-
necessary features. The attention mechanism is commonly used
in computer vision and natural language processing applications.
In a typical attention network, a weight matrix is generated from
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Fig. 2. Proposed SRAN using 1-D convolutional layers.

the input and is applied back to itself. Woo et al. [57] introduced
convolutional block attention module (CBAM), a simple yet
effective attention network for CNNs. An attention network can
be formulated as follows:

Rl = Rl−1.A(Rl−1) (6)

where the function A(.) represents operations, such as pooling,
fully connected, ReLU, and sigmoid function. In this work,
we have proposed the combination of attention network and
residual network called residual attention network, which can
be represented as

Rl = Rl−1 + F (Rl−1).A(F (Rl−1)). (7)

Thus, in the proposed work, we have integrated residual and
attention networks to design SRAN and SpRAN. In this atten-
tion model, the spectral features are recalibrated by utilizing
1-D CNN with the pooling layer and sigmoid function, thus
improving the classification performance. A 2-D convolutional
layer, pooling layer, and sigmoid function generate a spatial
weight matrix, thus improving the classification performance.
It consists of BN and ReLU activation functions and a dropout
layer to avoid model overfitting.

C. Spectral Residual Attention Network

The SRAN focuses on increasing the weight of the spectral
vector, which is useful for feature representation and classifica-
tion for the given HSI datasets. Given this, we have developed
a mapping function for input to the spectral vectors that can be
used to highlight the importance of each spectral band. Consider
a feature map F ε Rh×w×d, where h× w denotes spatial size
and d denotes the number of spectral bands. Different spectral
band information from the feature map is combined using two
pooling operations illustrated as follows:

Pavg = Avg(F ) =
1

h× w

h∑

i=1

w∑

j=1

Fi,j (8)

Pmax = max(F ) (9)

where Fi,j denotes the value at position (i, j) of the input F .
The SRAN is shown in Fig. 2. The pooling feature maps are
combined and fed as an input to the attention network. These
are calculated as follows:

Z = Pavg + Pmax (10)

Fskip = X ⊗ Z (11)

where Fskip denotes the skip connection and ⊗ denotes the
elementwise multiplication. A 1-D CNN is used for mapping
spectral vectors and extracting spectral features, followed by
the BN layer and ReLU. BN normalizes the layer input of each
training cycle and overcomes the covariant shift phenomena,
while ReLU learns the nonlinear representation of the extracted
feature map. This is given as

FCBR = CBR(Fskip) (12)

where CBR(.) represents features extracted using convolution,
BN, and ReLU, respectively. Two bottleneck fully connected
layers are considered to enhance the extracted spectral features.
This layer tends to reduce model complexity and support model
generalization ability. The first layer, represented as W1, is a
dimensionality reduction layer, and the second layer, represented
asW2, is a dimensionality increment layer. The spectral features
are calculated and can be formulated as follows:

Fspectral = σ(W2(δ(W1FCBR))) (13)

where σ and δ represent ReLU and sigmoid function, respec-
tively.

D. Spatial Residual Attention Network

The SpRAN focuses on increasing spatial information for
the nearby pixels with the same class label as the center pixel
and restricting pixels with different class labels. Thus, the ideal
output of SpRAN will be a matrix of the same height and width
as input featureF ′, where the value of a pixel in this location with
the same label as the center is equal to 1 or else 0. The SpRAN
architecture can be shown in Fig. 3. Considering CBAM [57] as
a reference, two pooling operations, namely, average pooling
and max pooling, represented as Pavg(Sp) and Pmax(Sp) are
performed, and fed as input to the attention network as follows:

Pavg(Sp) = Avg(F ′) =
1

d

d∑

i=1

F ′
i,j (14)

Pmax(Sp) = max(F ′) (15)

Z ′ = Pavg + Pmax (16)

F ′
skip = Y ⊗ Z ′ (17)
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Fig. 3. Proposed SpRAN using 2-D convolutional layers.

where d denotes the number of channels. A 2-D CNN is used
for mapping and extracting spatial features, followed by the BN
layer and ReLU. The processed spatial features followed by a
sigmoid function can be represented as

F ′
C2−DBR = C2−DBR(F ′

skip) (18)

Fspatial = σ([F ′
C2−DBR]) (19)

where F ′
C2−DBR represents features extracted using 2-D CNN,

BN, and ReLU, respectively.

E. Deep Spectral-SpRAN

The extracted spectral–spatial features are fed to a convolution
block having a kernel size of 3× 3with stride 1. This is followed
by BN and ReLU activation functions to handle nonlinearity in
the model. We have also used a global average pooling layer and
a dropout layer of 0.4. Since there is no parameter to optimize
in the global average pooling, overfitting is avoided at this layer.
The output is flattened and input to a fully connected layer along
with a softmax function for probability distribution and image
classification. The DSSpRAN architecture can be seen in Fig. 1
and can be formulated as follows:

FBN = BN(Fspectral−spatial ∗ (W + b)) (20)

FBN−ReLU = δ(FBN) (21)

FPDFC = PDFC(FBN−ReLU) (22)

Foutput = Sof(FPDFC) (23)

where ∗ represents the convolution operation, and W and b
represent the weight and biases, respectively. δ represents the
ReLU function, and PDFC(.) represents the pooling, dropout,
and fully connected operation, respectively. Sof(.) denotes the
softmax function.

F. Loss Function and Optimization

A loss function is needed to optimize the model for classifi-
cation problems. In this article, the cross-entropy loss function
has been used. The loss function for the cross-entropy is given

as follows:

LossCE = − 1

N

N∑

n=1

C∑

c=1

ync log(ŷnc ) (24)

where y and ŷ denotes the actual and predicted labels, respec-
tively. C is the number of classes, and N is the number of sam-
ples. The model parameters are updated using backpropagation
and stochastic gradient descent.

III. EXPERIMENTS AND RESULTS

The following section describes five different datasets
considered for the experiment. The factors influencing the model
performance, different parameters, and model configurations
were discussed. Further, the proposed method is compared with
different state-of-the-art deep learning models by calculating
standard evaluation metrics.

A. Dataset Details

For this research work, we have considered five standard
HSI datasets, namely, Indian Pines (IP), Botswana (BW), Pavia
University (PU), Pavia Centre (PC), and Kennedy Space Cen-
ter (KSC). All five datasets considered have different sizes of
available labeled samples and classes. This is to analyze the
model classification performance with different sizes of datasets
and classes. A 10%, 10%, and 80% of the labeled data were
considered randomly for training, validation, and testing sets,
respectively.

1) Indian Pines (IP): The Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor acquired the IP dataset over the
IP test site in North-Western Indiana. It consists of 224 spectral
bands, among which 24 bands covering the water absorption re-
gion were removed. It has 145× 145 pixels, a spectral resolution
of 10 nm ranging from 0.4 to 2.5 μm, and a spatial resolution
of 20 m/pixel. The ground truth contains 16 vegetation classes
with 10 249 labeled pixels. Table I lists the numbers of training,
validation, and test samples for each class.

2) Botswana (BW): BW dataset was acquired by a Hyperion
sensor over the Okavango Delta, BW, in 2001–2004. It consists
of 242 spectral bands, among which 97 uncalibrated and noisy
bands that cover water absorption features were removed, and
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TABLE I
TRAINING, VALIDATION, AND TEST SAMPLES FOR DIFFERENT CLASSES OF IP

DATASETS

TABLE II
TRAINING, VALIDATION, AND TEST SAMPLES FOR DIFFERENT CLASSES OF BW

DATASETS

the remaining 145 bands are considered. It has a 30 m pixel
resolution over a 7.7 km strip covering the 400–2500 nm portion
of the spectrum in 10 nm windows. The ground truth contains
14 vegetation classes with 3232 labeled pixels. Table II lists the
numbers of training, validation, and test samples for each class.

3) PU and PC: These are two scenes acquired by the Re-
flective Optics System Imaging Spectrometer (ROSIS) over the
urban area of the PU and the center city of Pavia, Northern
Italy, on 8 July 2002. The number of spectral bands is 102
with 1096× 1096 pixels for PC and 103 spectral bands with
610× 340 pixels for PU. It has a spatial resolution of 1.3 m with
ground truth containing ten vegetation classes for both datasets.
Tables III and IV list the numbers of training, validation, and
test samples for each class of PU and PC, respectively.

4) Kennedy Space Center (KSC): The KSC dataset was ac-
quired by the National Aeronautics and Space Administration

TABLE III
TRAINING, VALIDATION, AND TEST SAMPLES FOR DIFFERENT CLASSES OF PU

DATASETS

TABLE IV
TRAINING, VALIDATION, AND TEST SAMPLES FOR DIFFERENT CLASSES OF PC

DATASETS

(NASA) AVIRIS instrument over the KSC, FL, USA, on 23
March 1996. It consists of 224 spectral bands, among which 48
bands containing water absorption and low SNR were removed
and the remaining 176 bands are used for analysis. It has a spatial
resolution of 18m and spectral bands of 10 nm width with center
wavelengths from 400–2500 nm. The ground truth consists of
13 classes representing the various land cover type with 5211
labeled pixels. Table V lists the numbers of training, validation,
and test samples for each class.

B. Experimental Configuration and Parameter Settings

In this article, the experiment has been conducted on a com-
puter with Intel Xeon Silver 4214R CPU at 2.40 GHz with
64 GB RAM and an NVIDIA GeForce RTX A6000 graphical
processing unit with 51 GB RAM. The software environment is
the Ubuntu 14.04 Ultimate 64-bit system with a deep learning
framework of PyTorch. The different hyperparameters used for
this research include a learning rate of 0.001 set for stochastic
gradient descent with a momentum of 0.7 and weight decay
of 0.0005. Full-resolution images have been used to train the
network for 100 epochs with a minibatch of size 128.

Root Mean Squared Propagation, or RMSProp, has been used
for optimizing the parameters and random initialization to ini-
tialize the weights and biases for all CNNs. The performance of
the proposed method is evaluated using class-specific accuracy,
OA, average accuracy (AA), and kappa coefficient (κ).



CHHAPARIYA et al.: DEEP SPECTRAL–SPATIAL RESIDUAL ATTENTION NETWORK FOR HSI CLASSIFICATION 15399

TABLE V
TRAINING, VALIDATION, AND TEST SAMPLES FOR DIFFERENT CLASSES OF

KSC DATASETS

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT STATE-OF-THE-ART METHODS FOR

LABELED PIXELS OF THE IP DATASET

C. Comparison With State-of-the-Art Methods

In this research work, we have compared our proposed
model DSSpRAN with different state-of-the-art methods. We
have considered two traditional models: support vector machine
(SVM) [58] and 3-D CNN [59] and five deep learning-based
models specific to residual and attention networks for HSI clas-
sification. These models are SSRN [49], residual spectral–spatial
attention network RSSAN [60], adaptive spectral–spatial multi-
scale network (ASSMN) [38], cross-attention spectral–spatial
network (CASSN) [61], and spatial proximity feature selec-
tion with residual spatial–spectral attention network (SPFS-
RSSAN) [62]. SSRN is one of the earliest works to use residual
networks for the spectral–spatial classification of HSI. The latter
four networks are based on residual and attention networks using
different convolution layers with PyTorch or Keras deep learning
framework.

1) Quantitative Evaluation: The classwise accuracy and
quantitative metric comparison with different state-of-the-art
methods are shown in Tables VI–X. Compared with the tra-
ditional SVM method, the CNN-based deep learning models
perform better with high accuracy. This could be because of the

TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT STATE-OF-THE-ART METHODS FOR

LABELED PIXELS OF THE BW DATASET

TABLE VIII
CLASSIFICATION RESULTS OF DIFFERENT STATE-OF-THE-ART METHODS FOR

LABELED PIXELS OF THE PU DATASET

3-D

TABLE IX
CLASSIFICATION RESULTS OF DIFFERENT STATE-OF-THE-ART METHODS FOR

LABELED PIXELS OF THE PC DATASET

3-D

TABLE X
CLASSIFICATION RESULTS OF DIFFERENT STATE-OF-THE-ART METHODS FOR

LABELED PIXELS OF THE KSC DATASET

hierarchical feature learning capacity of deep learning methods
with the classifiers. Thus, the deep learning methods extract
high-level features by learning discriminative features required
for HSI classification. It can be observed from the table that the
accuracy of 3-D CNN is lower than other deep learning methods
since it does not use a residual network. It can be observed that
the proposed model performs better for all five datasets than
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Fig. 4. Classification maps for the IN dataset. (a) False-color image. (b) Ground-truth map. (c)–(j) Classification maps of SVM, 3-D CNN, SSRN, RSSAN,
ASSMN, CASSN, SPFS-RSSAN, and Proposed DSSpRAN.

Fig. 5. Classification maps for the BW dataset. (a) False-color image. (b) Ground-truth map. (c)–(j) Classification maps of SVM, 3-D CNN, SSRN, RSSAN,
ASSMN, CASSN, SPFS-RSSAN, and Proposed DSSpRAN.

other residual and attention networks in terms of OA, AA, and
kappa coefficient. The SSRN excludes attention networks, while
the RSSAN uses the dimensionality reduction method, thus
reducing spectral information. ASSMN uses a long short-term
memory network for HSI classification, which is not well-suited
for classification tasks where input data are not a sequence. At
the same time, CASSN and SPFS-RSSAN have a large number
of computational parameters, thus requiring more training data
to learn effectively. On the other hand, the proposed method
uses SRAN and SpRAN to enhance spectral bands having the
most important features and weaken the remaining insignificant
bands, thus achieving higher accuracy with less computational
parameters.

2) Qualitative Evaluation: The visual comparison of the pro-
posed model with different state-of-the-art methods is shown
in Fig. 4–8. The false color composition and their respec-
tive ground truth for five different datasets are considered for
qualitative evaluation. The SVM, 3-D CNN, and SSRN show
pixel-level misclassification for some classes, visible in Fig. 4–8
for different datasets. In comparison, the remaining methods
generate smoother classification maps, specifically at the bound-
ary of two different classes. The proposed model produces

a better classification map with distinct boundaries between
two different classes as it uses the SpRAN layer to learn the
correlation between the center pixel and surrounding neighbor-
ing pixels.

D. Ablation Study

In this section, the proposed algorithm’s performance has been
analyzed by considering different factors. These factors are the
effect of different proportions of training samples, spatial input
patch size, and learning rate. We have analyzed the classification
performance of PU and PC as they share similar pixel labels
considering training on PU and testing it with PC and vice
versa. We also observed the effect of the attention network on
the classification accuracy of the proposed network.

1) Effect of Training Sample: We have compared the effect
of different proportions of training samples on OA. We have
randomly considered 1%, 3%, 5%, 10%, 15%, 20%, 25%, and
30% of labeled training samples as the training set to train
DSSpRAN. The OA, as shown in Fig. 9, increases with the
increase in training samples. It can be observed that at 10% of
the training sample, OA is the highest for all the datasets.
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Fig. 6. Classification maps for the PU dataset. (a) False-color image. (b) Ground-truth map. (c)–(j) Classification maps of SVM, 3-D CNN, SSRN, RSSAN,
ASSMN, CASSN, SPFS-RSSAN, and Proposed DSSpRAN.

Fig. 7. Classification maps for the PC dataset. (a) False-color image. (b) Ground-truth map. (c)–(j) Classification maps of SVM, 3-D CNN, SSRN, RSSAN,
ASSMN, CASSN, SPFS-RSSAN, and Proposed DSSpRAN.
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Fig. 8. Classification maps for the KSC dataset. (a) False-color image. (b) Ground-truth map. (c)–(j) Classification maps of SVM, 3-D CNN, SSRN, RSSAN,
ASSMN, CASSN, SPFS-RSSAN, and Proposed DSSpRAN.

Fig. 9. OA (%) of DSSpRAN with different training sample proportions in
the IN, BW, PU, PC, and KSC datasets.

2) Effect of Spatial Input Patch Size: Spatial input patch size
tells about the amount of spatial information required by nearby
pixels to classify one center pixel. We have compared the effect
of different spatial input patch sizes with OA. We considered
patch size as small as 3 and increased it to 5, 7, 9, 11, 13, 15,
17, and 21. From Fig. 10, it can be observed that for the patch
size 9, the OA for all the datasets was high compared to others.
Thus, a patch size 9 has been considered for this research work.

3) Effect of Learning Rate: The learning rate has a significant
role in the convergence of training with minimum loss. It controls
the steps of gradient descent and, thus, the training speed. We
have considered different learning rates to find their effect on

Fig. 10. OA (%) of DSSpRAN with different input patch sizes for the IN, BW,
PU, PC, and KSC datasets.

OA. We considered a grid search of 0.00003, 0.0001, 0.0003,
0.001, 0.003, and 0.01. From Fig. 11, it can be observed that for
the learning rate of 0.001, the OA for all the datasets was higher
than others. Thus, a learning rate of 0.001 has been considered
for this research work.

4) PU for Training and PC for Testing and Vice Versa: The
PU and PC datasets have been acquired by the same sensor
(ROSIS) over an overlapping area (Northern Italy). Thus, we
have considered these two datasets for training at one and testing
at another to analyze the performance accuracy. From Table XI,
it can be observed that training the model on PC and testing it
on PU give better OA, AA, and kappa accuracy. The PC is a
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Fig. 11. OA (%) of DSSpRAN with different learning rates for the IN, BW,
PU, PC, and KSC datasets.

TABLE XI
COMPARISON RESULT BETWEEN PU AND PC CONSIDERING PU FOR TRAINING

AND PC FOR TESTING AND VICE VERSA

TABLE XII
EFFECT OF ATTENTION NETWORK

1096× 1096 pixels image while PU is 610× 340 pixels where
some features of PU are a subset of PC that explains the increase
in OA for PC as training and PU as a testing site.

5) Effect of Attention Network: We have compared the ef-
fect of the attention module on OA for different datasets. We
considered the classification accuracy by removing the attention
module, i.e., just the convolution block, similar to HSI classifica-
tion with CNN. Further, we consider only the spectral attention
module, the spatial attention module, and the spectral+spatial
attention module for all datasets. From Table XII, it can be
observed that the OA is higher when we use both spectral and
spatial attention modules simultaneously. We also observed that
OA for PU and PC is better with the spatial attention module
than the spectral attention module. This can be justified as
these datasets have a high spatial resolution of 1.3 m/pixel, thus

TABLE XIII
COMPARISON OF TRAINING AND TESTING TIME OF DIFFERENT METHODS ON

EACH DATASET

explaining the effect of neighboring pixels on the classification
of the center pixel.

6) Analysis for Computation of Time: The efficiency of the
proposed method DSSpRAN is compared with other methods
for each dataset by computing training and testing time, as
shown in Table XIII. The training time reflects the complexity
of the model while the testing time defines the model’s effi-
ciency in practical application. Among all compared methods,
the conventional method SVM has the least cost computation
with the simplest architecture. The 3-D CNN network having
higher parameters takes much more time to train compared to
SVM. Attention networks, such as RSSAN and SSRN, with
their complex architecture have lengthy computation time. The
other three methods, i.e., ASSMN, CASSN, and SPFS-RSSAN,
consider all the bands of HSI and thus take longer training
time with all the convolutional layers and the hundreds of thou-
sands of self-attention parameters. There is always a tradeoff
between accuracy and the computation cost in accordance with
the model’s architecture. Nevertheless, in our proposed model,
we have focused on specific bands with nearby pixel informa-
tion having less number of convolutional layers to extract the
spectral–spatial features. Thus, DSSpRAN results in a relatively
fast and efficient performance on all five datasets with high
accuracy.

IV. DISCUSSION

In this study, the effectiveness of the proposed method
DSSpRAN is validated through experimental results. It is ob-
served that the performance accuracy increases by focusing
on nearby pixel information to enhance spatial resolution and
by considering the most effective spectral bands. Moreover, a
residual network adding skip layers and feedback connection
solves the vanishing gradient problem and the attention network
redirects the models to focus more on important features and
discard unnecessary features. The proposed DSSpRAn consid-
ers spectral and spatial features simultaneously in two different
blocks (SRAN and SpRAN), thus extracting more discriminative
features. In addition, using BN at each convolutional layer
reduces the need for thousands of iterations for training in our
model compared to [49] and [63].

Traditional methods, such as SVM, have limitations, as they
need manual feature engineering and face challenges with the
complex spectral-spatial patterns in hyperspectral data. In con-
trast, CNNs perform well by independently learning distinctive
features from raw data, demonstrating their ability to extract
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high-level features. Thus, the proposed DSSpRAN extends the
capabilities of contemporary deep learning methods by incor-
porating attention mechanisms, enabling the model to focus
on salient spectral and spatial features. This enhances the net-
work’s adaptability by surpassing the limitations of traditional
methods. The comparison highlights the significant impact of
contemporary deep learning methodologies, thus demonstrating
our proposed model as an advanced and effective solution for
hyperspectral image classification and analysis.

However, the method is limited to smaller datasets with
limited spatial resolution. It will be interesting to observe the
efficiency of the model on a larger dataset with a higher spatial
resolution and complex features. In addition, in most cases, a
higher training percentage increases the model’s accuracy. How-
ever, in our case, a larger patch size leads to a broader receptive
field and thus is more prone to learn noise, outliers, and irrelevant
information as the training data percentage increases. Thus,
with extensive computation and analysis, we have considered
a training size of 10% and a patch of 9 for optimum and best ac-
curacy. Nevertheless, the proposed work demonstrates that even
with a limited number of training samples available, DSSpRAN
avoids overfitting and achieves state-of-the-art classification
accuracy.

V. CONCLUSION

In this research, we have proposed an end-to-end CNN-based
architecture for HSI classification using spectral and spatial
information. The DSSpRAN deep learning framework consists
of an SRAN and a SpRAN module that help in selecting the
most effective spectral bands and focus on increasing the spatial
information for the nearby pixels, respectively. The SRAN con-
siders spectral features across spatial dimensions to distribute
the weight of each spectral band and select only the useful
ones. The SpRAN considers a spatial patch as input to enhance
surrounding pixels with the same class labels as the center pixel
while constraining pixels with different class labels for HSI
classification. The training of the proposed model was acceler-
ated by concatenating SRAN and SpRAN to a CNN block, thus
reducing the possibility of model overfitting. Compared with the
other residual attention network model, the proposed DSSpRAN
model achieves better classification accuracy even with the
limited number of training samples. The experimental result on
five different datasets proves the state of the art for various land
use land cover scenarios and, thus, can be generalized to other
remote sensing datasets. Further work is being taken up where
the model can be trained to learn more discriminative spectral–
spatial features for HSI classification and reduce the compu-
tation time by an iterative process, thus increasing algorithm
efficiency.
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