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Large Kernel Separable Mixed ConvNet for Remote
Sensing Scene Classification

Keqian Zhang , Tengfei Cui , Wei Wu , Xueke Zheng , and Gang Cheng

Abstract—Among tasks related to intelligent interpretation of
remote sensing data, scene classification mainly focuses on the
holistic information of the entire scene. Compared with pixel-level
or object-based tasks, it involves a richer semantic context, making
it more challenging. With the rapid advancement of deep learning,
convolutional neural networks (CNNs) have found widespread ap-
plications across various domains, and some work has introduced
them into scene classification tasks. However, traditional convolu-
tion operations involve sliding small convolutional kernels across an
image, primarily focusing on local details within a small receptive
field. To achieve better modeling of the entire image, the smaller
receptive field limits the ability of convolution operation to capture
features over a broader range. To this end, we introduce large ker-
nel CNNs into the scene classification task to expand the receptive
field of the mode, which allows us to capture comprehensive nonlo-
cal information while still acquiring rich local details. However, in
addition to encoding spatial association, the effective information
within the feature maps is also strongly channel related. Therefore,
to fully model this channel dependency, a novel channel separation
and mixing module has been designed to realize feature correlation
in the channel dimension. The combination of them forms a large
kernel separable mixed ConvNet, enabling the model to capture
effective dependencies of feature maps in both spatial and channel
dimensions, thus achieving enhanced feature expression. Extensive
experiments conducted on three datasets have also validated the
effectiveness of the proposed method.

Index Terms—Channel separation and mixing, large kernel
convolution, remote sensing, scene classification.

I. INTRODUCTION

A S A basic and challenging task in remote sensing commu-
nity, remote sensing scene classification receives growing

attention, which aims to understand the semantic content in
scene images and assign corresponding labels, and has been
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widely applied to geological survey [1], urban planning [2], [3],
[4], [5], disaster monitoring [6], and other fields [7], [8], [9]. Re-
cently, with the development of remote sensing data acquisition
technologies [10], [11], [12], more and more available data have
emerged, providing sufficient data support for research in this
direction, so a lot of research work has been proposed to better
understand the corresponding scene information. These methods
can be roughly divided into three main categories according
to different means of feature extraction: handcrafted-feature-
based methods [13], unsupervised-feature-learning-based meth-
ods [14], [15], and deep-feature-learning-based methods [16],
[17], [18].

Traditional scene classification predominantly relies on hand-
crafted features. These methodologies center around lever-
aging substantial engineering expertise and domain-specific
knowledge to design various human-engineered features, such
as color, shape, spatial relations, and spectral characteristics.
Among these, color histograms have been employed [19] for
image classification utilizing the enhanced color structure code,
augmented by grid and vector analyses. Cheng et al. [20] de-
vised a pragmatic rotation-invariant framework grounded in
an ensemble of partial detectors. This framework facilitates
the detection of objects or recurring spatial patterns across a
predefined range of orientations. Aptoula [21] proposed the
utilization of global morphological texture descriptors for tasks
within remote sensing image processing. This initiative delves
into the viability of multiscale texture descriptors. In [22], a
more efficient sparse model was trained through a coarse-to-fine
framework, using an unsupervised hidden layer autoencoder to
detect redundancies. Then, a supervised single hidden layer
neural network was used to train fine sparse and activation
vectors, improving classification performance on the UC Merced
land use (UCM) dataset.

Although the above methods based on handcrafted features
have made progress on the scene classification problem;
however, human participation in the feature design process
significantly affects the feature expressiveness and effectiveness
for classification tasks, especially when the scene becomes
more complex, the representational power of handcrafted
features becomes limited or even deficient [23], [24]. To
remedy this constraint, the pursuit of automatic feature learning
from images emerges as a more suitable approach. Recently,
unsupervised-feature-learning-based methods have become an
attractive alternative to handcrafted-feature-based methods,
yielding noteworthy advancements in remote sensing scene
classification endeavors. By acquiring features from images
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via learning, as opposed to manual design, the potential to
obtain more discriminative features arises, which aligns more
fittingly with the current problem. Classical unsupervised-
feature-learning-based methods include and are not limited to
principal component analysis [25], [26], [27], [28], [29], [30],
[31], k-means clustering [32], [33], [34], [35], [36], [37], sparse
coding [38], [39], [40], [41], [42], and autoencoders [43], [44].
Chaib et al. [45] employed scale-invariant feature transformation
and robust feature operators to extract local features from
satellite imagery. Subsequently, a sparse principal component
analysis was harnessed to assimilate category-specific
information and facilitate comprehensive classification. The
widely recognized bag-of-visual-words paradigm found
application in remote sensing scene classification assignments,
driven by its straightforwardness and efficacy [46], [47],
[48]. Cheriyadat [14] employed sparse coding to acquire
a suite of bias functions from images. Subsequently, these
bias functions were leveraged to encode low-level features,
generating novel sparse representations. Nonetheless, the lack
of label information limits the further development of the
methods, which hinders to the improvement of classification
performance.

At present, most advanced methods usually rely on deep
learning to obtain good feature representations. Compared with
the previous method, deep-feature-learning-based methods can
not only automatically extract the abstract features contained in
the image, but also can better modify the model through the deep
structure of the neural network and label information, so as to
obtain a more powerful feature representation [49], [50], [51],
[52]. Yu and Liu [53] leveraged a pair of pretrained convolutional
neural networks (CNNs) to acquire profound features from orig-
inal and processed images. Subsequently, an extreme learning
machine was employed to classify the amalgamated features. In
addition, an improved pretraining AlexNet was proposed [54],
which combined the scale pooling–spatial pyramid pooling [55]
and side supervision to solve the problem of overfitting and
effectively use multiscale information to represent the seman-
tic features of the scene, achieving good performance. Anwer
et al. [56] substantiated that a CNN trained on mapped coded
images incorporating explicit LBP-based texture information
offers supplementary insights to the deep model. They further
investigated the influence of diverse network fusion architec-
tures on classification outcomes. Although the methods men-
tioned above have made significant progress with the robust
feature extraction and information representation capabilities
of CNNs, some challenges remain to be solved. First, most of
these approaches employ small convolution kernels for feature
extraction. This practice hampers the comprehensive modeling
of spatial correlations across entire scene images during the
feature extraction process. Currently, some work has tried to
use large kernel convolution to improve the ability of CNN to
capture long-range dependencies, and some progress has been
made. However, larger convolution kernels introduce more pa-
rameters and increase the difficulty of model optimization [57],
[58]. Therefore, how to construct a remote sensing image scene
classification framework based on large kernel convolution is
worthy of study. Second, although the large kernel convolution

can encode spatial association, its independence in the channel
dimension makes it insufficient to model channel correlation, so
it is difficult to ensure that the extracted features are sufficient
enough for the classification task.

To solve the above problems, this article introduces a novel
large kernel separable mixed ConvNet (LSMNet) to capture spa-
tial and channel relationships within scene images. The primary
contributions of this study are delineated as follows.

1) To make up for the limited receptive field of traditional
small convolution kernels and the difficulty of training
large convolution kernels, a deepwise large kernel con-
volution is introduced. On one hand, it captures non-
local information under a larger receptive field, on the
other hand, it reduces the parameters of large kernels.
When combined with conventional small kernel convo-
lutions, it enables the acquisition of global information
and local detail information simultaneously in spatial
dimension.

2) The designed channel separation and mixing module is
used to capture interchannel dependency relationships,
thereby addressing the limitations of the aforementioned
convolutional operations in the spectral dimension. The
combination of them provides a more comprehensive
modeling of both the spatial and spectral features of the
data.

3) By combining the above modules, we propose an LSM-
Net, which better captures holistic information in diverse
scenes, reduces the optimization challenges associated
with applying large kernel convolutions in scene classi-
fication models, and models the feature correlations be-
tween channels. Excellent experimental results on multi-
ple datasets also validate the effectiveness of the proposed
method.

II. PROPOSED METHOD

A. Overall Structure of Proposed Method

The schematic representation of the proposed LSMNet frame-
work is depicted in Fig. 1. Given a remote sensing scene image
denoted as I ∈ RC×H×W , where H , W , and C, respectively,
signify the image’s height, width, and channel count. In the case
of a color image, C is equal to 3. The initial step of LSMNet
involves a preliminary feature mapping conducted by a fea-
ture extraction module, yielding the resultant extracted features
denoted as Z0 ∈ RD0×H0×W0 . Subsequently, a feature fusing
block (FFB), comprising two large kernel separation mixing
layers and a Fused-MBConv [59], is devised. This block operates
on the input Z0 to yield a more intricate feature representation
denoted asZ ∈ RD1×H1×W1 . Following the execution of several
FFBs, an enriched feature encoding is attained, with the detailed
configuration depicted in Fig. 1(a). The large kernel separation
mixing layer incorporates large kernel deepwise convolution
and a channel separation and mixing module to undertake
feature modeling across spatial and channel dimensions, while
Fused-MBConv is used to selectively enhance the local details
of features. Finally, the enriched feature expression is sent to the
classifier to obtain the classification result.
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Fig. 1. (a) Schematic illustration of the proposed LSMNet. (b) Composition of large kernel separation mixing layer. (c) Schematic illustration of channel separation
and mixing module. (d) Structural composition of pointwise MLP. (e) Structural composition of Fused-MBConv.

B. Channel Separation and Mixing Module

A channel separation and mixing module is employed to
capture feature dependencies within the channel dimension
more effectively. This module encompasses channel separating,
pointwise multilayer perceptron (pointwise MLP), and channel
mixing, as depicted in Fig. 1(c). More specifically, the input
feature Z0 undergoes an initial partitioning into three distinct
feature subsets: Z1

0 , Z2
0 , and Z3

0 . Subsequently, a pointwise
MLP executes channel modeling across these three separate
feature groups, facilitating the amalgamation of features within
the channel dimension. Ultimately, a channel mixing operation
facilitates information interchange across the concatenated fea-
tures. This process can be formally expressed as follows:
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where σ is SiLU nonlinearity function [60], W0 and W1 are
pointwise convolutions, and Split(·) and Shuffle(·) represent the
splitting and shuffling operations on the channel dimension. The
shuffling fuser is repeated and arranged before and after the large
kernel deepwise convolution to learn visual representations.

C. Large Kernel Deepwise Convolution

Traditional CNNs extract features by stacking multiple small
convolutional kernels, with the sizes of these kernels predomi-
nantly focused around 3 × 3, 5 × 5, or 7 × 7 dimensions [61],
[62]. Nevertheless, several investigations [63] have proved that

Fig. 2. Framework of large kernel deepwise convolution.

employing convolution with large kernels is more effective in
capturing long-range dependencies than stacking small kernels,
so as to better model the spatial context relationship in the
images. However, incorporating large kernel convolution in-
evitably intensifies the challenge of model training. To solve the
above problem, a large kernel deepwise convolution is integrated
into the large kernel separation mixing layer (as illustrated in
Fig. 2). This operation not only expands the receptive field
effectively, enabling the encoding of comprehensive and ac-
curate spatial structural information but also significantly re-
duces the number of parameter, thereby mitigating challenges
associated with training large kernels. More specifically, the
feature Ẑ0, derived from the channel separation and mixing
module, is passed through a convolutional layer comprised of m
convolution kernels, whose size is K ×K × 1, resulting in the
evolved feature Z1. After the processing of channel separation
and mixing module and large kernel deepwise convolution, the
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Fig. 3. Sample images of the UCM dataset. Two images of each class are
exhibited.

original feature maps are feature associated in both channel and
spatial dimensions. This solves the previously mentioned prob-
lems of small receptive fields and strong channel independence,
providing better discriminative features for the subsequent clas-
sification.

Due to the localized correlations present in remote sensing
scene images, the FFB supported by large-kernel convolutions
cannot fully utilize spatial local features. Furthermore, it requires
enhanced capability to spatially model the features, aiming to
attain improved performance in scene classification. To this
end, a convolutional block that captures local spatial informa-
tion is integrated into the model to enhance local connectivity.
Specifically, after two large kernel separation mixing layers, a
Fused-MBConv [its specific structure is shown in Fig. 1(e)]
is introduced, which consists of a convolution with a size of
3×3, a squeeze-and-excitation (SE) layer [64], and another
convolution with a size of 1×1. The first convolution is employed
to capture local detailed features, then utilizing an SE layer
for spatial attention, enabling the model to focus on significant
regions. Subsequently, a 1×1 convolution is applied to restore
the channel dimensions of the feature map.

III. EXPERIMENTS

A. Datasets Descriptions and Evaluation Metrics

1) Datasets Descriptions: To test the effectiveness of the
proposed method, extensive experiments are conducted on three
public datasets, including the UCM dataset, the aerial image
dataset (AID), and the NWPU-RESISC45 (NWPU) dataset.

1) As one of the widely recognized datasets in scene classi-
fication tasks, the UCM dataset [65] consists of 2100 images
with a spatial resolution of 0.3 m, including 21 scene categories,
including golf course, overpass, river, runway, etc., which is
shown in Fig. 3. This dataset is derived from aerial orthophotos
downloaded from the United States Geological Survey, and its
size is 256 × 256 pixels.

2) Fig. 4 shows that the AID [66] from Wuhan University
contains 10 000 images covering 30 scene categories, such as
airports, bare ground, beaches, and centers. Compared with

Fig. 4. Sample images of the AID. Two images of each class are exhibited.

Fig. 5. Sample images of the NWPU dataset. Two images of each class are
exhibited.

the UCM dataset, it faces more significant challenges in the
scene classification task because the images of the AID come
from multiple remote sensing sensors, and the spatial resolution
ranges from 0.5 to 8 m, resulting in substantial intraclass diver-
sity. Moreover, the number of samples in each category varies
from 220 to 420, a significant difference in sample quantities
among classes. Consequently, the AID presents a higher level
of classification difficulty.

3) The NWPU dataset [47], created by Northwestern Poly-
technical University and demonstrated in Fig. 5, is a large-scale
scene classification dataset known for its rich scene diversity
and instance variability. This dataset encompasses 45 categories:
airplane, beach, bridge, church, and more. There are 700 images
in each class with the size of 256 × 256 pixels. Compared
with other datasets, first, it showcases a vast range of spatial
resolutions, spanning from 0.2 to 30 m. Moreover, its scene
diversity and the total number of images significantly surpass
other datasets. Finally, it demonstrates pronounced variations
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Fig. 6. Influence of the size of K on the classification accuracy. (a) AID. (b) UCM datasets. (c) NWPU dataset.

in translation, viewpoint, object pose, lighting, background,
and occlusion. Therefore, this dataset is recognized as a very
challenging dataset.

2) Evaluation Metrics: To establish the superiority of the
proposed method in terms of classification performance com-
pared with other state-of-the-art methods, we incorporate both
quantitative and qualitative analyses during the experimental
phase.

1) In terms of quantitative assessment, we utilize a
widely recognized classification metric—overall accuracy
(OA)—to demonstrate the classification results of each
method. OA is the ratio of correctly classified samples to
the total number of samples within the dataset.

2) In qualitative analysis, we visualize the confusion matrix,
enhancing the intuitive understanding of the proposed
method’s classification results across diverse datasets.
Specifically, the columns of the confusion matrix delineate
the model’s predictive outcomes, while the rows illustrate
the true sample distribution in the dataset. Consequently,
the diagonal cells of the confusion matrix represent the
percentage of correctly identified samples.

B. Analysis of Experimental Parameters and Computational
Consumption

As discussed in Section II-C, the size of the large kernel
convolution is a critical parameter that governs the receptive field
and the efficiency of feature extraction within the corresponding
convolution operation. To scrutinize the effect of varying K
on classification performance, we set K to [3, 5, 7, 9, 11]
and perform pertinent experiments across three datasets. The
graphs in Fig. 6 illustrate that as K grows from smaller to larger
values, classification accuracy correspondingly improves across
all three datasets. This trend arises because a larger K equips
the corresponding large kernel deepwise convolution with an
expanded receptive field, facilitating the capture of extensive
long-range dependencies throughout the scene. The subsequent
Fused-MBConv compensates for the lack of locally detailed
features. As a result, for subsequent experimentation, we opt
to set the K size to 13.

TABLE I
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE UCM

DATASET

To demonstrate the running time and the memory usage of the
model, relevant statistics are performed on the UCM dataset. The
training time is 46.21 s and the testing time is 7.08 s. The floating-
point operations and parameters of the model are 9143.87 and
2.15 M, respectively (the unit M represents 1× 106). From
the obtained results, the model runs efficiently and requires a
moderate amount of memory, which is sufficient for subsequent
applications.

C. Comparison With State-of-The-Art Methods

In this section, to validate the classification effectiveness of
LSMNet, some state-of-the-art methods are selected for compar-
ison. To this end, we introduce two widely used classification
metrics: OA and confusion matrix. The analysis of qualitative
indicators are reported in Tables I–III, while the specific classi-
fication results on each dataset are presented in Figs. 7–9.

1) Quantitative Indicators Evaluation: To evaluate the clas-
sification performance of the proposed method, Table I gives
the comparative evaluation with several state-of-the-art classifi-
cation methods on the UCM dataset. It can be concluded from the
table that the proposed LSMNet achieves the highest OA values
of 99.29% under 80% training proportions, which is at least
0.33% higher than other methods, indicating that the proposed
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TABLE II
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE AID

TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE NWPU

DATASET

LSMNet effectively models the spatial and channel associations,
and improves the feature expression ability.

The proposed approach is also tested on the AID to show
its effectiveness. Table II lists the classification performance of
LSMNet and other comparative methods. It can be seen that the
proposed method achieves an OA of 96.78% and 94.31% when
using 50% and 20% training samples, respectively, achieving the
best performance compared with other methods. In this dataset,
the progress made by LSMNet is more obvious, which proves
that the proposed method can achieve better performance with
the blessing of more data.

Table III gives the classification performance comparison
between the proposed method and existing methods on the more
challenging NWPU dataset. When the proportion of training
samples is 10%, LSMNet has achieved at least 0.75% accuracy
improvement, which is a remarkable classification result. When
20% of the images are selected as the training set, it has achieved
0.21% OA improvement compared with the suboptimal method.
The excellent performance of the proposed method further ver-
ifies its applicability and robustness in complex scenarios.

2) Confusion Matrix Display: To show the detailed classi-
fication results of the proposed method in each category more
concretely, the corresponding confusion matrix is calculated and
visualized. A total of six confusion matrices are drawn according

to the experimental results obtained from different proportions
of training data on three datasets.

Fig. 7 shows the confusion matrices of the classification re-
sults obtained by LSMNet on the UCM dataset when the training
ratios are 80% and 50%. It can be seen from the figure that even
when the training set accounted for 50%, there are 17 categories
with an accuracy exceeding 99.5%. When the training samples
increase, the classification performance is further improved.

Fig. 8 shows the classification results on AID. When the
proportion of training samples is 20%, only five categories’
accuracy is lower than 90%. On the one hand, the similarity
of samples between different categories increased, and on the
other hand, the difference of samples within a class has also been
reflected. With the increase of training sample, the classification
accuracy of center, park, school, and square all exceeded 90%.
This is because with the increase of sample number, LSMNet
can better capture space and channel information and improve
the discrimination of classification features.

Fig. 9 gives the confusion matrix generated from the clas-
sification results by LSMNet on the NWPU dataset with the
training ratios of 20% and 10%. It can be seen from the figure
that the classification accuracy of most categories exceeds 90%
in both cases, which proves that the proposed method can achieve
satisfactory results even in challenging and complex scenes.

D. Ablation Studies

To verify the role of channel separation and mixing module,
large kernel deepwise convolution, and Fused-MBConv in this
article, this section conducts a series of ablation experiments to
explore the importance of various modules for network perfor-
mance improvement. The specific experimental results are listed
in Table IV.

The variant 1 (“without LDC”) verifies the impact of large
convolution kernels on experimental performance by replacing
large kernel deepwise convolution with traditional small convo-
lution kernels (3 × 3 and 5 × 5). By comparing “Full model”
and variant 1 (“without LDC”), the introduction of large kernel
deepwise convolution enhances the capture of nonlocal overall
information in the scene, and reduces the optimization difficulty
of the large convolution kernel model, so that the model can still
obtain better classification performance with limited training
samples. The comparison between “Full model” and variant
2 (“without CSM”) demonstrates that the interaction between
feature channels can be better achieved and feature representa-
tion ability can be improved after the feature dependency rela-
tionship between channels is fully modeled. The improvement
of performance proves that the independence of large kernel
convolution in the channel dimension makes it insufficient to
model channel correlation, and the designed channel separation
and mixing module makes up for this limitation well. Finally,
in the absence of Fused-MBCconv (without FMBConv), the
lack of local detailed features diminishes the model’s ability to
capture spatial local features, decreasing classification accuracy.
By combining large kernel deepwise convolution, channel sep-
aration and mixing module and Fused-MBConv, the proposed
LSMNet effectively obtains long-range dependencies and local
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Fig. 7. Confusion matrices of the proposed method on the UCM dataset by fixing the training ratios to 50% and 80%: (a) 50% and (b) 80%.

Fig. 8. Confusion matrices for the proposed method on the AID by fixing the training ratio to 20% and 50%: (a) 20% and (b) 50%.

TABLE IV
ABLATION STUDIES FOR THE PROPOSED LSMNET ON THREE DATASETS
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Fig. 9. Confusion matrices for the proposed method on the NWPU dataset by fixing the training ratio to 10% and 20%: (a) 10% and (b) 20%.

details, while guaranteeing channel correlations, enabling it to
achieve state-of-the-art performance in multiple datasets.

IV. CONCLUSION

In this article, a novel LSMNet is proposed and applied to
the task of remote sensing scene classification. First, to address
the limitations of traditional small convolutional kernels with
restricted receptive fields and the high training complexity asso-
ciated with large convolutional kernels, a large kernel depthwise
convolution is introduced to comprehensively understand the
overall information of scene images. Combined with conven-
tional convolutions, this approach enables information extrac-
tion at different receptive fields, enriching the spatial dimension
of feature expressiveness. Furthermore, to extract interactions
and dependencies among channel dimensions, a novel channel
separation and mixing module is designed to model channel
dependencies. The combination of them enables the acquisition
of both spatial and channel dependencies within the feature
maps, resulting in enhanced representational capabilities in the
final classification features. Extensive experimental results on
three datasets also prove the superiority of the proposed method
from the perspective of quantitative analysis and visual analysis.
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