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StHCFormer: A Multivariate Ocean Weather
Predicting Method Based on Spatiotemporal
Hybrid Convolutional Attention Networks

Lianlei Lin , Zongwei Zhang , Hangyi Yu , Junkai Wang , Sheng Gao , Hanqing Zhao , and Jiaqi Zhang

Abstract—Ocean weather prediction is crucial for various appli-
cations, such as global climate prediction, marine environmental
protection, and offshore production. However, current data-based
marine weather prediction methods have limitations when predict-
ing multiple variables in a particular area, failing to meet the effi-
ciency and accuracy requirements of practical applications. In the
realm of ocean weather variations, the presence of highly intercon-
nected spatial and temporal continuations, coupled with the mutual
influence of individual variables, underscores the utmost impor-
tance of effectively capturing dynamic correlations encompassing
space, time, and variables to accurately predict ocean weather. To
address this, we developed a novel approach called StHCFormer,
which is a multivariate spatiotemporal hybrid convolutional at-
tention network. The first key component of StHCFormer is the
spatiotemporal hybrid convolutional attention (StHCA) module,
which leverages a hybrid convolutional attention mechanism to
explore both global spatial representations and local features. Addi-
tionally, the module incorporates temporal attention to capture the
temporal dependence of weather records and effectively captures
the dynamic correlations among multiple variables through chan-
nel deflation and weighted residuals. To ensure balanced variable
losses, we introduced the concept of homoscedasticity uncertainty
loss to dynamically adjust the multitask weights. This guarantees
a global optimal solution and leads to more accurate multivariate
ocean weather prediction. Finally, we conducted a comprehensive
evaluation and comparison of the StHCFormer model with other
state-of-the-art algorithms using the ERA5 dataset in the Philip-
pine Sea. The results demonstrated that StHCFormer outperforms
existing methods in marine multivariate field weather prediction.

Index Terms—Deep learning, multivariate prediction, ocean
weather forecast, spatiotemporal hybrid convolutional attention,
spatiotemporal prediction.

I. INTRODUCTION

THE ocean occupies 70% of the Earth’s surface area. Its rich
resources are important for human survival, and its variable

climate always influences global climate change. For example,
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changes in sea surface temperature (SST) cause prominent
global climate extremes, such as El Niño and global warming.
Sea breeze levels and the formation of catastrophic-level waves
are directly related and greatly impact the safety of offshore pro-
duction. Therefore, accurately predicting ocean weather changes
is of great significance for marine environmental protection,
extreme climate prediction, and offshore production activities.
However, accurately predicting marine weather in spatial and
temporal environments is still greatly challenging because of the
close spatial connections of the ocean, the rapid rate of weather
changes, many influencing factors, and the intrinsic correlation
between multiple regions and these factors, which impact and
interact with each other.

The existing methods for ocean weather prediction are mainly
divided into two directions: numerical models and data-driven
models. Numerical models are constructed by a series of com-
plex thermodynamic and physical equations representing the
ocean and integrating the physical connections between various
factors. Although these models exhibit high accuracy, they re-
quire enormous computational effort and long calculation times,
and their general hardware conditions operating the models
difficult [1], [2], [3], [4], [5].

Data-driven models construct predictions by learning the in-
ternal variation law of time series data to predict future records.
These models are mainly categorized as statistical models, ma-
chine learning models, and deep learning models. The autore-
gressive integrated moving average model (ARIMA) is a classic
statistical method [6] that has a simple model structure and
requires only endogenous variables without other exogenous
variables and can effectively extract time series of time rela-
tionships. However, the model has strict requirements for time
series data stability. Commonly used machine learning methods
include linear regression [7], support vector machine (SVM) [8],
[9], and artificial neural network (ANN) [10]. In [11] used
the K-nearest neighbor (KNN) algorithm to accurately forecast
ocean surface currents 24 hours in advance. Khosravi et al. [12]
used various machine learning algorithms to predict wind speed
and wind direction, demonstrating the superior performance of
the support vector regression (SVR) algorithm for wind field
prediction. He et al. [13] derived a robust SVM-based SST
prediction model, improving the SST trend prediction and signif-
icantly improving the nonstationary SST time series prediction
of the model. However, these algorithms rely heavily on the
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effectiveness of feature engineering. For small-scale data, such
methods can use patterns to achieve better prediction results.
However, traditional machine learning algorithms are somewhat
inadequate when handling large-scale ocean weather data, such
as weather prediction over multiple regions.

Benefiting from GPU computing power enhancements, deep
learning techniques have been rapidly developed, and recurrent
neural network (RNN) [14] have been proposed. However,
RNN is prone to problems such as gradient disappearance
and explosion when handling long time series prediction. To
address gradient propagation, the long short-term memory net-
work (LSTM) [15] and its variant network, the gated recurrent
unit (GRU) [16], were proposed. These networks are capable
of longer time predictions than RNN. Based on this, Zhang
et al. [17] proposed the LSTM-CFCC algorithm, which success-
fully achieved regional SST prediction using multiple LSTM
units to model the grid point data separately. Obara and Naka-
mura [18] combined migration learning and LSTM for signifi-
cant wave height (SWH) prediction, modeling the SWH of sev-
eral points separately and considering other influencing factors
to improve the SWH prediction accuracy. Xie et al. [19] used an
encoder–decoder structure and GRU as an encoder–decoder with
a self-attention mechanism to assist in SST prediction. These
methods are mostly for single-point or multipoint prediction
of ocean climate factors, and they neglect spatial information,
leading to low prediction accuracies for regional variables. For
spatiotemporal feature extraction of spatiotemporal field data,
convolutional neural networks (CNNs), and RNNs exhibit good
coupling. Shi et al. [20] combined a CNN and LSTM and pro-
posed the ConvLSTM, which used convolution to obtain spatial
features and LSTM to obtain temporal dependence for rainfall
prediction. Lin et al. [21] proposed SA-ConvLSTM, using self-
attention to obtain an additional memory module M and thus
enhance the long time series prediction of ConvLSTM. Zhou
et al. [22] developed a multilayer fusion recurrent neural network
(MLFrnn) to predict sea surface height anomaly (SSHA) by
learning long-term dependencies within the SSHA time series
and spatial correlations between neighboring and remote areas.
The receptive field property of the convolutional kernel enables
the time-series prediction network to extract spatial features.
However, the perceptual field of the convolutional kernel is
limited and cannot globally represent spatial features [23]. More-
over, networks such as LSTM alleviate RNN gradient disap-
pearance and explosion, but in practice, stacking multiple layers
for accurate long time series data prediction is difficult. The
application of self-attention is a good solution to these problems.
Transformers were first proposed for solving natural language
processing (NLP) problems, and they have since been widely
used in the computer vision [24], [25], [26], [27], [28], remote
sensing [29], [30], [31], and temporal prediction fields [32], [33],
among others. Zhou et al. [32] proposed informers based on
transformers, effectively replacing traditional self-attention with
ProbSpare self-attention and greatly reducing the computational
effort. Meanwhile, the generative style decoder layer can gener-
ate the output of long sequences in only one step, which avoids
propagating errors and enables long time series information to
be accurately predicted. Ma et al. [34] proposed a spatiotemporal
dependent learning network that uses an attention mechanism to

Fig. 1. Ocean weather forecasting methods. (a) Multipoint prediction method.
(b) Unitary field prediction method. (c) Multifield prediction method.

extract the spatial features of multivariate time series. Google
proposed TimeSformer to classify videos by computing tempo-
ral and spatial self-attention [35]. Self-attention networks have
strong abilities to represent global temporal and spatial features
and can capture global spatial and temporal representations.
However, these networks are weak when capturing local spatial
features, which makes handling the complex spatiotemporal
variations in ocean weather prediction difficult [23]. Graph
networks have also been studied in marine weather prediction.
Graph networks build spatiotemporal models by constructing
relational architectures from a graph perspective based on a
priori knowledge to enable spatial relationships between points
to be extracted [36], [37]. However, these graph models rely
heavily on predefined graph structures to extract spatiotemporal
features, limiting their applications.

As shown in Fig. 1, most existing marine weather forecasting
methods are single-point or multipoint forecasts [17], [18], [19],
[32], [36] and univariate regional forecasts [20], [21], [22], [38],
[39], [40]. Single-point or multipoint forecasting methods build
time-series models based on data from a certain point or several
points, which makes comprehensively considering spatial corre-
lation difficult, resulting in average forecasting effects. Regional
prediction refers to the spatiotemporal modeling of a certain
area. This prediction model can capture the temporal and spatial
correlations of the area, but it is currently primarily a univariate
model. For ocean weather prediction, univariate prediction is
always one-sided. On the one hand, the multiple elements of
ocean weather are interrelated and affect each other, and using
effective means for exploring the correlations of multiple ele-
ments can improve the prediction efficiency of each element.
Taking the formation of sea wind as an example, the uneven
heating of the sea surface leads to the upward and downward
movement of the air, and this vertical movement of the air
changes the air pressure on the same horizontal plane, which
generates the horizontal air pressure gradient force that prompts
the atmosphere to horizontally flow from high-pressure areas
to low-pressure areas. This movement leads to the formation of
sea wind. The formation of sea wind is most directly related
to air pressure and temperature. On the other hand, considering
the hardware and facility conditions of practical applications,
prediction models designed for a single ocean variable cannot
meet the requirements for large ocean environment construction.
However, the difficulty of simultaneously training and learning
multiple variables is much greater than that of using univari-
ate networks. Avoiding the negative impact of different scale
losses on each task and balancing the training process of each
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variable to finally achieve multivariate cooptimal regression
are difficult problems in the multitask domain [41], [42], [43],
[44]. For multitask training, Chennupati et al. [45] proposed
geometric losses to ensure losses were balanced. Chen et al.
[46] proposed the grad-norm for adjusting the training gradient
of the weight factor by the rate of change of each task loss to
balance training among multiple tasks. To balance the learning
training process of the ocean multivariate spatiotemporal field,
we introduced the uncertainty correlation loss function into the
ocean multivariate weather prediction domain to capture the
optimal points through dynamically adjusting the loss weights
of each variable. Notably, a multitasking mode, i.e., multiple
inputs and multiple outputs, is adopted for marine weather data
generation, and simultaneously predicting multiple variables can
greatly reduce the required computational resources, which is
of great significance for practical applications of data-driven
marine weather prediction-based methods.

Therefore, multivariate ocean weather prediction has three
main challenges: 1) exploring the comprehensive spatial link-
ages in the spatiotemporal field; 2) extracting the time de-
pendence in the spatiotemporal fields; and 3) capturing the
dynamic relevance among multivariate variables and ensuring
multivariate prediction accuracy. Accordingly, we designed the
spatiotemporal hybrid convolutional attention (StHCA) module.
In this module, the spatial restoration and fusion layer fuses
global and local spatial features to address the first problem,
and the temporal self-attention mechanism extracts the temporal
dependencies of spatiotemporal data to address the second prob-
lem. We solved the third problem by multivariate interacting and
uncertainty loss functions. Our contributions are summarized
as follows.

1) We proposed a novel multivariate spatiotemporal data gen-
eration model, StHCFormer, which achieves multivariate
weather prediction for the ocean.

2) Fusing the advantages of self-attention and convolution,
we proposed a StHCA module to mine the global represen-
tation and local features of space, obtain time-dependent
relationships, and capture the dynamic correlation of mul-
tiple variables.

3) We introduced the homoscedasticity uncertainty loss func-
tion in the multitask domain into the marine multivariate
weather prediction domain to balance the training process
of multivariate tasks using the Gaussian distribution as-
sumption of data and uncertainty correlation.

4) We compared StHCFormer with current state-of-the-
art forecasting methods on publicly available datasets
and demonstrated the effectiveness of StHCFormer. This
shows that StHCFormer can effectively link spatiotempo-
ral correlations and multivariate variables to provide more
efficient ocean weather forecasts.

II. METHODOLOGY

A. Problem Definition

The sea surface is typically divided into grids based on spatial
information (longitude and latitude). Each grid is an observation
point for multivariate data, and each cycle contains a set of

multivariate values. All grid areas form a C ×H ×W matrix
Dt, representing a set of weather values at a specific time t,
whereW andH correspond to the number of grid areas along the
latitude and longitude, respectively, andC represents the number
of variables. When three variables (i, j, k) are included, all ma-
trices in the historical data records of an ocean region form a time
series D(i,j,k)

1 , D
(i,j,k)
2 , . . . , D

(i,j,k)
t , D

(i,j,k)
t ∈ RT×3×H×W .

In practice, we usually try to learn from a historical period of
weather records and use what we learn to predict future weather
conditions. We follow this principle in the ocean weather predic-
tion work we conduct. When predicting ocean weather based on
meteorological knowledge, we default to 6 hours or less when
the weather does not change dramatically, so our data point
interval is chosen to be 6 hours. There are thus four time points
in each day: 0:00, 6:00, 12:00, and 18:00. For a set area, given
u multivariate history records {D(i,j,k)

1 , D
(i,j,k)
2 , . . . , D

(i,j,k)
u },

the future v(i,j,k) weather data are inferred from the history
u(i,j,k), and the equation is expressed as

D
(i,j,k)
u+1 , . . . , D

(i,j,k)
u+v = F

(
D

(i,j,k)
1 , D

(i,j,k)
2 , . . . , D(i,j,k)

u

)
(1)

whereF denotes the prediction network. For example, according
to the previously set 6-hour fetching law, u = 28 and v = 12
indicate the prediction of future 3-day (i, j, k) records based on
historical 7-day historical (i, j, k) records.

B. Model Structure

Fig. 2 shows the architecture of StHCFormer. The StHC-
Former is designed with an encoder-decoder framework, and
its architecture contains four parts: input, output, encoder, and
decoder. The white area in Fig. 2 represents the network input,
which contains the unfolding layer, the embedding layer, the
location encoding module and the teacher forcing module, which
is used to process the historical and target weather records.
The green area in Fig. 2 represents the network encoder, which
consists of multiple encoding blocks, each of which has two
inputs and outputs. The first input is the token after encoding,
and the second input is the convolutional feature layer after the
initial convolution. The output of the encoder is the self-attention
branch output and the convolutional branch output. Each en-
coding block contains two internal subconnected layers. The
first sublayer is the encoder spatiotemporal hybrid convolutional
attention module surrounded by the green dashed line, which
contains a multiheaded attention layer, a local extractor and
interacting layer, a spatial restoration and fusion layer, a nor-
malization layer and a residual connection. The second sublayer
connection contains a feed-forward fully connected layer, a
normalization layer and a residual connection. The blue area
represents the network decoder, which consists of a stack of
multiple decoding blocks. Similar to the encoder, the decoder has
two inputs and outputs, and its distribution is basically the same
as that of the encoder. Each decoding block consists of three
subconnected layers. The first and second sublayers are both
decoder spatiotemporal hybrid convolutional attention modules
surrounded by the blue dashed line. Both include a multiheaded
self-attention layer, a local extractor and interacting layer, a
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Fig. 2. Architecture of StHCFormer. The StHCFormer model contains four parts: input, output, encoder and decoder. The variables of the input historical records
correspond to the data frames from day t− 7 to day t. The records from day t+ 1 to day t+ n are used as predicted variables for the output. Each data frame
contains three channels corresponding to the geopotential, temperature, and wind.
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spatial restoration and fusion layer, a normalization layer and
a residual connection. The third sublayer connection structure
includes a feed-forward fully connected layer, a normalization
layer and a residual connection.

The core of the StHCFormer network is the StHCA mod-
ule, which includes a self-attention branch and a convolutional
branch. The StHCA module in the encoder is slightly different
from that in the decoder; the StHCA module in the encoder
performs a multiheaded spatial attention computation followed
by a temporal attention computation, whereas the StHCA mod-
ule in the decoder performs a multiheaded temporal attention
computation followed by a multiheaded spatial attention compu-
tation. The convolutional branch is used to extract local features
of the grid information at each time step and capture dynamic
correlations among multiple variables. Spatial attention is used
to learn the global spatial representation of the grid points based
on the elemental attention results at each time step. Temporal at-
tention models temporal correlations at all time steps. The mod-
ules in the attention branch are bridged using a split-attention
mechanism, which can significantly reduce the computational
effort. StHCFormer accounts for the spatiotemporal features
in comprehensive space and continuous time, as well as the
heterogeneous information between multiple inputs, and can
more accurately model the spatiotemporal evolution information
of multiple field variables than traditional CNN models and
RNN models.

1) Input Embedding: We use a sliding window to sample
from the dataset and obtain input data frames of size m×H ×
W × T , where m denotes the number of multivariate features,
H and W denote the height and width of the input features,
respectively, and T denotes the time length of the input features.
In the convolution branch, the input data are ct ∈ Rm×H×W ,
where t = 1, 2, . . ., T . For the input data ct containing T frames
of data, we perform the initialized convolution operation on the
input data separately according to the time index

c
(0)
t = SW

([
gini(ct′)t′=1,2,...,T

])
(2)

whereSW denotes the Swish activation function andgini denotes
the initialized convolution calculation, which contains a set of
1 ∗ 1 convolution and 3 ∗ 3 convolution.

In the self-attention branch, the data are first processed by
sliding window segmentation in the H and W dimensions, and
divided to obtain N nonoverlapping patches of size h and w.
N = H×W

h×w contains the spatial domain information of all input
data frames. The N patches are unfolded to obtain the vector
x(p,t) ∈ Rm×h×w, where p = 1, 2, . . ., N denotes the spatial
location index of the divided patches and t = 1, 2, . . ., T denotes
the data frame index. Then, we implemented a linear transfor-
mation using a learnable E matrix to map x(p,t) ∈ Rm×h×w to

an embedding vector z(0)(p,t) ∈ RD, which can be expressed by
the following:

z
(0)
(p,t) = Ex(p,t) + epos

(p,t) (3)

where epos
(p,t) denotes learnable location embedding, which is

used to encode the spatiotemporal location for dividing patches.

Above, the inputs are obtained as z
(0)
(p,t) ∈ RD and c

(0)
t ∈

Rm×H×W , which denote the inputs of the attention branch and
the convolution branch, respectively. They are applied to both
the encoder and the decoder.

2) Spatiotemporal Hybrid Convolutional Attention Model:
Self-attention is strong for acquiring global spatial representa-
tions but weak for capturing local features. However, for ocean
weather prediction, local feature interactions also play important
roles in the dynamic evolution of variables, so exploring the tem-
poral and global-local spatial feature linkages is especially im-
portant for ocean multivariate weather prediction. Therefore, we
proposed a StHCA module to capture the historical dependence
of variables in the temporal domain by temporal self-attention,
obtain global spatial representations by spatial self-attention,
and capture local features and multivariate dynamical linkages
by convolutional networks to more accurately predict maritime
weather. The network modules are connected in a split-attention
manner, which greatly reduces the number of parameters and
operations, making multivariate predictions possible.

Our model contains L encoder blocks. Each block has two
inputs and outputs: the inputs are z

(�−1)
(p,t) and c

(�−1)
t , and the

outputs are z
(�)
(p,t) and c

(�)
t . For the self-attention branch of the

current coding block, the q/k/v vector is obtained from the
output of the previous coding block by the following:

q
(�,a)
(p,t) = W

(�,a)
Q LN

(
z
(�−1)
(p,t)

)
∈ RDh (4)

k
(�,a)
(p,t) = W

(�,a)
K LN

(
z
(�−1)
(p,t)

)
∈ RDh (5)

v
(�,a)
(p,t) = W

(�,a)
V LN

(
z
(�−1)
(p,t)

)
∈ RDh (6)

where LN() denotes LayerNorm, a = 1, ...,A is an index over
multiple attention heads and A denotes the total number of
attention heads. The latent dimensionality of each attention head
is set toDh = D/A. The self-attention weights are calculated by
DOT_PRODUCT and the global spatial self-attention weights
α
(�,a)space
(p,t) are obtained by the following:

α
(�,a)space
(p,t) = σ

⎛
⎝q

(�,a)�

(p,t)√
Dh

·
[{

k
(�,a)
(p′,t)

}
p′=1,...,N

]⎞⎠ (7)

where σ denotes the Softmax activation function. Multiply-
ing the spatial self-attention weights with the corresponding
v-vectors yields the single-headed attention output as

s
(�,a)space
(p,t) =

N∑
p′=1

α
(�,a)
(p,t),(p′,t)v

(�,a)
(p′,t). (8)

By splicing the multiheaded attention, we can obtain the
following spatial self-attention matrix by MLP and layer nor-
malization:

z
(�)
(p,t) = WO

⎡
⎢⎢⎣
s
(�,1)
(p,t)

...

s
(�,A)
(p,t)

⎤
⎥⎥⎦ . (9)
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Fig. 3. Structure of the local extractor and interacting layer. EW+ denotes
the elementwise summing operation.

Fig. 4. Structure of the spatial restoration and fusion layer.

Fig. 3 shows the local extractor and interacting(LEI) structure,
which is represented by the mauve structure in Fig. 2. The LEI
consists of a 1 × 1 convolution layer, a 3 × 3 convolution layer,
swish activation functions and a weighting residual structure.
The LEI structure has two main roles. One is to extract local
features, and the other is to achieve full communication of mul-
tivariate information and capture dynamic correlations among
multivariates through convolutional channel transformation and
channel weighting. The local spatial feature extractor can be
expressed as

c(l) = SW
(
g
(
c
(�−1)
t

))
+ CWc

(�−1)
t (10)

where SW denotes the Swish activation function and g denotes
the convolutional calculation process, and CW denotes the
weights of different channels.

Fig. 4 shows the spatial restoration and fusion (SRF) structure,
which is represented by the dark blue structure in Fig. 2. The
SRF structure includes two inputs, which are the patch tokens of
global attention and local features output by the LEI structure.
Spatial feature restoration is first performed on the patch tokens
to obtain a global spatial feature representation with scale C ×
T ×H ×W through reshape and fold operations

ẑ
(�)
t = SR

[
z
(�)
(p,t)

]
(11)

whereSR denotes the spatial restoration process. The maximum
pooling and average pooling operations are performed on the
local features output from the LEI structure, and the focus on

the focal region is then obtained by convolving fc

ĉ
(�)

t = SM
(
fc

([
Avgpool

(
c
(�)
t

)
;Maxpool

(
c
(�)
t

)]))
� c

(�)
t

(12)
where Avgpool and Maxpool stand for average pooling and
maximum pooling, respectively. fc denotes spatial attention
convolution, whose convolution kernel is typically 5 or 7. SM
denotes sigmoid activation function. ẑ(�)t and ĉ

(�)

t are stitched,
and a dimensionality reduction operation by 1× 1 convolution
to obtain the final spatial feature representation. Finally, it is
repartitioned into patch token for temporal attention calculation

φ
(�,a)
(p,t) = SW

(
fφ

[
ĉ
(�)
t ; z

(�)
t

])
(13)

whereSW denotes the Swish activation function and fφ denotes
the reduced-dimensional convolution calculation process. Next,
φ
(l,a)
(p,t) is fed into the temporal attention layer to obtain the q/k/v

matrix of temporal self-attention

q
(�,a)
(p,t) = W

(�,a)
Q LN

(
φ
(�,a)
(p,t)

)
∈ RDh (14)

k
(�,a)
(p,t) = W

(�,a)
K LN

(
φ
(�,a)
(p,t)

)
∈ RDh (15)

v
(�,a)
(p,t) = W

(�,a)
V LN

(
φ
(�,a)
(p,t)

)
∈ RDh . (16)

Thus, the temporal self-attention weights are obtained as

α
(�,a)time
(p,t) = SM

⎛
⎝q

(�,a)�

(p,t)√
Dh

·
[{

k
(�,a)
(p,t′)

}
t′=1,...,T

]⎞⎠ (17)

s
(�,a)time
(p,t) =

F∑
t′=1

α
(�,a)
(p,t),(p,t′)v

(�,a)
(p,t′). (18)

The multiheaded temporal self-attention output is integrated
and a residual connection is formed with the input of the self-
attention branch to obtain the final output of the StHCA module

φ
′(�)
(p,t) = WO

⎡
⎢⎢⎣
s
(�,1)
(p,t)

...

s
(�,A)
(p,t)

⎤
⎥⎥⎦+ z

(�−1)
(p,t) . (19)

The self-attention branch of the StHCA module is sepa-
rately connected by computing the spatiotemporal self-attention
modules separately and then connecting them in sequence;
as a result, the input of the temporal attention module is the
output of the refined spatial attention module. This connec-
tion reduces the computational complexity of the model from
O((FN)2dmodel) toO((F 2 +N2)dmodel). Notably, practical ap-
plications of transformer models are limited by the expensive
computational resources of these models, which grow expo-
nentially for multivariate model computations. Separating the
self-attention connections greatly reduces the computational
effort of the self-attention model, which allows us to investigate
multivariate models using the self-attention model. Finally, the
resulting vector is passed through the MLP to obtain the final
encoding result z(�)(p,t) for the l-encoding block. This result is
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Fig. 5. Weighted and working schematic of homoscedastic uncertainty loss.

calculated by the following:

z
(�)
(p,t) = MLP

(
LN

(
φ
′(�)
(p,t)

))
+ φ

′(�)
(p,t). (20)

3) Decoding: Like the encoding block, each decoding block
has two inputs and outputs, which are the convolutional branch
and the self-attention branch. However, each decoding block
contains StHCA module parts. The StHCA module in the de-
coding block performs temporal self-attention calculation before
spatial feature calculation. In the training phase, at the end of
encoding, the last frame of the historical record is fed to the
convolution branch. At the same time, this frame is divided
into patches of size h× w, after which it is transformed into
tokens and position encoded, and finally fed into the spatial
self-attention branch. After that, the decoder performs a cyclic
decoding process based on the input tokens and the k/v vectors
provided by the encoder until all the data frames to be predicted
are obtained. As in the input section in Fig. 2, the output indicates
the obtained data frames, and the output is input to the decoder
to obtain the meteorological data frame at the next time point.
Using teacher forcing in the training process can accelerate the
model convergence. Specifically, the output generated by the
model is replaced with the ground truth at time t in the training
dataset as the input of the next time step. The output of the
decoder part is a token representation of the ocean multivariate
climate data at the future moment. Using a linear layer to
transform the token, followed by data space restoration, finally
yields the current prediction frame data of size m×H ×W is
finally obtained. Afterward, the output of the model is used as
input for a new test phase or with teacher forcing as input for
the training phase.

C. Homoscedasticity Uncertainty Loss

To balance the training loss of multivariate variables, we intro-
duced the homoscedasticity uncertainty loss function from the
multitask learning domain into the marine multivariate climate
prediction domain. The weighting process for multitask losses
is shown in Fig. 5. In the multitask learning domain, we usually

assign different weights to different tasks to balance the losses
of multiple tasks. For example, the loss of the task in this article
can be expressed by the following:

Loss = ωzLossz + ωtLosst + ωwLossw (21)

where ωz , ωt, and ωw denote the loss weights for the geopoten-
tial, temperature, and wind speed prediction tasks, and Lossz ,
Losst, and Lossw denote the loss for the geopotential, temper-
ature, and wind speed prediction tasks, respectively. However,
constant weights require extensive experimental validation, and
constant weights constrain the convergence direction of the
model, which in turn affects the final performance of the model.

In multitask joint learning, task-dependent uncertainty can
represent the relative difficulty between different tasks. The
covariance uncertainty is independent of the input and dependent
on the inherent uncertainty of the task. By transforming the
homoscedastic uncertainty into the loss weight, the model can
dynamically have the ability to adjust the loss. In this article,
we assume that the ocean climate data follow a Gaussian distri-
bution and derive the loss function based on homoscedasticity
uncertainty. Assume that fw(x) denotes the output of the neural
network when the weight is w and the input is x. For the
regression task, the Gaussian likelihood is estimated as the
following(σ is the observed noise scalar):

p (y | fwx) = N (
fw(x), σ2

)
. (22)

In multitasking, after the maximum likelihood is decomposed
into independent factors and fw(x) is defined as a sufficient
statistic, we obtain the multitasking likelihood as

p (y1, . . . , yk | fw(x)) = p (y1 | fw(x) . . . p (yk | fw(x))
(23)

where y1, . . ., yk are the outputs of the model task. Suppose the
model has two outputs with y1 and y2, whose outputs follow the
Gaussian distribution as follows:

p (y1, y2 | fw(x))

= p (y1 | fw(x)) · p (y2 | fw(x))

= N (
y1; f

w(x), σ2
1

) · N (
y2; f

w(x), σ2
2

)
. (24)

Taking the log-likelihood of the above function, the loss
function can be expressed as

= − log p (y1, y2 | fw(x))

∝ 1

2σ2
1

‖y1 − fw(x)‖2 + 1

2σ2
2

‖y2 − fw(x)‖2 + log σ1σ2

=
1

2σ2
1

L1(w) +
1

2σ2
2

L2(w) + log σ1σ2 (25)

where Lk(w) = ‖yk − fw(x)‖2 denotes the loss function of
the kth task. Therefore, the loss function in this article can be
expressed as

L (w, σ1, σ2, σ3)

=
1

2σ2
1

L1(w) +
1

2σ2
2

L2(w) +
1

2σ2
3

L3(w) + log σ1σ2σ3.

(26)
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When minimizing the objective function, σ1 and σ2 can be
regarded as the relative weights of L1(w) and L2(w), respec-
tively, and they can be adaptively adjusted according to the data.
If the noise parameter σ1 of variable y1 increases, the weight
of L1(w) decreases. Correspondingly, the corresponding loss
function weights increase if the noise decreases. The last term
is used as a regularization term to suppress excessive noise
increases.

III. EXPERIMENT

All experiments ran on a Linux system with an Intel(R)
Xeon(R) CPU E5-2680 v4 and Nvidia RTX 3090 GPU. The
programming language was Python, and the training framework
was PyTorch.

A. Dataset

In this article, we chose the ERA5 reanalysis dataset for ex-
perimental validation, which is available at https://cds.climate.
copernicus.eu. For three-dimensional fields, ERA5 has 13 ver-
tical horizontal scales: 50, 100, 150, 200, 250, 300, 400, 500,
600, 700, 850, 925, and 1000 hectopascals. Pressures in hec-
topascals are typically used as vertical coordinates rather than
physical heights. This has practical advantages, such as reducing
the number of required state variables and simplifying mass
conservation [47]. In the processed dataset, 1000 hPa is approx-
imately the pressure at sea level, 850 hPa is approximately the
pressure at 1.5 km, and 500 hPa is approximately the pressure
at 5.5 km. In this article, we select three variables, Z1000,
T100, and W1000, for the multivariate weather prediction ex-
periments at sea. Z1000 denotes the geopotential at a height
of 1000 hPa, which is a common variable used to encode the
pressure distribution at synoptic scales and is a continuous field
variable. This variable is strongly correlated with air pressure,
with larger values corresponding to higher air pressure. T1000
is the temperature at a height of 1000 hPa and approximates the
surface temperature of the ocean. This directly reflects ocean
climate change and is the most widely studied variable in the
ocean weather forecasting field. It is also a continuous field
variable. W1000 represents the speed of the sea wind at 1000 hPa
altitude. The size of the wind speed directly affects the formation
of waves at the sea surface, which is a more complex and variable
continuous field variable. In most physical NWPs and climate
models, geopotential, temperature, and wind are predicted state
variables. Ideally, differences in temperature lead to different air
pressure distributions, resulting in horizontal barotropic gradient
forces that drive the atmosphere to move from high-pressure to
low-pressure regions, forming sea wind. Therefore, the three
variables we have chosen are closely related, and we hope
to capture their intrinsic operation and development patterns
through our modeling design for accurate weather prediction.

As shown in Fig. 6, we selected a portion of the Philippine
Sea as the test area. This is one of the busiest offshore production
and route areas in the world, and we hope that our model can
accurately predict the SST, geopotential, and sea wind speed
in this area to aid in offshore production activities. Our exper-
imental region of interest has a latitude and longitude range of

Fig. 6. Experimental area selection. The red box in the figure indicates the
portion of the Philippine Sea selected for the experiments in this article.

Fig. 7. Rules for dataset partitioning.

[9◦45′N − 25◦30′N, 128◦E − 143◦E]. The data are divided by
0.25◦ to obtain a grid of 60*60 points. The experimental time
interval is chosen as 1980–2022, encompassing approximately
60 000 pieces of trivariate historical data. We selected 40 years
of data from 1980–2020 as the training and validation set, and
two years of data from 2021–2022 as the test set. The dataset
is processed using a sliding window with a sliding interval of
1 day, i.e., 4 time points, corresponding to s = 4 in Fig. 7. We set
up the model to predict weather data for the next 3 days (12 time
points) and 5 days (20 time points) through 7 days of historical
data (28 time points). For example, the first test time point of the
test set after sliding window processing is 00 UTC on January
1, 2021, and the ending point is this time plus the historical time
window, i.e., for the 5-day task, the starting point of the first test
date is 00 UTC on January 8, 2020 and the ending point of the
first test date is 23 UTC on January 12, 2020.

B. Evaluation Metrics

We chose to use the root-mean-square error (rmse), mean ab-
solute error (MAE) and anomaly correlation coefficient (ACC)

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
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TABLE I
RMSE OF 3/5-DAY EXPERIMENTS WITH DIFFERENT ALGORITHMS

to evaluate the effectiveness of our algorithm. The rmse rep-
resents the standard deviation between the predicted and true
values. It is a common loss function and evaluation metric in
the data generation field. To reflect the position differences at
different latitudes, we use the latitude-weighted rmse, which is
calculated as follows:

RMSE=
1

Npre

Npre∑
i

√√√√ 1

NlatNlon

Nlat∑
j

Nlon∑
k

L(j)(fi,j,k − ti,j,k)
2

(27)
where f denotes the predicted result of our model and t denotes
the truth value of the dataset.L(j) is the latitude weighting factor
for the latitude at the jth latitude index

L(j) =
cos(lat(j))

1
Nlat

∑Nlat

j cos(lat(j))
. (28)

The MAE indicates the mean value of the absolute value of
the error and is a commonly used error evaluation indicator. The
MAE evaluates the degree of deviation between the predicted
value and the true value, and the prediction error can be reflected
by the positive effect of the absolute value. In this article, we
use the latitude-weighted MAE, defined as follows:

MAE =
1

Npre

Npre∑
i

1

NlatNlon

Nlat∑
j

Nlon∑
k

L(j) ‖fi,j,k − ti,j,k‖ .

(29)
The anomaly correlation coefficient (ACC) is one of the most

widely used measures for verifying spatial fields. It is the spatial
correlation between forecast anomalies and verifying analysis
anomalies relative to climatology. The ACC indicates how well
the forecast anomalies represent the observed anomalies and
shows how well the predicted values from a forecast model “fit”
with the real-life data. The anomaly correlation coefficient can
be defined as

ACC =

∑
i,j,k L(j)f

′
i,j,kt

′
i,j,k√∑

i,j,k L(j)f
′2
i,j,k

∑
i,j,k L(j)t

′2
i,j,k

. (30)

C. Experimental Results and Analysis

In our experiments, we used StHCFormer and other baseline
models to generate the distributions of three continuous field
variables, Z1000, T1000, and W1000, with lead times of 3
and 5 days, respectively, for some areas of the Philippine Sea.
Based on the experimental results, we performed comprehensive

performance comparison analysis, ablation experiment analysis,
model complexity analysis, robustness analysis, and visualiza-
tion analysis to demonstrate that our model performs better than
other models under the above aspects.

1) Comprehensive Performance Comparison: Tables I and II
compare the accuracy of the data generated by StHCFormer and
multiple baseline models with lead times of 3 and 5 days. The
rmse error values of the CNN predictions for Z1000 and T1000
with a three-day lead time are 1046.5 and 6.54, respectively,
which are more than three times those of the StHCFormer model.
CNN performs so poorly because it can extract only local spatial
features and cannot explore temporal patterns. However, accord-
ing to [47], marine weather does not exhibit large abrupt changes
that occur in less than 6 hours, especially the geopotential and
SST. Consequently, the distributions of weather elements in the
previous frame and the next frame are tightly correlated, and the
CNN model, which neglects temporal patterns, is not useful for
weather prediction.

ConvLSTM performs better than CNN, with predicted rmses
of 362.97, 2.43, and 4.80 for the three-day lead times Z1000,
T1000, and W1000, respectively. ConvLSTM can capture spa-
tiotemporal features, but due to the complex structure of LSTM
itself and the gradient propagation defect of ConvLSTM, it
cannot superimpose multiple layers to extract global spatial
information and long-term dependencies, so it cannot achieve
good prediction results in large spatiotemporal ranges. In addi-
tion, ConvLSTM cannot fuse and analyze multivariate relation-
ships, so ConvLSTM does not perform as well as STDGN and
StHCFormer. Fig. 8 also shows that no significant short-term
prediction gap exists between the prediction effects of ConvL-
STM and our method, whereas the long-term prediction gap
gradually appears over time.

Both the STDGN and our model are able to capture longer
temporal dependencies through the encoding-decoding struc-
ture, and both exhibit better long-term effect prediction perfor-
mance. STDGN obtains the time-space features and multivariate
coupling relationships through temporal attention, spatial atten-
tion and channel attention but neglects local features. Focusing
on only global spatial features and neglecting local spatial
features, especially the more drastic changing field variables,
causes the prediction accuracy of STDGN to be lower than that
of StHCFormer. StHCFormer outperforms all baseline models
by extracting more comprehensive spatial features and capturing
time-dependent relationships and multivariate channel coupling
linkages through the StHCA module.
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TABLE II
MAE OF 3/5-DAY EXPERIMENTS WITH DIFFERENT ALGORITHMS

TABLE III
ACC OF 3/5-DAY EXPERIMENTS WITH DIFFERENT ALGORITHMS

Fig. 8. Prediction of each algorithm for each day within a 5-day lead time.
The three on the left are Z1000, the three in the middle are T1000, the three on
the right are W1000, and the rows from top to bottom are rmse, MAE, and ACC.

General continuous field variables vary smoothly, so their
prediction is relatively simple, and the rmse and MAE can
adequately measure the prediction effect. However, the predic-
tion of field variables with more dramatic fluctuations, such as
wind fields with large fluctuations in a limited range, is more
difficult. In addition, measuring the algorithm gap using rmse
and MAE values is already difficult, so we instead used the
ACC to further measure the robustness of the relevant algorithms

for multivariate weather prediction fields. Table III presents the
evaluation results of StHCFormer and other algorithms using the
ACC as the metric. The rmse values of CNN and StHCFormer
for W1000 are 4.45 and 3.73, and the MAE values are 3.58 and
3.01, respectively, when the lead time is 3 days. These values do
not greatly differ, but the ACC values of CNN and StHCFormer
are 0.12 and 0.3, respectively. This demonstrates that predicting
a spatial-temporal field with such a sharp fluctuation as the
wind field is truly difficult, and ACC metric can be used to
better evaluate the predictive ability of the model. It also shows
that our model achieves better wind field prediction results
than other models. Comparing rows 4 and 5 of Tables I–III
shows that integrating multivariate features, starting from the
distribution of geopotential and temperature, can help the model
better capture the evolution trend of the wind field. In terms
of overall performance, StHCFormer outperforms all baseline
models in marine multivariate weather prediction, and the results
of model performance evaluation based on ACC and rmse/MAE
are basically the same.

Fig. 8 shows the daily predictions of each model when the lead
time is 5 days. The figure demonstrates that as the time increases,
the prediction effect of each model gradually deteriorates be-
cause the temporal features of longer times are more difficult to
capture than those of shorter times. CNN exhibits a much higher
prediction error as the time increases because it does not cap-
ture the time dependence. ConvLSTM is able to compete with
STDGN and StHCFormer in short-term prediction, but as the
time increases, the prediction effect of ConvLSTM struggles to
meet the demand due to ConvLSTM’s own shortcomings. In the
ACC graph of W1000 in particular, both CNN and ConvLSTM
are out-of-control because predicting the wind field is extremely
difficult in both temporal and spatial dimensions. Both our model
and STDGN clearly perform better than CNN and ConvLSTM,
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TABLE IV
ABLATION EXPERIMENTS

which is consistent with the previous statement. Our model has
an especially clear advantage over the other models in wind field
prediction. This is because the wind field is more volatile than
continuous spatiotemporal fields such as Z1000 and T1000, and
obtaining sufficient spatiotemporal feature information from the
wind field for accurate prediction as a single variable is difficult.
However, StHCFormer achieves leading results in wind field
prediction by separating the auxiliary components from Z1000
and T1000 through the built-in LEI module and then balancing
the multivariate relationships through the HUL function.

2) Model Complexity Comparison: To verify that our model
has low computational complexity, we designed experiments to
illustrate the superiority of the model in terms of its number
of parameters and weight size. Since the CNN we designed is
simpler and includes base convolutional layers, it has a lower
number of parameters, only approximately 2 M. However, even
with a large model, improving the period prediction effect
is difficult because the CNN lacks the ability to capture the
time-scale features. ConvLSTM has a similar reason. Even if
the depth of the model is adjusted and the number of network
layers is increased, further improving the prediction effect is
difficult due to the defects of the model itself. Self-attention-
based models perform better than CNN and ConvLSTM because
they can effectively capture spatial features and short and long
temporal features. STDGN is a purely self-attention model with
18.84 M parameters and 26.7 M weights, while StHCFormer has
15.4 M parameters and 21.1 M weights. In terms of inference
time, STDGN took 0.29 s and StHCFormer took 0.36 s when
predicting weather conditions for the next 5 days. Our model
has a slightly longer prediction time than STDGN because it
uses a parallel strategy of self-attention and convolution for
feature extraction and reconstruction, and the operation of its
parallel structure adds additional runtime. However, our model
outperforms STDGN both in terms of prediction accuracy and
number of parameters. In some end devices, the restricted hard-
ware facilities are very demanding on model design, whereas our
multivariate prediction model can be explored for later practical
applications.

3) Ablation Experiment: To visually demonstrate the effec-
tiveness of our proposed method, we conducted ablation ex-
periments for each module. This experiment was conducted
based on the three-day lead time prediction. Table IV shows
the ablation experiment results. The encoder–decoder model
is the initial model, and we build the overall architecture of
the encoder–decoder for spatiotemporal prediction based on the
video classification model TimeSformer. The StHCA module
is our proposed spatiotemporal hybrid convolutional attention

module, and HUL is the homoscedastic uncertainty loss function
we introduced. As shown in Table IV, after integrating the hybrid
spatio-temporal attention mechanism, the rmse of temperature
is reduced from 1.97 to 1.79 and the rmse of wind speed is
reduced from 4.42 to 3.85, improving the prediction effect by
approximately 9% and 13%, respectively, while the rmse of
geopotential prediction remains unchanged. This indicates that
our StHCA module can effectively capture the full range of spa-
tial relationships while accounting for the coupling correlations
among multiple variables to improve the prediction accuracy.
Integrating HUL further improved the prediction accuracy of
the three tasks by dynamically adjusting the task loss weights.
This is because the losses of different variables have different
numerical scales at different stages of model training. When
simple summation is used as the loss treatment, the large nu-
merical loss scales for certain channels suppress the impacts
of small-scale loss. When HUL is used, HUL automatically
weights the losses of each variable based on homoscedasticity
uncertainty, thus unifying the losses of each variable in the
same order of magnitude, ensuring losses with small gradients
are not offset by losses with large gradients and improving the
generalizability of the learned features.

4) Robustness Analysis: To demonstrate StHCFormer’s ro-
bustness in multivariate prediction, we trained the model for
each variable separately for testing, and the methods previously
used for multivariate prediction, including the homoscedasticity
uncertainty loss function and the multivariate fusion module,
were of course eliminated. Rows 4 and 5 of Tables I–III demon-
strate that our multivariate prediction model works better than
the unitary prediction model in most cases. This indicates that
our model extracts a positive influence relationship from the
multivariate coupling, especially for the wind field, where the
ACC improves by 47% and 167% for the 3-day and 5-day lead
time cases, respectively. This also indicates that StHCFormer
exhibits good robustness in the channel dimension and good
generality for generating various multivariate spatiotemporal
fields simultaneously.

The last two rows of Tables I–III show a comparison of the
accuracies of the StHCFormer direct prediction results for three
days and the direct prediction results for the third day at five days.
The two methods produce essentially the same results when
generating Z1000, T1000, and W1000 temporal and spatial field
data at three-day lead times. The consistency of these three-
day lead-time prediction results show that the proposed deep
generative network has good robustness in the time dimension
and can accurately predict short-term weather conditions while
accurately generating long-term prediction results. This makes
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Fig. 9. Comparison of the results generated by different models for the Z1000
geopotential field. The top row shows the true values of the ERA data, including
times t = 0 h, t = 6 h, t = 1 d, t = 3 d, and t = 5 d. The different time points
can reflect the different performances of the model in the long and short terms.
The subsequent three rows show the rmse loss of the prediction results of CNN,
STDGN, and StHCFormer. Brighter colors indicate larger errors.

obtaining short-, medium-, and long-term marine weather data
in a single training session without training the model separately
for each lead time possible.

The robustness of StHCFormer in the space-time and channel
dimensions exceeds that of all baseline models. There are several
possible reasons for this: first, StHCFormer considers more
comprehensive information and is less susceptible to small-scale
errors than the CNN. Second, in contrast to ConvLSTM, the
StHCA module used in StHCFormer captures the long-range
dependencies of the data in multiple dimensions, thus mitigating
error accumulation during the generation process. The convo-
lutional branch of StHCFormer enables more adequate local
spatial features to be extracted than STDGN, forming a focused
capture of local hotspots and their surrounding features. StHC-
Former thus exhibits better robustness in the spatial domain.

5) Visualization Analysis: To further demonstrate the advan-
tages of StHCFormer in marine multivariate climate prediction,
we visualize and compare the prediction results of the CNN,
STDGN, and StHCFormer algorithms on the Philippine Sea
dataset. The images are divided into three parts, Z1000, T1000,
and W1000. Each part contains 4 rows of images. The first row
is the true value of ERA, and the subsequent three rows are
the predicted rmse visualization results of CNN, STDGN, and
StHCFormer. For each row, the corresponding schematics for
t = 0 h, t = 6 h, t = 1 d, t = 3 d, and t = 5 d are depicted
from left to right. Figs. 9–11 demonstrate that the loss of each
algorithm increases with time, and CNN is the most unstable of
the algorithms. This is because CNN is able to extract spatial
features but cannot draw valid time-series information from
historical data to help in prediction. Therefore, CNN performs
fine in short-term prediction, but its long-term performance is

Fig. 10. Comparison of the results generated by different models for the T1000
temperature field. The top row shows the true values of the ERA data, including
time t = 0 h, t = 6 h, t = 1 d, t = 3 d, and t = 5 d. The different time points
can reflect the different performances of the model in the long and short terms.
The subsequent three rows show the rmse loss of the prediction results of CNN,
STDGN, and StHCFormer. In the rmse loss graph, a brighter color indicates a
larger error. Red circles indicate some local hotspot locations.

poor. The STDGN and StHCFormer algorithms have better
results in long-term prediction, which is consistent with the
experimental results in the previous section. This is because
StHCFormer’s unique StHCA module allows it to better focus
on local information and therefore better grasp salient features.
As shown by the red circles in Figs. 10 and 11, StHCFormer
predicts local hotspots well. Overall, our proposed model can
better extract spatiotemporal features and thus more accurately
predict ocean weather than other models.

IV. DISCUSSION

The numerous trials stated above successfully highlight the
benefits of our approach from a variety of angles. Traditional
marine weather prediction methods require massive arithmetic
support. Standard machine learning approaches are difficult to
deal with massive data and fully utilize it to increase prediction
accuracy. It is difficult for them to satisfy the expanding appli-
cation demands. CNN cannot capture the temporal relationship
based on deep learning methods, while ConvLSTM struggles
with large time series when gradient propagation is used. As
demonstrated in Figs. 8–11, the forecast accuracy of these two
techniques drops rapidly as time passes. STDGN is one of
the current SOTA algorithms in the field of multivariate ocean
weather prediction, however the prediction impact is similarly
poor due to the pure attention mechanism’s lack of attention
to local features. Our proposed model combines the strengths
of convolution and self-attention: using self-attention to capture
long-term temporal dependence and global spatial connection;
and using convolution to capture local spatial hotspots. As shown
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Fig. 11. Comparison of the results generated by different models for the
W1000 wind field. The top row shows the true values of the ERA data, including
time t = 0 h, t = 6 h, t = 1 d, t = 3 d, and t = 5 d. The different time points
can reflect the different performances of the model in the long and short terms.
The subsequent three rows show the rmse loss of the prediction results of CNN,
STDGN, and StHCFormer. In the rmse loss graph, a brighter color indicates a
larger error. Red circles indicate some local hotspot locations.

in Figs. 9–11, our model produces the best results, and it also
produces more fantastic outcomes in specific local regions.
In terms of algorithmic efficiency, and under the premise of
ensuring prediction accuracy, our model has less parameters
than STDGN. As shown in Tables I–III, our model is resilient
in long and short time-series prediction, as well as multivariate
prediction, thanks to the spatiotemporal hybrid convolutional
attention module, LEI unit, and HUL loss. The ablation ex-
periments also show the efficacy of our suggested strategy for
multivariate marine weather prediction. Therefore, StHCFormer
can better extract the spatiotemporal coupling aspects of marine
weather, capture multivariate dynamic linkages, and improve
multivariate marine weather forecast accuracy.

V. CONCLUSION

Accurate marine weather prediction is important for extreme
weather warning, marine environmental protection and offshore
production activities, while most of the existing data-driven
models are multipoint prediction or univariate prediction meth-
ods, which have difficulty meeting the practical needs of marine
climate prediction. In this study, from the perspective of multi-
variate space-time fields, we used ERA5 reanalysis data to fore-
cast the weather in some sea areas of the Philippine Sea. Firstly,
to predict multivariate ocean weather on a regional scale, we
developed a prediction framework, called StHCFormer, based
on space-time hybrid convolutional self-attention. In the convo-
lution branch, we achieved multivariate information coupling
by the LEI deflating feature channels and at the same time,
enabled the network to acquire evolutionary features of local
regions in space. In the self-attention branch, we used temporal

self-attention to capture long-term dependencies and spatial
self-attention to obtain global spatial feature representations.
The SRF layer was then created in order to achieve an organic
merging of the convolution branch and the self-attention branch,
which is necessary to better capture the dynamic correlation of
multivariate spatiotemporal data. Experiments demonstrate that
our model can extract more appropriate spatio-temporal char-
acteristics by space-time hybrid convolutional self-attention,
which has a clear improvement effect on marine weather predic-
tion. To balance the loss of multivariate networks in the training
process, we introduced the homoscedasticity uncertainty loss
function in the multitask training domain to realize the dynamic
adjustment of multivariate loss weights to achieve the mutual
positive effects of multivariate loss. These deliberate innovations
allowed StHCFormer to capture more complete multivariate
spatiotemporal variables and accomplish more accurate ma-
rine weather forecast. Experiments demonstrate that in 3-day
and 5-day lead time forecasts, StHCFormer outperforms other
classical methods.

Based on this research, we anticipate that StHCFormer will
perform better in the real-world application of ocean climate
prediction if we carry out further exploration in our follow-up
work. These additional explorations should focus on avoiding
the detrimental effects of cumulative errors and optimizing
schemes for additional variables. For end-device applications,
it is also critical to reduce the model’s processing volume and
speed up inference.
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