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Abstract—Hyperspectral image classification (HSIC) has be-
come a hot research topic. Hyperspectral imaging (HSI) has been
widely used in a wide range of real-world application areas due to
the in-depth spectral information stored within each pixel. Notice-
ably, the detailed features, i.e., a nonlinear correlation between the
obtained spectral data and the correlating HSI data object, gener-
ate efficient classification results that are complex for traditional
techniques. Deep learning (DL) has recently been validated as an
influential feature extractor that efficiently identifies the nonlinear
issues that have arisen in various computer vision challenges. This
motivates using DL for HSIC, which shows promising results. This
survey provides a brief description of DL for HSIC and compares
cutting-edge methodologies in the field. We will first summarize
the key challenges for HSIC, and then, we will discuss the supe-
riority of DL and DL ensemble in addressing these issues. In this
article, we divide state-of-the-art DL methodologies and DL with
ensemble into spectral features, spatial features, and combined
spatial–spectral features in order to comprehensively and critically
evaluate the progress (future research directions as well) of such
methodologies for HSIC. Furthermore, we will take into account
that DL involves a substantial percentage of labeled training im-
ages, whereas obtaining such a number for HSI is time and cost
consuming. As a result, this survey describes some methodologies
for improving the classification performance of DL techniques,
which can serve as future recommendations.

Index Terms—Convolutional neural network (CNN), deep
ensemble, deep learning (DL), hyperspectral image classification
(HSIC), spatial features, spectral features.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) is involved with the
retrieval of relevant data relying on the radiance obtained
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through the optics spectrographic imaging system at short or
long ranges without significant interaction with the object of
interest [1], [2]. HSI provides rich spectral information by
acquiring reflectance measurements across hundreds of nar-
row contiguous spectral bands over a wide wavelength range
from 0.4 to 2.4 μm. This span covers the visible region from
0.4 to 0.7 μm as well as the shortwave infrared region from
0.7 to 2.4 μm. The fine spectral sampling at each spatial loca-
tion enables detailed characterization of the spectral signature
for all materials in a scene. In this way, HSI offers compre-
hensive spectroscopic data that facilitate the identification and
discrimination of materials that may appear similar in broad
multispectral bands. The combination of high spectral resolution
and broad wavelength coverage makes HSI a versatile tool for
detailed material detection and analysis. HSI is also capable of
investigating the (light) emission features of instances in the
mid- to long-infrared range [3].

Alongside the comprehensive information, HSI poses some
issues considering conventional analysis methods for monochro-
matic, RGB, and multispectral images that are unable to explic-
itly leverage hyperspectral images to retrieve relevant data for
a variety of factors, e.g., high-dimensional spectral and spatial
information (HSI) displays the distinctive statistical and geomet-
rical features, i.e., in a hypercube and hypersphere, the volume
is primarily focused on the edges and outer shells, respectively.

HSI has been used in a variety of real-world applications, such
as atmosphere, climate, urban, agricultural production, geomor-
phological and mineral investigation, coastal area, maritime,
forest management, groundwater and surface contamination,
waterways, glaciers and ice sheets, biological, health-care cases,
and food computation [4], [5], [6], [7], [8], [9]. There are also
military service uses such as camouflage, landmine detection,
and coastal defense area navigation. Moreover, HSI has been
employed in space, air, and underwater vehicles to obtain com-
prehensive spectral data for a variety of applications [10], [11],
[12], [13].

For any of the aforementioned application domains, infield
sampling and spectral library indexing of ground truth samples
are crucial for various factors. For example, the spectral data of
grasslands are hampered by a variety of ecological conditions,
which render it difficult to portray variance sufficiently without
the gathering of location-specific ground spectra. However, the
true significance of HSI is relatively unexplored because it
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Fig. 1. (a) Various real-world applications of HSI and (b) remote sensing/HSIC-relevant research papers published per year till April 25, 2023. [Source: Google
Scholar accessed on April 25, 2023, and the total number of research papers (including patents and citations) were classified by its relevancy.]

enables it to penetrate greater depth than surface features, even
though each feature typically has a distinct spectrum band. As
such, HSI can acquire over 200 spectral bands, allowing experts
to allow discriminate objects that were previously impossible.
Fig. 1 depicts some of the HSI application scenarios. Moreover,
a number of other fields, for example, smart cities, smart in-
dustrial processing, and intelligent transportation systems, can
significantly help using this methodology.

Given the limitations mentioned above, HSI evaluation is
divided into the following categories: dimensionality reduction
(DR) [14], [15], [16], [17], [18] has enabled more efficient pro-
cessing of hyperspectral data by extracting the most meaningful
features and reducing redundant information. Spectral unmixing
[19], [20], [21], [22], [23], [24], [25], [26], [27] has decomposed
mixed pixels to identify constituent end members and quantify
their abundances. This has proved useful for analyzing complex
scenes with subpixel composition. Object and change detection
algorithms [28], [29], [30], [31], [32], [33], [34] have utilized
spectral–spatial approaches to identify areas of interest and
track their evolution over time. Classification techniques [35],
[36], [37] incorporating spatial context have improved mapping
accuracy compared to pixelwise classifiers; feature learning for
classification [38], [39], [40], [41], [42] has also been advanced
through spectral–spatial feature learning. Furthermore, restora-
tion and denoising methods [43], [44] have integrated spatial
regularization to suppress noise while preserving image details.
Finally, resolution enhancement approaches [45], [46] have em-
ployed spectral–spatial processing to increase the resolution of
hyperspectral data. Fig. 1(b) depicts a rapidly increasing pattern
in the amount of HSI analysis-related publications each year.

This article primarily focuses on hyperspectral image classifi-
cation (HSIC), which has attracted the scientific community’s at-
tention because of its numerous applications in the fields of land
usage and land cover [47], [48], [49], [50], [51], environmental
surveillance, hazard identification [52], [53] vegetation mapping

[54], [55], and urban planning. To complete the classification
task, HSIC techniques use machine learning techniques [56],
[57], [58]. These techniques are described in numerous in-depth
reviews that were published over the past decade [35], [59],
[60], [61], [62], [63], [64], [65], [66], [67]. However, ongoing
progress in the area of machine learning occasionally offers
better methodologies. One of these breakthrough developments
in machine learning that increased HSIC performance was the
use of deep learning (DL) approaches [68], [69], [70].

The goal of this article is to provide a synopsis of the popular
DL-based HSIC approaches. To be more precise, we will first
list the key significant problems with HSIC that conventional
machine learning (CML) methods cannot efficiently address,
and then, we will list the benefits of DL and DL with ensemble to
address these problems. Later on, we will present an architecture
to describe the related works into the following groups:

1) spectral and spatial feature learning, individually;
2) reviewing the progress in DL-based HSIC comprehen-

sively using spectral–spatial feature learning;
3) future research studies will aim to optimize the gener-

alization efficiency and durability of DL methods while
taking into account the insufficiency of reliable training
instances;

4) ensemble-based methods and future recommendations to
enhance the performance and improve the time complexity
of ensemble-based methods.

II. BACKGROUND AND CHALLENGES

A. Traditional to DL Models

HSIC’s primary function is to provide each pixel vector of the
HSI cube with a distinct label according to its spectral or spatial
features. An HSI cube can be described mathematically as

c = [c1, c2, c3, ..., cd, ]T ∈ Rd × (P ×Q) (1)
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where d denotes the total number of spectral bands, with each
band containing (P ×Q) samples per band belonging to Z
classes, where ci = [c1i , c2i , c3i , ..., cni

]T is the ith sample in
the HSI cube with class label yi ∈ Ry. Hyperspectral classifica-
tion aims to learn a mapping function fv(.) that takes the input
data c and generates predicted labels Y by applying transfor-
mations to minimize the discrepancy between the predicted and
true labels [71]. This constitutes an optimization problem, where
fv(.) maps the high-dimensional input data to the label space
by exploiting the rich spectral information and inherent class
structure to achieve accurate classification

Z = fv(U, θ) (2)

where θ is a customizable parameter that may be needed to
perform transformations on input data v such that fv : v → Z.

The techniques employed in the computer vision field ap-
peared to have impacted the majority of HSIC frameworks
[72]. CML-based HSIC techniques train the classifier with
handcrafted features. These techniques are typically based on
technical expertise and domain expertise to generate a variety
of human-engineered features, such as shape, texture, color,
shape, spectral, and spatial descriptions. Each of these features
is a fundamental key attribute of an image feature and contains
useful data for HSI. Many handcrafted-based feature extraction
(FE) and classification methods in HSI have utilized various
texture descriptors, including local binary patterns (LBPs) [73],
histogram of oriented gradients (HOG) [74], global image scale-
invariant transform/global invariant scalable transform (GIST)
[75], pyramid HOGs, and scale-invariant feature transform
(SIFT) [76]. For the classification stage, techniques such as
random forests (RF) [77], kernel-based support vector machine
(SVM) [78], K-nearest neighbors (KNN), and extreme learn-
ing machines (ELM) have been employed. These FE methods
characterize spatial patterns in a scale- and rotation-invariant
manner to better discriminate different textures and materials.
The classifiers then leverage these descriptive features to catego-
rize hyperspectral pixels or segments into their respective land
cover classes. This combination of robust FE and discriminative
classification has been shown to enhance mapping accuracy
compared to pixelwise spectral approaches alone.

Color histograms are simplistic and efficacious handcrafted-
based features that work well for the task of image classification.
They are simple to compute and unaffected by minor image
alterations such as translation and rotation. A color histogram’s
primary flaw is that it lacks spatial contextual information,
making it challenging to differentiate between instances classes
with similar color but unique distributions. Color histograms,
which capture the distribution of pixel colors in an image, are
prone to variations under changing illumination conditions. In
contrast, HOG features provide an alternative descriptor more
robust to lighting changes. HOG characterizes the distribution
of edge directions within spatial subregions of the image. By
compiling histograms of gradient orientations across localized
cells, HOG effectively captures the dominant edge structures in a
manner invariant to shifts in illumination. Thus, HOG encoding
spatial patterns through localized edge orientation histograms
can complement color histogram representations, providing
improved illumination invariance. The fusion of complementary

color and gradient-based features can yield a more distinctive
and robust descriptor for image analysis tasks. It has been used
in numerous remote-sensing-related research tasks because of
its effectiveness in extracting edge and local shape information
[47], [79], [80], [81].

SIFT is a widely applied vigorous feature descriptor used for
computer vision applications [82], [83], [84], [85]. The SIFT de-
scriptor has the benefit of being insensitive by alteration in image
scale, rotation, illumination, and noise. SIFT’s drawback is that
it is computationally intensive, which raises the computational
complexity issue. The scales and orientations (gradient features)
of distinct subregions of an image are characterized by GIST,
which is the global description of essential factors of an image.
GIST generates a spatial frame based on various statistical
characteristics, such as roughness, openness, ruggedness, etc.
[86]. Texture descriptors such as LBPs are applied for remote
sensing image analysis [73], [87]. By selecting pixels from the
square neighborhood, LBPs are employed to define the texture
around each pixel. The grayscale scores of all neighboring pixels
are threshold concerning the central pixel.

The color histograms, GIST descriptors, and various texture
representations extract global image features that characterize
statistical properties such as color distributions, textural patterns
[88], [89], and overall spatial structure [75]. In contrast, local
feature descriptors like HOG and SIFT capture geometrical
information from local neighborhoods. These local descriptors
are often aggregated into bag-of-visual-words (BoVW) models
[49], [53], [85], [90], [91], [92], [93], [94], [95] and HOG-
feature-based models [47], [96]. Enhancing both the discrim-
inative capability and compactness of BoVW representations
has been pursued through various techniques, such as Fisher
vector coding [73], [97], [98], spatial pyramid matching [99],
and probabilistic topic models [95], [100], [102]. To improve
the discriminative power and compactness of BoVW representa-
tions, techniques including Fisher vector coding [73], [97], [98],
spatial pyramid matching [99], and probabilistic topic model
[95], [100], [101], [102]. An integration of such features is
utilized in image classification since one feature cannot fully
capture the information contained in an image [48], [90], [100],
[102], [103], [104], [105], [106], [107], [108], [109].

The diverse attributes of an image can be efficiently defined
by handcrafted features, which makes them compatible with the
data being explored. Even though these features might not be
significant in the scenario of actual data, it can be challenging
to fine-tune between rigidity and discriminability because a
pattern of ideal features can differ significantly depending on
the type of data. In addition, since handcrafted features must be
designed with a high level of domain skill, human assistance in
their design has a significant impact and effectiveness during the
classification stage.

To alleviate the constraints of the handcrafted feature process,
a deep feature learning approach was presented by Hinton and
Salakhutdinov [110]. DL-based methodologies are applied to
extract features from data in a hierarchical fashion to build a
model with progressively increasing semantic layers. This is
accomplished once the model acquires a suitable representation
of the data. Such models have demonstrated promising effects
for feature representation in HSIC [111], [112]. Recently, Li
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et al. [113] have introduced a novel baseline network for HAD,
named LRR-Net, which combines the LRR model with DL
methods. LRR-Net efficiently employs the alternating direction
method of multipliers optimizer to address the LRR model and
integrates the obtained solution as prior knowledge into the deep
network. This integration guides the optimization of parameters
effectively.

DL frameworks can extract the patterns of any data without
any preliminary information on the statistical distribution of
input data [114]. Furthermore, these frameworks can capture
linear and nonlinear features from the input data without any
preexisting information. Such frameworks can handle HSI data
in both the spectral and spatial aspects independently, as well
as in an associated manner. DL frameworks have a versatile
design in contexts of layer typologies and complexity, and they
are adaptable to different machine learning techniques such as
supervised, semisupervised, and unsupervised techniques.

III. HYPERSPECTRAL DATA FEATURES AND DL COMPLEXITIES

DL applications for HSI data still present significant chal-
lenges, considering the potency that has already been discussed.
The majority of such complexities emerge from the features of
HSI data, which include numbers of consecutive narrow spectral
channels with exceptionally high spectral resolution but limited
spatial resolution, covering the entire electromagnetic spectrum.
In addition, there is a scarcity of available datasets. Although
pixels with abundant spectral features are helpful for classifica-
tion tasks, processing challenging data requires a considerable
investment of time and resources.

Moreover, because of the higher number of parameters, com-
puting such high-dimensional data entails a hard effort. This
is termed the curse of dimensionality because it has a sig-
nificant impact on classification accuracy, particularly in the
context of supervised learning [115]. As described in [116],
the Hughes phenomenon occurs when the training examples
are limited and unreliable. This means the training data might
not offer valuable learning contributions to the model or could
contain repetitive patterns. Consequently, effectively training
the model becomes challenging, leading to an increased risk
of overfitting issues. The phenomenon is particularly notice-
able when the amount of labeled training data is significantly
smaller than the labeled training data, which is considerably
small scale in comparison to the total number of spectral bands
available in the data. A key problem in HSIC is the limited
number of labeled HSI datasets because labeling HSI typically
involves the employment of human experts or the examination of
real-world situations, which is a time-consuming and complex
operation.

In addition to high dimensionality, HSIC struggles from a
variety of additional biases, such as increased intraclass variance
produced by unrestrained changes in reflectance values induced
by a number of environmental interferers and data deterioration
generated by instrumentation distortion during data capture
[117]. Similarly, the inclusion of overlapping bands related to
HSI instrumentation influences the computational complexity
of the model. Another problem associated with HSI spatial

resolution is spectral mixing. HSI pixels with low to medium
spatial resolution comprise extensive spatial areas of the earth’s
land, resulting in heterogeneous spectral signatures with consid-
erable interclass consistency in border regions. Consequently,
identifying materials relying on their spectrum reflectivity gets
challenging [118]. Some major issues that arise when DL is
performed on HSIC are listed as follows.

1) Training complexity: Deep neural network (DNN) training
and optimization via optimizing parameters is an NP-hard
issue with no assurance of convergence of the optimization
procedure [119], [120], [121]. As a result, it is consid-
ered that DNN training is extremely challenging [114],
Particularly with HSI, where a huge number of variables
must be adapted. Furthermore, as numerous optimiza-
tion strategies for deep CNNs progress, the process of
converging gets somewhat convenient. Among stochastic
gradient descent [122] and its momentum version [123],
RMSProp [124], Adam [125], AdamW [126], diffGrad
[127], RAdam [128], gradient centralization [129], and
AngularGrad [130], are effective CNN optimization ap-
proaches that are commonly employed in classification
tasks.

2) Training data scarcity issue: As previously stated, a su-
pervised DNN needs a significant size of training samples;
otherwise, its inclination to overfit grows substantially,
resulting in the Hughes phenomenon [131]. The high
dimensionality of HSI, combined with a limited set of
labeled training samples, renders DNNs inefficient for
HSIC, as it necessitates several tweaks throughout the
training process [71].

3) Model’s interpretability: The DNN training strategy is
complex to analyze and comprehend. The black box aspect
of DNNs is regarded as a possible vulnerability and may
influence the optimization approach architecture proce-
dure. However, considerable progress has been made in
interpreting the model’s fundamental complexities.

4) Significant computational liability: One of the key issues
of DNN is interacting with large dataset size, which
requires increasing memory bandwidth, significant
computational complexity, and storage utilization [132].
Moreover, state-of-the-art approaches, such as parallel and
distributed architectures [133], [134] and high-
performance computing (HPC) [118], allow DNNs
capable of processing enormous volumes of information.

5) Declining training performance: It is considered that the
DNN retrieves increasingly rich information from data
[135]; however, this is not valid for all algorithms to get
improved efficiency by merely adding extra layers since
enhancing the DNN’s levels of depth amplifies the issue of
exploding or vanishing gradients [136] and impacts model
convergence [135].

IV. HSI REPRESENTATION

Hyperspectral data are expressed as a 3-D hypercube, x ∈
RB(N ×M), which includes data of 1-D spectral and 2-D
spatial information, whereB denotes the total number of spectral
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Fig. 2. Hyperspectral spatial and spectral cube.

bands and N and M represent spatial features, i.e., width and
height, respectively. The HSI cube is exhibited in Fig. 2.

A. Spectral Representation

In these expressions, each pixel vector is derived from sur-
rounding pixels and deeply analyzed solely on spectral charac-
teristics. This denotes that the pixel is expressed exclusively in
the spectral space, denoted as xi ∈ RB , where B can be the
total number of spectral channels or just salient spectral bands
retrieved via DR technique. In order to eliminate redundancies
and obtain greater class feature subsets without significantly
losing important information, a low-dimensional description
of HSI is typically recommended for data analysis rather than
employing the actual spectral bands.

There are two types of DR techniques for spectral HSI inter-
pretation: supervised and unsupervised. DR techniques like prin-
cipal component analysis (PCA) and locally linear embedding
provide unsupervised methods to transform high-dimensional
hyperspectral data into a lower dimensional space. By projecting
the data onto a set of orthogonal principal components (PCs)
or through locally linear reconstructions, these techniques can
extract the most salient features and inherent data structure with-
out needing prior class labels [137]. The reduced representation
improves computational and statistical efficiency for subsequent
analysis while concentrating the meaningful information con-
tent. Thus, unsupervised DR offers an effective approach for
exploiting the rich spectral data in hyperspectral imagery in an
exploratory manner, prior to employing supervised classification
or detection algorithms requiring annotated training samples.

In contrast, supervised DR approaches use labeled samples
to learn the data distribution. This involves ensuring that data
points from similar categories are clustered closely together
while simultaneously separating data points from various cat-
egories. For example, linear discriminant analysis (LDA), local
Fisher discriminant analysis (LFDA) [138], local discriminant
embedding [139], and nonparametric weighted FE [140]. LDA
and LFDA strengthen class feature space by increasing data
point interclass proximity and decreasing intraclass proximity.

However, because of the spectral mixing phenomenon, which
causes identical information to occur with multiple spectra or
distinct information to have similar spectral fingerprints, it is
hard to distinguish between various classes solely relying on
spectral reflectance scores.

B. Spatial Representation

While spectral signatures provide valuable information, they
have limitations in capturing the spatial context in HSI. An alter-
native approach represents the spatial arrangement by expressing
each band as a matrix, xi ∈ RN×M , containing the pixel values.
Given strong spatial correlations, neighboring pixels likely share
class labels. Local pixel neighborhoods can be incorporated
with spatial representation, computing a pixel’s locality within
a window [141]. Morphological profiles (MPs), various texture
features, such as Gabor filters (GFs), gray-level co-occurrence
matrix (GLCM), LBPs, etc., and DNN-based algorithms are
some popular techniques for extracting spatial information from
HSI cubes. Geometrical properties can be extracted from MPs.
Some improvement in MPs involves extended morphological
profiles (EMPs) [142], multiple-structure-element MPs [143],
and invariant attribute profiles [144].

The image processing technique produces valuable spatial
contextual features for HSI. For example, a texture analysis
tool called GF can effectively gather textural information at
different spatial and temporal scales. Consequently, LBP can
give rotation-invariant spatial texture representation. The spatial
variance of HSI can be efficiently calculated by the GLCM,
which considers the respective positions of neighbor pixels.
DNNs, on the other hand, can retrieve spatial features from
HSI by treating individual pixels as image patches instead of
spectral vectors. In addition, the spatial features included in
HSI can also be retrieved by merging previously mentioned
approaches. For example, Zhang et al. [145] merged the GF
method and differential morphological profiles (DMPs) method
[146] to retrieve local spatial sequential (LSS) features for a
recurrent neural network (RNN)-based HSIC architecture.

C. Spectral–Spatial Representation

This representation uses both spectral and spatial data fea-
tures. In these kinds of methods, a pixel vector is evaluated
by using its spectral properties while taking spatial contextual
features into account. Approaches that employ combined spec-
tral and spatial representations of HSI integrate spatial features
with spectral vectors [64], [147] either to deeply execute the
3-D HSI cube or to maintain the true topology and contextual
features [148].

All of these HSI representations are frequently used for HSIC
in the literature. The spectral representation of HSIs was used by
the majority of DNNs for pixel-level classification [149], [150].
Although numerous attempts have been performed to include
spatial information in order to alleviate the shortcomings of spec-
tral representation [151], [152]. A recent trend that has gained
considerable attention and enhanced classification performance
is the simultaneous exploration of spectral and spatial data [14],
[69], [153], [154], [155], [156]. In Section V, there is a more
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in-depth discussion of the HSI feature exploration methods for
HSIC.

V. LEARNING STRATEGIES

DL models can use a variety of learning approaches, which
can be widely classified as follows.

A. Supervised Learning Approach

The supervised learning approach involves training a model
using a labeled dataset that consists of input data along with their
respective class labels. In the training step, the model adjusts its
hyperparameters to predict the intended outcomes precisely. In
the testing step, the model is evaluated using raw test data to
confirm its accuracy in predicting the right labels. In order to
train the model properly, it can make predictions of the labels
of raw input data. Despite the advantages of the supervised
learning approach in DNNs, it necessitates a substantial number
of labeled training datasets to effectively adjust or optimize the
model hyperparameters [58], [157], [158]. As a result, they are
particularly fit for cases with a huge size of labeled data. The
specifics of different supervised learning strategies for DNNs
will be covered in the following sections.

B. Unsupervised Learning Approach

Unlike the supervised learning approach, unsupervised learn-
ing methods extract features from input data that do not have
explicit labels. In the lack of relevant labels, these techniques
attempt to determine the fundamental statistical pattern of input
representations. The lack of ground truth samples for the training
dataset can make evaluating the effectiveness of the trained
model challenging. However, such learning algorithms are effec-
tive when we aim to extract the intrinsic pattern of such datasets
with limited training samples. PCA is an unsupervised learning
method generally employed to generate a low-dimensional rep-
resentation of the input data. Likewise, the k-means clustering
method is an unsupervised learning technique that generates
different categories of input data into unified groups.

C. Semisupervised Learning Approach

Semisupervised learning (SSL) is the third approach that falls
between unsupervised and supervised methodologies. SSL tech-
niques learn from partly labeled dataset, i.e., a limited amount
of labeled training data can be used to label the remaining
unlabeled data. Since such strategies efficiently employ entire
available data rather than only labeled data, they have received
wide attention in the scientific community and are frequently
utilized in HSIC [159], [160], [161], [162]. In Section XI, the
specifics of these techniques are briefly discussed.

VI. DNN CONSTRUCTION (LAYER COMPOSITION)

In this section, we will examine the latest advances in some
popular DNN frameworks for HSIC. We primarily reviewed the
publications released after 2017. DNNs offer a wide range of
versatile and scalable HSIC models that enable the integration

of various sorts of layers. The following sections cover a few
frequently employed sorts of layers.

A layer is a fundamental structural component of DNN, and
the sort of layer has a significant effect on data processing.
A layer accepts the weighted input, transforms it linearly or
nonlinearly, and transfers the values to the next layer. A layer
usually has a singular activation function, making it uniform.
The input layer marks the initial layer of the network, and the
output layer represents the final layer. The layers that lie between
the input and output layers are commonly known as hidden
layers. These layers conduct diverse operations to extract various
features in the input data. The layered form chosen is determined
by the problem, as certain layers behave more effectively than
others. The most widely employed HSIC layers are described as
follows.

A. Fully Connected Layers

Fully connected (FC) layers integrate each individual neuron
in the bottom layer into every neuron in the upper, creating
dense connections between the layers and enabling the propa-
gation of information throughout the neural network. Following
convolution/pooling layers, they are typically employed as the
final few layers in a model. In predicting the probability for
class labels, FC leverages the output of the preceding layer.
The computational complexity is significantly increased because
there are many interconnections and, hence, many hyperparam-
eters that need to be tweaked. In addition, the model is highly
prone to overfitting problems due to the significant number of
hyperparameters [50]. Therefore, a dropout approach is adopted
in order to lessen the impact of the overfitting issue [163].

B. Convolutional Layers

In HSIC, convolutional layers are a fundamental component
of convolutional neural networks (CNNs) designed to process
hyperspectral data [164]. These layers are specifically tailored to
handle the unique characteristics of hyperspectral images, where
each pixel contains information across multiple spectral bands.
An explanation of convolutional layers in the context of HSIC
is given as follows:

1) Input representation:
a) 3-D Tensor: Hyperspectral images are represented as

3-D tensors, where each pixel contains a spectrum of
information across multiple bands. The dimensions of
the tensor are (height, width, bands). For example, a
100 × 100 pixel hyperspectral image with 100 spectral
bands would have dimensions 100 × 100 × 100.

2) Convolutional operations:
a) Spatial convolution: Traditional 2-D convolutional op-

erations are applied to capture spatial patterns and
relationships between pixels. Filters are used to detect
features in the spatial domain.

b) Spectral convolution: 1 × 1 convolutions are often em-
ployed along the spectral dimension to capture spectral
dependencies. These convolutions allow the network
to learn combinations of spectral bands, enhancing its
ability to extract relevant information.
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Fig. 3. Graphical depiction of different frequently employed activation
functions.

3) Feature extraction:
a) Learned filters: Convolutional layers use learned fil-

ters to convolve over the input data. These filters act
as feature detectors, capturing local patterns in both
spatial and spectral dimensions.

4) Hierarchical feature extraction:
a) Multiple convolutional layers: Convolutional layers

are often stacked to form deep architectures, allowing
the network to learn hierarchical features from both
spatial and spectral information. Each subsequent layer
captures increasingly abstract and complex features.

5) Parameter sharing:
a) Shared weights: Convolutional layers use shared

weights across the input space, reducing the number
of parameters compared to FC layers. This parameter
sharing enhances the model’s ability to generalize to
different spatial locations and spectral bands.

C. Activation Layers

In DNNs, the activation layers are considered the feature
detector phase [165] because they play a crucial role in capturing
and learning relevant patterns and representations from the input
data. The FC and convolutional layers either produce linear
representations of input data or treat them in a manner analogous
to linear regressors, and the data that undergo transformation by
these layers are described as being in the FE phase [69]. As a
result, an activation layer must be utilized after the FC layer
and convolutional layers to retrieve the nonlinear characteristics
of data. Feature maps from earlier layers are processed via an
activation function that is applied to generate an activation map
within the activation layer. Sigmoid, hyperbolic tangent (tanh),
rectified linear unit (ReLU), LiSHT [166], and SoftMax are
a few examples of regularly applied activation functions. The
activation functions SoftMax and ReLU are frequently used in
HSI analysis [71]. A few frequently used activation functions
are shown graphically in Fig. 3.

D. Pooling Layers

The pooling layers are also referred to as downsampling
layers, which accept a given input data size and transform

Fig. 4. Graphical depictions of the max-pooling and average-pooling proce-
dures of the downsampling/pooling layer.

it into a single value, as illustrated in Fig. 4. This enables
invariance to minimal data anomalies. Since the volume of
the input and the model hyperparameters are both minimized,
which also reduce the computing time, the pooling layer aids
the model in preventing overfitting problems. Among various
downsampling techniques, three most popular ones include max
pooling, average pooling, and sum pooling. Furthermore, a new
optimized pooling method called wavelet pooling was presented
in [167], and its effectiveness is comparable to that of max
pooling and average pooling. Similarly, Springenberg et al. [168]
presented an alternative approach in which the convolutional
layer of enhanced filter stride takes the role of the pooling layer.

VII. CONVOLUTIONAL NEURAL NETWORK

The CNN architecture draws inspiration from the biologi-
cal visual system, as described in [169]. Adopting Hubel and
Wiesel’s [169] natural visual recognition process, Neocognitron
[170] is recognized as the original hierarchical position-invariant
pattern recognition model [171] and can be regarded as the prior
of CNN [172]. The CNN architecture is categorized into two
phases: FE network and classification according to the feature
maps generated during the initial step.

The FE network is made up of several hierarchical structures
positioned in convolutional, activation, and pooling layers. The
convolutional layer retrieves features from input data by convo-
luting it with a learned kernel. The complexities of the model are
minimized, and the network is more straightforward to train as a
result of the decrease in the number of hyperparameters required
to be adjusted by the spatial sharing of the kernel with the entire
input data on each convolutional layer. The complexities of the
model are minimized, and the network is simpler to train as a
result of the decrease in the number of hyperparameters required
to be tweaked by the spatial sharing of the kernel with the
entire input data on each convolutional layer. In order to retrieve
nonlinear features from the input, convolution outputs are then
sent via an activation layer that contributes nonlinearities to
the network. This is accomplished by taking the outputs of
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Fig. 5. Generic structure of spectral CNN, spatial CNN, and spectral–spatial CNN frameworks for HSIC.

the convolution and adding a nonlinear function to them. After
that, a pooling process is employed to lower the feature map’s
resolution in order to obtain shift invariance. In basic terms, the
pooling layer is placed along each convolutional layer, preceded
by the activation function.

Given the feature maps generated at the FE step, a SoftMax
function and FC layers are used in the classification phase to
calculate the likelihood that an input pattern belongs to a given
class. Each neuron in the last layer is linked to every neuron in
the current layer by the FC layer. The authors of [173] and [174]
presented that the FC layer can be skipped by employing a global
average pooling (GAP) layer. SoftMax is frequently employed
for classification problems [175], [176], although SVM [177],
[178] has also been employed for this objective in numerous
pieces of research.

In the next sections, we will discuss three distinct categories of
CNN structures for HSIC: 1) spectral CNN frameworks; 2) spa-
tial CNN frameworks; and 3) spectral–spatial CNN frameworks.
Fig. 5 shows the overall structure of these three approaches.

A. Spectral CNN Frameworks for HSIC

Spectral CNN models only receive 1-D spectral information
as input (xi ∈ RB), where B could be the actual number of
spectral bands or the appropriate number of bands retrieved
after the DR method. In the research study [179], a CNN
architecture was presented to reduce the overfitting issue and

acquire improved generalization ability via using the 1 × 1 con-
volutional kernels and increased dropout rates. Furthermore, the
incorporation of a GAP layer in lieu of an FC layer serves a dual
purpose in the neural network architecture. It not only effectively
reduces the overall number of network hyperparameters but also
brings about a notable enhancement in the model’s ability to
generalize and avoid overfitting. Gao et al. [174] introduced a
CNN structure for HSIC that thoroughly exploited the spectral
data by incorporating the 1-D spectral vector to a 2-D feature
matrix, and the architecture obtained feature reusability potential
by cascading fusion of layers composed of 1 × 1 and 3 × 3
convolutional layers. They [174] used the GAP layer in a similar
way [179] to reduce the total number of the network’s training
parameters optimized during the training process, allowing it to
extract high-dimensional features from the data.

A hybrid model for HSIC was proposed in [180], in which
the initial convolutional layers are applied to retrieve position-
invariant middle-level features and then employing recurrent
layers are utilized to retrieve spectral-contextual information.
Consequently, Jin et al. [149] classified healthy and diseased
wheat heads using a hybrid architecture. They incorporate spec-
tral data into a 2-D data structure for the input layer. In [181],
it was shown that the CNN performed better than SVM and
KNN for spectral-based variation detection of rice seeds. A
related CNN application was investigated in [150], where dif-
ferent Chrysanthemum types were recognized utilizing spectral
information from the first five PCs of PCA. A common DR
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technique for handling/preprocessing high-dimensional data in
DL applications is PCA. In [182], PCA was used to preprocess
medical HSI before CNN kernels and Gabor kernels were fused
with dot products to perform classification.

Charmisha et al. [183] investigated another DR method called
dynamic mode decomposition, which transforms 3-D HSI data
to 2-D before feeding it to vectorized CNN for classification.
In [184], a technique of averaged spectrum was employed to
minimize the noise impact in pixelwise HSIC, where an averaged
spectrum of a set of pixels corresponding to bacterial colonies
was retrieved for detailed evaluation.

B. Spatial CNN Frameworks for HSIC

Spatial CNN frameworks mainly incorporate spatial features
and are also applied to retrieve spatial features from HSI data;
spectral-domain DR approaches are used to minimize the com-
plexity of the actual HSI data. For example, Li et al. [185]
extracted the first PC enriched with enhanced spatial features.
They then fed these features into a full CNN architecture for a
classification task. Moreover, Haut et al. [186] used a single
PC to train a spatially based 2-D CNN. In [187], the input
data preprocessed using PCA whitening and limited to three
PCs are fed into a randomized patches network, which serves
as a 2-D CNN classification architecture. A limited number of
training instances with spectrally comparable features can make
deep learning (DL) models susceptible to overfitting issues. To
mitigate this problem, Wang et al. [189] introduced an innova-
tive solution named Probabilistic Neighborhood Pooling-based
Attention Network (PNPAN), specifically designed for HSIC.

The approach presented in study [189] exploited patches
clipped from 2-D input instances (i.e., images from various
spectral bands) to train a 2-D CNN framework that acquires
the data-adaptive kernels on its own. Moreover, several au-
thors presented using handcrafted features in conjunction with
spectral-domain minimization. For instance, to avoid the overfit-
ting issue caused by insufficient training data, Chen et al. [190]
integrated the Gabor filtering method with the 2-D CNN for
HSIC. Gabor filtering captures spatial features such as edges and
textures, significantly reducing the overfitting issue. The study
in [191] presented a flexible HSIC network based on the idea of
flexible sampling locations that can vary their size and shape to
the spatial properties of the HSI. These sampling locations are
generated by computing 2-D offsets for each pixel in the input
image using standard convolutions and three PCs. These offsets
can contain the locations of adjacent nearby pixels with corre-
sponding properties. The structural features of nearby pixels are
further combined to produce flexible feature images. Standard
convolution on such flexible feature images can retrieve better
efficient complicated structures.

C. Spectral–Spatial CNN Frameworks for HSIC

In terms of pixels, spectral–spatial HSIC can be acquired by
combining spectral data with spatial features. For example, Ran
et al. [192] introduced a better pixel pair feature (PPF) method
referred to as spatial PPF. This method differs from conventional
PPFs in two key ways: first, the choice of the pixel pair; only

pixels from the instantaneous vicinity of the central pixel can
further be utilized to form a set; and second, the label of the pixel
pair would be as of the central pixel. In another study, Zhong et al.
[193] proposed a supervised spectral–spatial residual network
that employs a series of 3-D convolutions in the appropriate
spectral and spatial residual blocks to retrieve discriminative
joint representation. An effective deep 3-D CNN approach that
effectively uses both spectral and spatial data for HSIC was put
forth in [194].

Recent work has developed advanced DL techniques to extract
informative features from hyperspectral images while modeling
spatial context. Li et al. [195] employed an adaptive weight
learning approach to represent variances across spatial neigh-
borhoods in hyperspectral patches. In addition, Roy et al. [156]
proposed a flexible framework with adjustable receptive fields,
along with an enhanced spectral residual network for joint FE.
This creates more versatile convolutional kernels. As studied in
[196], combining max and min convolutional features before
the ReLU activation can further improve the discriminative
capability of extracted features for classification. Paoletti et al.
[197] presented the translation-equivariant interpretations of
input features, which give the spatial feature locations for HSIC
additional durability because CNNs were unable to leverage
rotation equivariance normally.

Given the limited number of training instances that can be
labeled, DNNs can also experience overfitting and gradient
vanishing issues. To address this issue, lightweight CNNs are
gaining increasing interest in HSIC research societies. An end-
to-end 3-D lightweight CNN was presented in [198] to solve
the problem of the HSIC’s scarcity of training instances. Jia
et al. [199] introduced a novel approach to extracting the spatial–
spectral features by Schrödinger eigenmap joint spatial–spectral
features and gradually reducing the dimensionality by employ-
ing the compression method to bridge the significant disparity
between the huge learnable parameters and the sparsely labeled
instances. An estimated 90% of the overall trainable weights are
utilized instantaneously after the flattening process, i.e., in the
FC layer, with the residual 10% employed on the network’s prior
convolutional layers. To tackle the challenge of joint spectral–
spatial feature learning, Roy et al. [200] presented a novel
end-to-end framework incorporating lightweight bag-of-feature
learning into a spectral–spatial squeeze-and-excitation residual
network architecture for HSIC. This synergistically combines
an attention-based residual network that extracts discriminative
features from spectral and spatial dimensions with a bag-of-
features module that aggregates contextual information from
local neighborhoods. By learning an integrated spectral–spatial
representation in an end-to-end manner, this method achieves
strong performance for hyperspectral scene understanding.

Morphological approaches, such as erosion and dilation, are
effective nonlinear feature transitions extensively utilized to
maintain an image’s vital shape and structural features. In re-
sponse to such findings, Roy et al. [201] proposed a novel mor-
phological framework called end-to-end morphological CNN
for HSIC, integrating both spectral and spatial information
through hybridizing the outputs of spectral and spatial morpho-
logical blocks retrieved in a dual-path framework.
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Li et al. [195] presented a duplet-phase approach for joint
spectral–spatial HSIC that can effectively generate spectral and
spatial features rather than hybridizing them separately. The
first phase of the presented approach consists of a CNN and
SoftMax normalization that retrieves joint shallow features and
learns the input patch weights in an improved manner. Once
deep hierarchical features have been obtained from these shallow
features via a network of stacked autoencoders (SAEs), a multi-
nomial logistic regression (MLR) layer is applied to process the
last step of classification. In order to jointly leverage spectral
features from HSI, a 3-D CNN model was presented in [202]. To
analyze its effectiveness, a comparative analysis is made with
a spectral-based deep belief network (DBN), an SAE, and a
2-D spatial CNN for HSIC. Roy et al. [203] presented a novel
fused squeeze-and-excitation network, which is a bilinear fusion
methodology, and the two squeeze procedure parts premised on
the global and max-pooling process, while the excitation process
is carried out using the squeeze operation’s fused output.

A deep multiscale spectral–spatial FE technique for HSIC
that can extract useful discriminant information from samples
with high spatial variability was presented in [204]. In the
approach, the deep spatial feature is extracted employing a
fully convolutional network (FCN), and then, this information
is concatenated with spectral data utilizing a weighted fusion
approach. Subsequently, classification is done pixel-by-pixel on
these fused features.

Zhang et al. [205] proposed an efficient and novel dual-
channel CNN architecture for spectral–spatial HSIC tasks. The
presented method first employed a 1-D CNN to retrieve hi-
erarchical spectral information, and 2-D CNN was applied to
retrieve hierarchical spatial information. In the second step,
such details are merged for the ultimate classification step.
Moreover, to mitigate the insufficiency of training data and
obtain better classification performance, the presented approach
is supplemented by a data augmentation (DA) method that can
boost training instances by a factor of 6. The introduction of a
multiscale 3-D deep CNN for end-to-end HSIC in [206] enables
the joint learning of both 1-D spectral and 2-D multiscale spatial
features without the use of any preprocessing methods like PCA,
etc. Dong et al. [207] investigated a novel method for HSIC by
integrating a band attention module into the conventional CNN
architecture in order to minimize band redundant information
in HSI. The finding in [208] introduced an HSIC framework in
which multiscale covariance maps that can concurrently extract
spectral–spatial information of HSI are employed to acquire
multiscale cubes for handcrafted FE by using PCA-transformed
images. Following that, the conventional CNN model for clas-
sification is trained using these maps.

In [209], the proposed method merged the CNN with the
metric-learning-based HSIC approach. In the first phase, the
CNN is used to retrieve in-depth spatial features from the initial
three PCs retrieved by PCA. In the second phase, metric learning
has been incorporated into spectral–spatial feature learning for
HSI classification by integrating a metric learning regulariza-
tion term during model training. This helps increase interclass
differences while reducing intraclass variability in the learned
feature space. In addition, Gong et al. [210] combine a multiscale

convolution-based CNN architecture with diverse deep metric
learning techniques based on determinantal point process (DPP)
priors [211]. This framework extracts multiscale features across
1-D spectral, 2-D spectral–spatial, and 3-D spectral–spatial
modalities. The CNN employs filters at multiple scales to gen-
erate descriptive features across scales.

Meanwhile, the DPP-driven metric learning transformer en-
forces diversity in the feature space to maximize interclass vari-
ability while minimizing intraclass variability. By unifying mul-
tiscale CNN FE with deep metric learning regularization, this
approach achieves robust discrimination through hyperspectral-
specific feature optimization, resulting in improved HSI repre-
sentational tendency. Finally, the last phase of employing the
SoftMax classifier has been used to acquire classification maps.

Liu et al. [212] presented an HSIC approach to retrieve multi-
scale spatial information from HSI by building a three-channel
virtual RGB image rather than retrieving the first three PCs
via PCA. The goal of employing a three-channel RGB image
is to retrieve spatial features incorporating current networks
trained on natural images. These images are transmitted to an
FCN in order to perform multiscale FE. These multiscale spatial
features are combined and then merged with the spectral features
retrieved from the PCs for SVM’s classification purpose.

Ma et al. [213] proposed a two-branch (spectral and spatial)
DNN for HSIC. To retrieve HSI spatial information, the spa-
tial part uses a band selection layer and a convolutional and
deconvolutional approach with a skip structure. In contrast,
the spectral part uses a contextual DNN to retrieve spectral
information. Sellami et al. [214] presented a novel adaptive
band-selection-based semisupervised 3-D CNN approach for
jointly exploiting spectral information, whereas Roy et al. [215]
investigated a dual-attention-based autoencoder (AE)–decoder
DNN for unsupervised hyperspectral band selection and con-
sequently merged FE for land cover classification. Correspond-
ingly, spectral–spatial features are utilized in an unsupervised
approach in [216] utilizing a 3-D convolutional AE. The inclu-
sion of incorrect/noisy labels in the training sample frequently
causes pixelwise land use and land cover (LULC) classification
employing conventional CNNs to be overfitted to the labeled
noises. To address the issue of efficient classification, Roy et al.
[217] presented a novel fragile method of lightweight hetero-
geneous kernel convolution (HetConv3D) for HSIC with the
integration of noisy labels, which efficiently combines spectral
and spatial kernel features to generate discriminative and invari-
ant feature maps for classification. Song et al. [218] introduced a
deep feature fusion network (DFFN) for HSIC. This network in-
corporates residual learning to optimize multiple convolutional
layers through identity mapping, thereby facilitating the training
of deep networks and leveraging increased depth. Consequently,
this approach allows the construction of an exceptionally deep
network to extract more discriminative features from HSIs.

Roy et al. [219] proposed a hybrid HybridSN framework in
which joint spectral–spatial features are initially retrieved using
the 3-D CNN, and following the initial FE, the 2-D CNN plays
a crucial role in further refining the representation of the data
by retrieving extra abstract spatial contextual information. The
findings in [220] presented employing adaptive Markov random
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field (MRF) for HSIC. Once the CNN has effectively captured
joint spectral–spatial features, the next step involves applying
smooth MRF priors to the class labels. This strategic utilization
of MRF priors allows for the refinement and fine-tuning of the
spatial information associated with the predicted class labels.
Overfitting and vanishing gradient issues have a significant neg-
ative impact on CNN performance. Paoletti et al. [221] proposed
the separable attention network, which divides the input feature
maps into diverse categories and splits them across the chan-
nel dimension before incorporating them to encode the global
context data. Lately, Roy et al. [222] have proposed generalized
gradient centralized 3-D convolution (G2C-Conv3D) to inte-
grate both intensity-level semantic features and gradient-level
in-depth relevant data retrieved from raw HSIs during the convo-
lutional process. G2C-Conv3D can be effectively incorporated
into the current HSI FE networks to enhance the effectiveness
of effective land types classification. Recently, Song et al. [223]
have introduced a novel method, hashing-based deep metric
learning, designed for classifying hyperspectral images and light
detection and ranging (LiDAR) data. Initially, a two-stream deep
network is constructed to independently extract spectral–spatial
features from HSI and elevation features from LiDAR.

D. Graph CNN Frameworks for HSIC

Graph convolutional neural networks (GCNNs) [224] are
gaining popularity among the research community in a vari-
ety of application domains due to their adaptable and diverse
network architectural design, which can handle nongrid high-
dimensional data. Such characteristics offer new insights and
opportunities for more effective and efficient computation of
hyperspectral data. GCNNs, in particular, allow for the modeling
of data relationships. As a result, we are generally motivated to
employ GCNNs to acquire the spatial relationships of spectral
signatures in HSIs. Despite GCNNs’ constraints in graph con-
struction [225], especially for sizeable graphs (requiring costly
computational complexity), GCNNs suffer from classifying ma-
terials in massive-scale hyperspectral scenes utilizing standard
PCs, resulting in a lower attractiveness in HSIC comparison to
CNNs. As a result, there have been several preliminary studies
employing GCNNs in the HSIC function.

For instance, a second-order graph convolutional network
(SO-GCN), a novel approach to modeling spatial features on
manifolds for HSIC [226]. The primary objective of this in-
novation was to reduce the computational burden associated
with graph processing. Adding to this discourse, Wan et al.
[227] pioneered the superpixel segmentation method on HSIs,
feeding superpixels into GCNNs instead of individual pixels.
This methodology enabled the training phase of GCNNs on an
extensive assortment of pixels in HSIs, specifically address-
ing the challenges of land cover classification. However, it
is noteworthy that these techniques need to fully address the
inherent challenges associated with GCNNs. To bridge this gap,
Hong et al. [225] proposed a novel Mini-GCN. As implied by
its nomenclature, the Mini-GCN adopts a mini-batch training
format akin to the methodology employed by CNNs. This inno-
vation not only effectively reduces computational costs but also

facilitates quantitative evaluation and integration with CNNs.
The culmination of this research is the development of a fusion
network (FuNet) for HSIC, representing a significant stride
forward in the field.

E. Future Directions for CNN-Based HSIC

We reviewed the latest advancements in CNNs for HSIC in
the previous sections. Even though CNN-based HSIC method-
ologies have accomplished significant progress in terms of clas-
sification results, there are still numerous considerations that
require additional research. For example, there is a demand to
continue working on these frameworks that can use spatial and
spectral features for HSIC. Many of the methodologies discussed
previously employ DR techniques to improve spectral–spatial
representation, but these methods eliminate helpful HSI spectral
features. As a result, stable HSIC methods capable of preserv-
ing spectral features are necessary. Although applying these
methods enhances the computation complexity and slows down
the training procedure, parallel processing of these networks
utilizing field-programmable gate arrays (FPGAs) and graphical
processing units (GPUs) represents a cutting-edge approach to
optimize computational performance while maintaining model
efficiency. By harnessing the parallel computing capabilities of
FPGAs and GPUs, the network’s operations can be distributed
across multiple cores, allowing for the simultaneous execution
of tasks and significantly reducing processing time.

Furthermore, as CNNs become deeper and deeper, extra la-
beled training data are needed for efficient classification, and as
previously mentioned, HSI lacks labeled training data. To solve
this problem, state-of-the-art research is needed to incorporate
the CNN with unsupervised methods. In addition, we need
to focus further on the generalization capabilities of CNNs,
especially for the input data format. In order to create a more
general CNN-based novel approach, GCNNs may be a suitable
choice to integrate with CNNs. With the aid of this, we presume
to be capable of further turning the efficiency bottleneck and
producing HSIC that is more effective.

VIII. AUTOENCODERS

AEs are an effective symmetrical neural network for HSIC
because of their ability to unsupervised learning. The AE pro-
vides a compact feature representation of high-dimensional HSI
data rather than performing a classification process on its own.
As depicted in Fig. 6, the AE is composed of an input layer, a
hidden or encoding layer, a decoding layer, and an output layer.
When trained on input data, the AE can reconstruct the input
by encoding it into a latent representation. The goal of AE is to
decrease the reconstruction anomaly that results in the variation
between the input and the output in order to obtain a compressed
feature representation of the input data.

The SAE is formed by loading several AE layers so that the
output of one layer serves as the input for the layer above it.
A variation of AE called denoising autoencoder (DAE) shares
the same structure as the AE with the exception of the input
data. The output of DAE is the actual input signal without noise,
whereas the input is distorted by noise addition. As a result,
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Fig. 6. Generic architecture of an autoencoder.

unlike the AE, the DAE can restore the actual input from a noisy
input signal.

Zhu et al. [228] presented a fusion of multilayer AEs with
higher noise fraction to extract high-level representation from
the dataset, which lowers the spectral dimensions of HSI,
whereas a SoftMax logistic regression classifier is used for
HSIC. The research indicated in [229] integrated multimanifold
learning [230] approach with a counteractive AE [231] for en-
hanced unsupervised HSIC. Zhang et al. [232] utilized spectral–
spatial information of HSI using an unsupervised feature-
extracting approach comprised of a recursive AE network. It re-
trieves features from the target pixel’s neighborhood and assigns
weights according to the spectral correlation between the target
and neighboring pixels. Hao et al. [233] presented a two-stream
DNN with a class-specific fusion framework that learns the
fusion weights dynamically. A sequence of stacked DAEs is
employed in the first stream to retrieve spectral information,
and the CNN is applied in the second stream to retrieve spatial
information. After completing the separate classifications from
both streams, the final classification decision is reached through
a process of merging the class prediction scores obtained from
each stream’s outcomes. This fusion of class predictions lever-
ages the comprehensive information collected from multiple
sources, enabling the model to make a more informed and
accurate decision.

A further study introduced a hybrid approach for multifeature-
based spectral–spatial HSIC that makes use of a sparse AE for
high-level FE, guided filters [234] for spatial feature retrieval,
and PCA for DR. The approach suggested in [235] adopted
batch-based training of AEs, and features are produced by

merging spectral and spatial features by a mean pooling mecha-
nism. This combination of feature representations is a powerful
approach that allows the model to capture both local and global
information in the data. In a study [236], the researchers intro-
duced a novel spectral–spatial HSIC approach, which involved
extracting the appropriate spatial resolution from the HSI. To
achieve this, they employed stacked sparse AEs for high-level
FE to capture essential spectral–spatial information.

In a similar manner, Lv et al. [237] employed a stacked sparse
AE for spectral–spatial and multifractal representations, as well
as other higher order statistical representations. In [238], an
integration of SAE and ELM is presented for HSIC, which
partitions the training datasets and infuses them using SAE; after
transformation, feature subsets are reorganized following the
actual sequence of the training dataset and transmitted to ELM-
based classifiers, with Q-statistics chosen for final classification
performance. This feature subset computation enhances the
reduction of variability among base classifiers. Correspondingly,
Ahmad et al. [239] incorporated a robust and efficient multilayer
ELM-based AE that acquires features in three folds, as presented
for HSIC in [40].

To address the problem of increased intraclass variance and
increased interclass correlation in HSI, Zhou et al. [240] created
an SAE-based HSIC that can extract compressed and discrimi-
natory information by introducing a local Fisher discriminant
regularization. Consequently, the most recent findings [241]
combine a k-sparse denoising AE with spectral-restricted spatial
features to achieve the high intraclass variance of spatial features
for HSIC. Paul and Kumar [242] introduced an HSIC framework
that initially generates spectral segments of HSI based on a joint
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Fig. 7. Basic structure of a restricted Boltzmann machine.

feature criterion to decrease computational complexity during
FE via SAE, then incorporates spatial features employing EMPs,
and finally uses SVM/RF for classification purposes. Lately, Liu
et al. [243] have employed an SAE to classify an oil slick on the
sea surface by combining spectral–spatial HSI features.

A. Future Directions for AE-Based HSIC

In the previous sections, we reviewed the latest progress in
AE-based HSIC methods. Though those methodologies exhibit
strong predictive efficiency and generalization abilities, the more
complex task is mainly required. Most of those described meth-
ods do not fully leverage immense spatial features, so additional
methods that can leverage joint spatial and spectral features
for HSIC must be established. Furthermore, high intraclass
variance and high interclass correlation in HSI constrain the
generalization of the classifier. Most of the research discussed in
the previous section has tackled this problem, but more research
is needed to address it. Additional research into methods such
as pretraining, cotraining, and adaptive neural networks, among
others, for AE-based HSIC frameworks could be one key area.

IX. DEEP BELIEF NETWORK

A DBN [244] represents a powerful type of hierarchical DNN
that learns features in a layer-by-layer manner, progressively un-
covering intricate representations of the input data. As illustrated
in Fig. 7, the layers in DBN are constructed utilizing a restricted
Boltzmann machine (RBM) with a two-layer architectural style,
during which viewable units are associated with hidden units
[237]. Zhang et al. [245] provided a thorough insight into the
RBM. To retrieve fully detailed information from input data,
the hidden unit of one RBM can be transmitted to the visible
units of another RBM. The layer-by-layer structure employed in
the DBN facilitates a recursive training process that empowers
the network to acquire increasingly complex and abstract deep
features from HSI. Fig. 8 depicts the structure of a three-layer
DBN, showcasing the hierarchical arrangement of its layers.

In the literature, a number of research studies applied the
DBN for HSIC. For example, Ayhan and Kwan [246] com-
bined spectral–spatial features with the DBN for land cover
classification and compared their results to the state-of-the-art
classification methods. The DBN typically learns in two stages,
the first of which is unsupervised pretraining using unlabeled
instances and the second is supervised fine-tuning using labeled
instances. However, such a training procedure could lead to
two issues: 1) because of coadaptation [247], multiple hidden
units may have a tendency to behave in similar fashion [248];
2) because of the sparseness and specificity of activated neurons,
a few of which may always be dead or interacting [249]. In order
to address these two issues, Zhong et al. [250] regularized the
pretraining and fine-tuning operation by enforcing a diversifi-
cation before improving the DBN’s classification performance
for HSI.

In [251], an innovative DBN-based texture feature optimiza-
tion method was proposed, aiming to elevate the performance of
texture analysis tasks. This approach goes beyond conventional
methods by incorporating band grouping and sample band se-
lection techniques seamlessly combined with the application of
a guided filter. A DBN model then learns the enhanced texture
features, and the final classification outcomes are generated by
a SoftMax classifier. The study in [252] incorporated a parallel
layer approach with a logistic regression layer for classification
and a Gaussian–Bernoulli RBM to retrieve high, local invariant,
and nonlinear features from HSI.

Several research studies are regarded to jointly incorporate
the spectral and spatial features present in HSI in order to
enhance classification performance. For example, Li et al. [253]
proposed a DBN approach with the logistics regression layer
and presented that the joint exploitation of spectral informa-
tion increases classification performance. Consequently, Sellami
and Farah [254] presented a spectral–spatial graph-based RBM
technique for HSIC, which builds the spectral–spatial graph
by measuring combined correlation premised on spectral and
spatial information; then, the model proceeds with training
an RBM to extract meaningful joint spectral–spatial features
from HSI. Subsequently, these extracted features are fed into
a DBN alongside a logistic regression layer, enabling the final
classification step.

A. Future Directions for DBN-Based HSIC

In the previous section, we surveyed the most recent ad-
vancements in DBN-based HSIC approaches. We noticed that
in comparison to numerous different DNNs, only several stud-
ies had used DBNs for HSIC. Consequently, it is essential to
consider further DBN-based rigorous methods for HSIC that
can utilize both spatial and spectral features. One avenue of
exploration involves the integration of DBNs with cutting-edge
architectures, such as knowledge distillation and transformer
models, aiming to leverage the strengths of these architectures
for improved classification accuracy. Researchers may delve
into unsupervised and semisupervised learning scenarios, inves-
tigating how DBNs can effectively utilize unlabeled or partially
labeled hyperspectral data.
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Fig. 8. Three-layer DBN architecture.

Fig. 9. Internal structure of long short-term memory and gated recurrent unit.

In addition, adapting DBNs to perform robustly with limited
datasets is crucial, prompting the exploration of regularization
techniques and transfer learning (TL) strategies tailored for the
unique challenges posed by hyperspectral images. The incor-
poration of spatial information into DBNs and the exploration
of attention mechanisms can enhance their ability to capture
both spectral and spatial features, contributing to more com-
prehensive classification results. Further research may focus on
domain adaptation, allowing DBNs to generalize across different
hyperspectral datasets and the integration of multimodal data to
harness complementary information from diverse sources. An-
other suggestion for future research could be the regularization
of DBN pretraining and fine-tuning mechanisms to effectively
solve the problem of dead neurons.

X. RECURRENT NEURAL NETWORK

The structure of RNNs, depicted in Fig. 9, consists of loop
connections in which the node activation of the subsequent
phase depends on the preceding phase [255]. Thus, RNNs have
the capability to learn temporal sequences. RNN architectures
operate spectral features from HSI data as a time sequence, with
spectral bands acting as time strides [256]. RNNs are classified
into three types: 1) Vanilla; 2) long short-term memory (LSTM);
and 3) gated recurrent unit (GRU).

Vanilla is the most basic RNN framework and is prone to
results in feature loss when handling high-dimensional data.
LSTM models with two phases solve such problems by man-
aging the data stream via three gates: input, forget, and output.
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Fig. 10. Recurrent neural network.

It learns the related data by substituting the irrelevant data over a
period. While the gate-controlling approach provides the LSTM
with a notably dynamic strategy, the GRU version maintains the
consistency of the Vanilla model and, at the same time, achieves
enhanced accuracy compared to the LSTM. GRU is a simplified
variant of LSTM that replaces the output gate with an update
(zt) and reset (rt) gate and modulates the input and forget gate.
Fig. 10 shows a description of the internal architectures of LSTM
and GRU.

Hang et al. [72] introduced a novel RNN-based method-
ology for HSIC. This approach incorporates a unique activa-
tion function called “parametric rectified tanh” and integrates
GRUs. The model effectively utilizes the sequential features
present in the HSI data to specify class labels, enhancing its
capability to capture complex patterns and relationships within
the hyperspectral data. A new LSS technique following the
RNN approach was presented in [145], which initially re-
trieves low-level information from HSI employing the GF and
DMPs [146] and further merges this information to acquire
LSS features from the presented technique; these LSS features
are then transmitted to an RNN architecture to retrieve high-
level features, with a SoftMax layer employed for classification
purpose.

Considering the versatility of spatial features in improving
classification accuracy, Zhou et al. [257] introduced a spectral–
spatial LSTM-based network that extracts spectral and spatial
features of HSI by leveraging two distinct LSTM preceded
SoftMax layers for classification, with an ensemble learning
approach applied to obtain joint spectral–spatial classification
performance. Besides that, Sharma et al. [258] introduced a
patch-based RNN with LSTM cells for land cover classification
that incorporates multitemporal and multispectral features as
well as spatial features.

In literature, many studies have presented CNN-based hybrid
RNN (CRNN) architectures for HSIC. For example, Wu and
Prasad [180] applied a convolutional recurrent neural network
(RNN-CNN) architecture in their approach. In their method-
ology, the initial convolutional layers are utilized to extract
position-invariant middle-level features, while the subsequent
recurrent layers are favored for retrieving spectral-contextual
information in HSIC. Similarly, Wu and Prasad [259] used
pseudolabels to implement the related model for semisupervised
HSIC. Zhou et al. [260] proposed an HSIC approach in which
the CNN is employed to retrieve spatial information from HSI,
and this information is afterward sent to a GRU-based FuNet
that conducts feature-level and decision-level fusion.

In a similar way, Luo et al. [261] leveraged both the spatial
and spectral data inherent in HSI by integrating a CNN with a
parallel GRU-based RNN. This innovative amalgamation serves
to streamline the training of the GRU and enhances the over-
all efficiency of the process. In another study, a bidirectional
convolutional long short-term memory (CLSTM) model was
proposed in [155] with the express purpose of jointly harnessing
the spectral–spatial feature of HSI for the process of classi-
fication. Luo [261] combined multiscale local spectral–spatial
features obtained through a 3-D CNN with a hierarchical RNN.
This hierarchical RNN was designed to scrutinize the spatial
correlations of local spectral–spatial features at multiple scales.

The introduction of both recurrent 2-D CNN and recurrent
3-D CNN for HSIC in [262] proved noteworthy, given the
intriguing correlation observed between these methodologies
and the respective 2-D and 3-D CNN models. This correlation
affirms the significance of recurrent CNN in the context of HSIC.
In the study [263], the CNN and CLSTM were synergistically
combined. First, the authors harnessed the capabilities of a
3-D CNN to capture essential low-level spectral–spatial features
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from the raw hyperspectral data. Subsequently, the researchers
employed a CLSTM network, a specialized variant of the RNN,
to repeatedly analyze the obtained low-level spectral–spatial fea-
tures. The CLSTM is uniquely suited to process sequential data
while retaining the ability to capture long-term dependencies. In
a recent study by Hang et al. [72], a cascade RNN approach was
proposed for HSIC. This novel architecture comprises two layers
of GRU-based RNN. The first layer focuses on minimizing
redundant spectral bands, aiming to enhance the efficiency of
the subsequent FE process. On the other hand, the second layer
is dedicated to acquiring informative features from the HSI,
ultimately facilitating accurate classification. In addition, several
convolutional layers were incorporated to assimilate the rich
spatial details stored within the HSI. These advancements reflect
the ongoing evolution and innovation in the field of HSIC.

A. Future Directions for RNN-Based HSIC

In the previous section, we reviewed the latest progress in
AE-based HSIC methods. However, RNN-based HSIC archi-
tectures have received much interest from the remote sensing
society and have shown excellent classification results; several
attributes still require more research, such as the development
of sequential input data for RNNs. The majority of the reviewed
techniques focused on the HSI pixel, treating it as a sequential
point representing a data sequence formed by the pixel values
from each spectral band. However, this substantially lengthens
the input sequence for RNNs, which can cause an overfitting
problem.

In addition, processing these lengthy data sequences tends
to grow computational time and slows learning. In order to
acquire better classification performance of RNN-based HSIC,
the implementation of parallel processing techniques requires
to be thoroughly explored. Furthermore, methodologies such as
clustering spectral bands to reduce data sequence distance and
utilizing a whole spectral signature to improve discrimination
between different classes can be investigated more to build the
RNN model’s sequential input. Another promising future direc-
tion may be the integration of RNN-based HSIC architectures in
a real-world multitemporal HSI context, as this could yield sig-
nificant advancements in various applications. By incorporating
RNNs with HSIC in the analysis of multitemporal hyperspectral
imagery, researchers and practitioners could unlock a plethora
of new possibilities.

XI. APPROACHES FOR ADDRESSING LIMITED-LABELED DATA

However, despite the fact that DNNs have been effectively
used for the HSIC task, they need a sizable portion of la-
beled training data. Furthermore, as previously mentioned, the
selection of labeled HSI is crucial and expensive, involving
various factors that either necessitate the expertise of human
professionals or the investigation of real-time situations. The
scarcity of labeled training data impedes classification results.
Numerous innovative approaches have been presented in the
literature to address the aforementioned problem. In this section,
we will comprehensively explain several such approaches and

techniques while aiming at active learning (AL) algorithms and
ensemble-based learning methodologies.

A. Data Augmentation

DA has been shown to be an efficient method for HSIC in
dealing with the problem of insufficient training samples. It
produces novel samples from the actual training samples while
incurring no extra labeling costs. DA techniques are divided
into two categories: 1) data wrapping and 2) oversampling
[264]. Data wrapping typically encodes multiple invariances
(translational, size, and illumination) while sustaining the labels,
whereas oversampling-based augmentation techniques increase
the training dataset by producing artificial sample sizes premised
on actual data distributions. Methods for oversampling involve
mixture-based instance generation [264], feature space augmen-
tations [265], and generative adversarial networks (GANs).

According to the HSIC literary works, multiple DA-based
approaches have been used to enhance classification efficiency
by mitigating the overfitting problem, which commonly occurs
due to a lack of training data. For example, Yu et al. [266]
augmented the training data with three DA operations (flip,
rotate, and translation) and then used this augmented data to train
CNN for HSIC. Li et al. [267] introduced a thorough comparative
study of numerous widely used HSI DA methods and presented
a pixel-block pair-based DA that used both spectral and spatial
HIS features to produce unique examples and train a CNN model
for HSIC. Cao et al. [268] assessed the classification efficiency
of a CNN in combination with AL both with and without
DA techniques. Their findings revealed that the inclusion of
DA led to improved classification accuracies, demonstrating its
significant contribution to enhancing the model’s performance.
Consequently, in the study [269], the DA-based CNN outper-
formed a PCA-based CNN model by 10% in HSIC accuracy.

The mentioned techniques previously employed offline DA
methods to boost training data by generating novel examples
before a model’s training phase. Lately, a new DA approach for
HSI has been presented in [270], which produces the sample
sizes at test time instead of artificially boosting the training
data, and a DNN trained over actual training data, as well as
a voting mechanism, has been utilized for the concluding class
label. Nalepa et al. [270] also presented two accelerated DA
methods for high-quality data syncretization to enhance the
predictive performance of DNNs. Nalepa et al. [271] proposed a
relevant PCA-based online DA approach that reconstructs novel
examples during inference rather than training.

B. Semisupervised Learning

SSL techniques leverage both labeled and unlabeled data to
learn the underlying data distribution. By integrating unlabeled
and labeled instances during training, these methods expand the
pool of training examples and establish meaningful correlations
between the feature space and class labels. Numerous SSL
approaches for HSIC have been proposed in the research, falling
under several broad categories: cotraining, self-training, GANs,
graph-based SSL models, and semisupervised SVMs are among
the commonly employed methods. A latest thorough review of
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these SSL methods can be explored in [272]. Furthermore, Pise
and Kulkarni [273] also presented a comprehensive analysis of
SSL methodologies.

There is a brief summary of the SSL-based HSIC methods
in [274], where the authors also compare these methodologies
in great depth. The approach described in [259] pretrained a
CRNN for HSIC using pseudo or cluster-labeled instances and
then fine-tuned the network using limited labeled data. Likewise,
Kang et al. [160] presented a semi-HSIC approach that uses
PCA and increased morphological attribute profiles to retrieve
pseudolabeled sample sizes that are injected into a CNN-based
DFFN.

Fang et al. [275] introduced a dual cotraining method fo-
cused on spectral and spatial features of HSI. Consequently,
Zhou et al. [276] pretrained two SAEs individually, the first
pretrained model utilizing spectral information and the second
pretrained model utilizing spatial HSI information, and fine-
tuning is obtained through a cotraining strategy. To improve the
training data, Li et al. [277] introduced a region-information-
based self-training strategy. In [278], an innovative approach to
self-training was proposed, which hinges upon the principles of
graph theory. This methodology commences with a preliminary
sample size, which is ascertained through the application of
subtractive clustering, a technique notable for its effectiveness
in identifying cluster centers in high-dimensional data. Wu et al.
[161] made considerable strides in enhancing the outcomes of
HSIC by employing a novel strategy of pseudolabeling unla-
beled datasets. This was accomplished using a framework rooted
in the principles of clustering-based self-training. An additional
layer of finesse was added by regulating the self-training process
with spatial constraints, thereby ensuring the relevance and
appropriateness of the pseudolabels in the spatial context.

C. Few-Shot Learning

Few-shot learning (FSL) is a machine learning paradigm
that aims to train models to recognize and classify new classes
with only a small number of examples per class [279]. This is
particularly useful in scenarios where obtaining a large labeled
dataset is challenging or expensive. HSIC involves categorizing
each pixel in a hyperspectral image into predefined classes based
on the spectral information. In HSIC, where the number of
classes may be large and diverse, a model trained using FSL
may generalize better to new classes as it learns to capture the
underlying spectral patterns.

Several studies have introduced FSL in HSIC to boost per-
formance in limited data conditions. For example, Liu et al.
[280] proposed a novel deep FSL method to tackle the limited
labeled samples in HSI classification. The method employs
three key strategies: 1) using a deep residual 3-D CNN; 2)
training the network through episodes to learn a metric space;
and 3) using the nearest neighbor classifier within the learned
metric space. In another study [393], the authors proposed a
novel approach to heterogeneous FSL for HSIC, utilizing only
a limited number of labeled samples per class . A few studies
introduced a graph-based approach that has also been integrated
into FSL [281], [282], [283], [284].

Fig. 11. Generic framework of a generative adversarial network.

Recently, state-of-the-art methods have been proposed with
the integration of FSL for HSIC. For example, Ran et al.
[285] proposed an innovative classification framework, i.e., deep
transformer and FSL, with the aim of achieving fine-grained
classification of HSI using only a limited number of instances in
an FSL setting. Peng et al. [286] introduce a novel convolutional-
transformer-based FSL method. It concurrently applies FSL in
source and target domains, establishes a consistent scenario,
aligns domain dimensions using a domain aligner, and employs a
convolutional transformer network for local–global FE. Huang
et al. [287] introduce HFC-SST, an advanced spatial–spectral
transformer (SST) for few-shot HSIC. Effectively capturing
local spatial–spectral information with limited labeled samples,
it employs a sequence generation method based on spatial–
spectral correlation analysis and adjacent position information.
In addition, an FE network, based on the transformer, further
exploits spatial–spectral features within the input sequence.

D. Generative Adversarial Network

The GAN presented by Creswell et al. [288] consists of two
DNNs; the first part of GAN is referred to as a generator, and
the second part is called a discriminator, as shown in Fig. 11.
By utilizing the data distribution information, GANs can learn
to replicate the sample data. A spectral-feature-based GAN for
SSL-based HSIC was presented in [289].

Consequently, He et al. [290] presented a spectral–spatial
HSIC approach based on the GAN. Zhu et al. [291] built
CNN-based 1-D GAN and 3-D GAN frameworks to improve
classification efficiency for HSIC. The spectral features are
generated using a 1-D customized GAN [292], in which the
CNN employs for FE, and then, a majority voting mechanism is
applied to produce HSIC. Feng et al. [293] have lately presented
a novel multiclass spatial–spectral GAN, which employs duplet
generator models to generate spatial and spectral features with
the assistance of several adversarial strategies. Zhong et al.
[294] introduced a novel conditional random field generative
adversarial network framework that integrates the GAN model
with conditional random fields to solve the data sparsity issue
for HSIC.
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Correspondingly, Wang et al. [295] explored a caps-triple-
GAN model, which efficiently produces novel sample sizes
utilizing a 1-D architecture triple GAN (Triple-GAN) and clas-
sifies the produced HSI samples employing capsule network
(CapsNet). Xue [296] introduced using a novel 3-D-CNN-based
generator network and a 3-D deep-residual-network-based dis-
criminator network for HSIC. In [297], an integration of Cap-
sNet and convolutional-LSTM-based discriminator model was
presented for HSIC to extract high-level context information.

The study [298] addresses the insufficiency of training in-
stances by employing a GAN model in which the discrimina-
tor’s efficiency is enhanced more by an additional classifica-
tion model to generate more architecturally cohesive virtual
training instances. In addition, Roy et al. [299] introduced
a generative-adversarial-minority-oversampling-based method
to tackle the lasting issue of classwise data scarcity applied
by HSIC to improve predictive accuracy. Hong et al. [300]
proposed HighDAN, a high-resolution domain adaptation net-
work, to improve the AI model’s generalization across various
urban environments. HighDAN preserves urban scene struc-
ture through high-to-low resolution fusion, addressing differ-
ences in remote sensing images between cities via adversarial
learning.

E. Transfer Learning

TL increases a model’s productivity and operational efficiency
with previous insights of a related main goal to conduct a sec-
ondary task. Moreover, features retrieved from the appropriate
source domain are transferred to the desired domain in order to
learn previously unseen information. As a result, TL can be used
successfully in applications with little or insufficient training
datasets. TL approaches are further classified as supervised or
unsupervised depending on the accessibility of labeled training
examples. In general, both the source and target domains are
supposed to be relevant but not identical. Although they have
high variability, like, in the particular instance of HSIC, where
the classes of concern are identical, data in the two domains may
differ given the various acquiring conditions.

With DNN-based HSIC, the model extracts features in a
hierarchy fashion, with bottom layers typically extracting gener-
alized features when trained on a variety of examples. As a result,
a novel classifier can be learned for the intended dataset using
the features these layers have already learned. For example,
Yang et al. [301] adapted the bottom layers of the pretrained
model to the intended network for the accurate classification
performance of the target HSI. They pretrained a two-branch
spectral–spatial CNN architecture with a sufficient number of
training examples from other HSIs. The intended network’s
upper layers are arbitrarily initialized in order to acquire the
task-based information, and the network in its entirety is tweaked
using a small number of labeled examples of the target HSI.
In a similar fashion, Windrim et al. [302] introduced a proper
technique for pretraining and fine-tuning a CNN before using it
to classify novel HSIs. The research work in [303] merged DA
and TL techniques to enhance HSIC efficiency in the context of
a lack of training examples.

As previously described, data in the source and target domains
can also vary in several ways; for example, in the situation
of HSIs, the dimensions of two HSIs may differ because they
were acquired from various sensors. The process of dealing with
such cross-domain variability and transformation of information
between them is referred to as heterogeneous TL (a compre-
hensive review of similar techniques can be explored in [304]).
Many studies have been presented in HSIC research to solve
the problem of transferring information between two HSIs with
highly variable dimensions and distributions.

For instance, Lin et al. [305] presented an improved heteroge-
neous TL-based HSIC approach that performs effectively with
both homogeneous and heterogeneous HSIs. In a research study,
Li et al. [306] introduced a novel heterogeneous TL with a recur-
sive reweighting framework for HSIC. In addition, Liu and Xiao
[307] presented a band-selection-based TL method to pretrain
a CNN that keeps a relatively similar amount of dimensions
for different HSIs. Moreover, Lin et al. [308] introduced an
unsupervised TL method to classify entirely unexplored target
HSI, and de Lima and Marfurt [309] showed that networks
trained on natural images can outperform networks trained from
scratch utilizing relatively small HSI dataset for remote sensing
data classification. For the first time, Hong et al. [310] introduced
SpectralGPT, a pioneering universal remote sensing foundation
model specifically designed to process spectral remote sensing
images through an innovative 3-D generative pretrained trans-
former.

F. Transformer Models

Transformer models have demonstrated significant success in
various natural language processing tasks, but their application
has extended beyond text to computer vision tasks, including
HSIC. The architecture of transformer models, originally de-
signed for sequence-to-sequence tasks, has proven effective in
capturing spatial and spectral dependencies in HSIC. Several
studies demonstrated effective results of using transformer archi-
tecture in HSIC. For example, He et al. [311] introduced a novel
classification framework named SST for hyperspectral image
classification. The SST employs a carefully crafted CNN to ex-
tract spatial features, incorporates a modified transformer known
as DenseTransformer to capture sequential spectra relationships
with dense connections, and utilizes a multilayer perceptron to
perform the final classification task. Qing et al. [312] presented
SAT Net, an end-to-end transformer model designed for HSIC,
leveraging the self-attention mechanism. This model incorpo-
rates both spectral attention and self-attention mechanisms to
extract spectral–spatial features from the HSI image. Similarly,
the authors of [313], [314], and [315] employed spectral–spatial
transformer models to extract spectral and spatial features for
HSIC.

Recently, many state-of-the-art models have been proposed
with the integration of transformer models. For example, Yang
et al. [316] introduce FusionNet, a hybrid network that integrates
convolution and transformer architectures for HSIC. This fusion
occurs through both serial and parallel mechanisms, maximizing
the utilization of HSI features. Similarly, Zhang et al. [317]
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Fig. 12. Generic overview of active learning.

introduce the convolution transformer mixer (CTMixer), a com-
prehensive framework proposed for HSIC. CTMixer aims to
seamlessly integrate the benefits of both convolutional and trans-
former paradigms for effective classification. Zhao et al. [318]
introduce a novel framework called multiattention transformer
with adaptive superpixel segmentation-based active learning.
This framework demonstrates outstanding classification perfor-
mance, particularly in scenarios with limited sample sizes. Qiu
et al. [319] present a cross-channel dynamic spatial–spectral
fusion transformer (CDSFT). Within the CDSFT, multiscale and
multichannel features are initially extracted, followed by the
derivation of cross-channel global features through transpose
multihead self-attention.

Moreover, state-of-the-art variants of transformer models
have been proposed to enhance the classification efficiency fur-
ther and perform well in limited samples situations. For example,
Roy et al. [320], introduce morphFormer, a novel morpholog-
ical transformer. The model incorporates a trainable spectral
and spatial morphological network, employing morphological
convolution operations alongside the attention mechanism. Hao
et al. [321] introduce a transformer with residual upscale (RU)
GAN, consisting of a generator (G) and a discriminator (D).
Within the generator (G), a technique called RU is suggested to
enhance the resolution of generated features. In addition, RU
facilitates the extraction of texture features and the capture of
contextual relationships. Moreover, Cao et al. [322] introduce
a transformer-based model using contrastive learning for en-
hanced performance. The model aims to integrate both methods
and enhance overall performance. Liang et al. [323] propose a
swift HSIC method that combines transformers and SimAM-
based CNNs. The SimAM-based CNN utilizes an improved
hierarchical 2-D dense network structure to capture intricate
spatial characteristics. A dual attention unit directs the model’s
focus to discriminative spatial pixel characteristics and efficient
feature map channels, suppressing irrelevant information for
classification.

G. Active Learning

AL improves a classifier’s prediction accuracy in an iterative
manner by effectively enhancing the capacity of the training
dataset per training epoch process using an unlabeled pool of
instances. For every epoch, AL improves the training dataset
by effectively choosing the more beneficial examples from the
pool of unlabeled data, and an oracle (human- or machine-based)
allocates the actual class labels to such examples. Subsequently,
the helpful examples are included in the training dataset, and
the model is retrained while using the novel training dataset. The
procedure is iterated unless a termination criterion is met, which
could be the sample of the training dataset, the total number of
iterations, or the required classification result. Fig. 12 depicts a
basic framework of AL.

To boost performance, the valuable examples set are chosen in
such a manner that they are helpful and reflective of the general
input distribution. AL approaches are classified as stream-based
or pool-based based on the considerations for introducing novel
examples to the training dataset. In stream-based choice, one
example is taken at a period from a true set of unlabeled
examples, and the method determines whether or not to label
it depending on its applicability. In a pool-based approach, ex-
amples are queried from a pool of unlabeled datasets depending
on scoring results calculated from different metrics to assess the
effectiveness of the examples.

Ganti and Gray [324] discovered that streamed-based choice
yields lower learning rates than pool-based choice because the
previous approach leads to more query examples. In pool-based
choice, it is critical to include diversification in the pool of
instances to prevent redundant data within the pool of instances.
In general, three factors are considered when choosing the most
useful instances: heterogeneity behavior, prediction accuracy,
and instance representativeness. A detailed overview of such
instances techniques is given as follows.

1) Heterogeneity-based methods: These techniques choose
instances that are more diverse than previously described
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instances in terms of model diversification, classification
unpredictability, and contention among a group of dif-
ferent classifiers. Instances of heterogeneity-based frame-
works include uncertainty sampling, intended model al-
teration, and query by committee.
a) Uncertainty sampling: In this framework, the clas-

sification model progressively seeks to query labels
for instances where uncertainty is highest during pre-
dictions. Samples are chosen based on scores ex-
ceeding a predefined threshold, and those with the
highest ratings are queried for labels. A straightfor-
ward approach involves applying a probabilistic clas-
sifier querying the label if the correctly classified
probability is close to 0.5 in a binary classification
case.

b) Query by committee: These heterogeneity-based
frameworks focus on the sampling procedure on dif-
ferences in the predictions of different classification
models via the relatively close set of labeled instances.
To predict the class labels of unlabeled instances, a
committee of different classification models trained
on a similar set of training data sizes is applied, and
the instances for which classification models vary the
most are chosen for querying labels. The committee of
various classification models can be constructed uti-
lizing ensemble learning approaches such as stacking
and Boosting [325] or switching the hyperparameters
[326]. In general, a smaller number of diversified clas-
sification models is sufficient for forming a committee
[325], [327].

c) Model variability: A heterogeneity-based framework
selects examples that differ significantly from the
existing model in the context of the gradient of
the objective function. These methods tend to query
the label for examples that vary significantly from
the existing model. Such sampling methods are solely
applicable to models that use gradient-based training
and optimization processes.

2) Performance-based methods: These techniques take into
account the impact of including queried examples on
prediction accuracy. They attempt to improve prediction
accuracy by lowering variance and error. Performance-
based sampling is divided into two categories.
a) Error minimization: This method, linked to uncertainty

sampling, employs metrics that increase the label prob-
ability for querying examples, while a decrease in
predicted error rate reduces label unpredictability. In
the context of binary classification, minimizing error
rates involves selecting examples with probabilities
exceeding 0.5. These approaches are often referred to
as the highest certainty models [326].

b) Variance minimization: This method, linked to uncer-
tainty sampling, boosts label probability for querying
examples based on unpredictability metrics. In binary
classification, minimizing error rates selects examples
with probabilities greater than 0.5—referred to as the
greatest certainty models [328].

3) Representatives-based methods: Heterogeneity-based
methods may include anomalies, while performance-
based techniques, like accurate error prediction, naturally
mitigate such instances. Representative sampling, focus-
ing on common examples in the input distribution,
avoids outliers. Density-weighted methods, such as
information density, consider both heterogeneity and
representativeness in capturing dense input regions
during query processing [326].

Recently, AL has significantly empowered HSIC. Liu et al.
[329] introduced the feature-driven active learning method,
tailored for HSIC, while Zhang et al. [330] proposed active
semisupervised RF, leveraging spectral–spatial features. These
techniques dynamically select valuable examples for the training
set, showcasing the potent integration of AL with HSIC. Several
AL-based HSIC approaches have incorporated spatial features.
Guo et al. [331] combined spectral and spatial properties of
superpixels, Xue et al. [332] used neighborhood and superpixel
features to increase data uncertainty, and Bhardwaj et al. [333]
integrated spatial features using attribute profile information in
an AL-based HSIC approach.

Batch-mode AL approaches are extensively used to speed up
the learning process. In every iterative process, these frameworks
choose a batch of examples to be queried for a label. As a result,
in batch mode AL methods, sample diversification is essential
in order to prevent redundant data. Patra et al. [334] presented
a multicriteria batch-mode AL technique that describes a novel
query function based on diversification, unpredictability, and
cluster assumption measures. Such factors are described by
utilizing the attributes of KNN, SVM, and K-means clustering,
and genetic algorithms are then employed to select the batch of
highly impactful examples. Correspondingly, Zhang and Craw-
ford [335] introduced a regularized multimetric batch-mode AL
approach for HSIC that takes advantage of several HSI features.

Xu et al. [336] introduced a multiview AL (MVAL) approach
that evaluates the instance from diverse perspectives and esti-
mates the information quality of the example using multiview
intensity-based query specifications. In a similar manner, Prad-
han et al. [337] used the Fisher discriminant ratio to produce
various views, utilizing the approach of multilearning. In another
research study, Zhang et al. [338] introduced a new method of
adaptive MVAL approach for HSIC that leverages both spatial
and spectral information in each view. Lately, Li et al. [339]
have presented a new SPSMVAL method that produces dif-
ferent viewpoints for HSIC using pixel-level, subpixel-level,
and superpixel-level information. In addition, the presented
technique uses joint posterior probability estimation and dif-
ferences between various viewpoints to query the representative
examples.

Recently, a number of studies have integrated the AL and
DNN frameworks. For example, Liu et al. [340] introduced a
novel ADL framework for HSIC, and Sun et al. [341] combined
AE with AL methods. In addition, Haut et al. [342] proposed a
novel B-ALCNN method by combining Bayesian CNN with the
AL framework for spectral–spatial HSIC. Moreover, Cao et al.
[268] introduced a novel ALCNN approach to effectively lever-
age unlabeled examples for HSIC. Several studies combined AL
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Fig. 13. Deep ensemble learning framework.

and TL for HSIC. In order to accurately reflect the data from the
source and target domains, Lin et al.’s [343] AL-TL approach
retrieves the salient examples and makes use of high-level
features. In a different study [344], a stacked-sparse-AE-based
active TL method was put forth that makes use of both spectral
and spatial features for HSIC. Another study [345] proposed
an active multikernel domain adaptation that merged domain
adaptation and AL techniques for HSIC based on several kernels.

AL-based HSIC advances model generalization. For exam-
ple, Ahmad et al. [36] introduced fuzziness-based AL (FAL)
to enhance the generalization of discriminative and generative
models. FAL calculates fuzziness-based depth, selecting train-
ing set representatives with high fuzziness scores and small
distances from class boundaries. Ahmad et al. [346] introduced
MNSAL for multiclass HSI classification, combining spatial
prior fuzziness with MLR through partition and augmented
Lagrangian methods. They conducted a comprehensive com-
parative analysis with state-of-the-art sample choice techniques
and classifiers. Yao et al. [347] suggested a semisupervised
CNN framework named SA-CNNs, utilizing AL and superpixel
segmentation for HSI classification. They initiate the process by
pretraining a CNN model on a limited unbiased labeled dataset,
followed by inferring unlabeled data to generate pseudolabels.

H. Ensemble and Deep Ensemble Learning

Ensemble learning integrates some “weak” classification
models using the appropriate approaches to produce better than
any classification model. Boosting [348], Adaboost [349], and
RF [350] are a few ensemble approaches that have been pre-
sented. The ensemble classification, which signifies a mono
hypothesis, is versatile in terms of the characteristics it can
depict. In theory and practical application, ensemble approaches

generally enhance classification accuracy. Fig. 13 shows the
deep ensemble framework.

Numerous ensemble-based approaches for HSI classification
have been introduced in regard to hyperspectral remote sensing.
For instance, to investigate the capabilities of ensemble learning
for HSI classification, Waske et al. [351] presented a multiple
classifier framework that integrates an SVM and random feature
selection. Yao et al. [352] proposed a lightweight ensemble
model with the integration of spectral features’ refining mod-
ule. The refining module approach is based on the method of
attention approach. Moreover, in another study, Nalepa et al.
[353] proposed deep ensemble with the integration of different
CNN architectures. Furthermore, they also introduce model
augmentation methods that enable the synthesis of novel DNNs
based on the actual model by integrating the Gaussian noise into
the model weights.

In [354], a novel deep ensemble CNN has been presented with
the extension of the samples of HSI classifications. The spatial
features are first retrieved and fused with the spectral features
in order to enable the classifiers to acquire spatial and spectral
features. They also utilized the PPF approach to increase the
total size of training samples. Chen et al. [355] proposed a deep
ensemble architecture that consists of a DL model and subspace-
based ensemble learning. Especially, two DL ensemble-based
methods have been used to classify the HSI (CNN ensemble and
deep residual ensemble). CNNs and deep residuals have been
used as separate classifiers, and random subspaces have been
employed to diversify the ensemble mechanism in an effective
way. Recently, Su et al. [356] have proposed a DIV-KCRC
method using a bootstrap approach to boost the performance
of the base classifiers with the diversity of measures. In another
study [357], two methods have been proposed multiview ker-
nel collaborative subspace clustering (MVKCSC) and random
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subspace (RS) MVKCSC. Furthermore, a novel approach to
forming the Laplacian matrix employing kernel collaborative
representation (CR) coefficients is presented for clustering based
on subspace clustering and CR theory.

Lv et al. [358] proposed an enhanced ensemble CNN method
to classify the imbalanced HSI datasets. First, they used the RS
feature method and RF approach. Then, they built an ensemble
learning model by integrating the random feature samples and
CNN into the HSI classification. In another study, Lv et al. [359]
proposed ensemble CNN with feature subspaces (ECNN-EFSs)
method, which used an imbalanced training dataset to train the
model and acquired higher accuracy. Li et al. [360] proposed a
spectral–spatial based feature retrieval approach centered on en-
semble empirical mode decomposition for HSI classification. In
[361], two novel ensemble-based methods have been proposed,
including bagging-based TCRC and boosting-based TCRC ap-
proaches, which can increase the accuracy and diversification of
the solo classifier method.

Feng et al. [362] proposed an ensemble margin-based semisu-
pervised random forest approach with a limited training dataset.
The presented novel approach enables an increase in the effi-
ciency of the ensemble model through adaptively labeling the
unlabeled samples with increased classification probability and
adding them into the training set. The classification probability
of a training sample is reflected by the unsupervised margin
value of such samples. The higher the ensemble margin of a
sample, the higher the probability of the sample being classified
accurately and added into the training set in the next iteration.
Liu et al. [363] proposed a novel ensemble self-supervised
feature-learning technique that instantly extracts deep features
conducive to classification without any annotation details, sub-
stantially lowering DL methods’ reliance on extensive labeled
samples. The first step is to present and use EfficientNet-B0
as the foundation to model input samples in order to more thor-
oughly and efficiently employ the spatial features in HSIs. Then,
the designed model can retrieve the latent features of relatively
homogeneous samples grouping together and heterogeneous
samples differentiating from each other in a self-supervised form
by limiting the cross-correlation matrix of various distortions of
the same sample to the identity matrix.

Moreover, they also introduced two novel ensemble
approaches, including feature level and view level ensemble.
Liu et al. [363] proposed an ensemble stochastic watershed
edge weight method. The introduced method consists of two
main points: 1) the ensemble approach reduces the variance and
2) categories in HSI datasets and feature similarity have only
one-sided implications. Agarwal et al. [364] introduced a novel
evolutionary multitask ensemble learning model (EMT EL).
First, the model converts the generation of spectral feature sub-
spaces into a multitask optimization problem in order to explore
optimized feature subspaces for ensemble learning at the same
time, allowing them to choose more useful and representative
feature subspaces more efficaciously. Second, obtaining the
optimized feature subspace for one core classifier can enable
certain other core classification models by accessing valuable
features. This can boost descent toward the optimized feature
subspace path, minimize luring in locally optimized subspace,

and increase exploring potential. Third, randomization-
enhanced genetic algorithms are intended for efficient and
plausible FE, enabling feature interaction and enhancing the
mutual exploring performance of the feature subspace.

Several studies introduce the deep forest (DF) method, which
is an ensemble learning approach that has been applied to HSIC.
For example, the authors of [365] and [366] used DF for HSIC
to acquire enhanced performance. Advanced DF methods have
been proposed to tackle the HSIC efficiency problem [367],
[368]. These methods integrate the cascade method in DF to
boost the performance without facing the computational com-
plexity issue. Cao et al. [369] introduced a novel deep model,
named densely connected deep random forest, designed for
HSIC. The model comprises multiple forward-connected RFs.
Recently, Liu et al. [370] have introduced MAPC-DRF-HSI
method for HSIC. The morphological attribute profile cubes
undergo scanning with multiple-scale sliding windows to fully
exploit the abundant spatial–spectral information. Ultimately,
post-multigrained scanning features are fed into a DF classifier
to accomplish the classification task.

Shi et al. [371] introduced a promising new extreme-learning-
machine-based ensemble transfer learning (TL-ELM) method.
TL-ELM acquires the input weights and hidden biases of the
ELM learned from the particular domain, as well as samples
from the given dataset to recursively alter the output weights of
the ELM, which serve as the weights of the building models and,
after that, ensemble the training models with their weights for the
classification purpose. Liu et al. [372] proposed a novel flexible
ensemble method for the multiclass imbalance issue focused
on SMOTE and rotation forest (RoF) with diversified sampling
rates. The presented method uses SMOTE and a dynamic in-
formation sampling ratio for core classifiers to generate a series
of balanced datasets with further diversification and much less
noise. Feng et al. [373] proposed a label propagation ensemble
(LPE) method.

In LPE, an RS technique is presented to split the feature
space into various subspaces, and then, several label propaga-
tion models are built on correlating subspaces. Eventually, the
outcomes from various label propagation models are merged
at the classification stage, and only the unlabeled pixels whose
label propagation outcomes are identical will be selected with
pseudolabels. During the iterative process, ELM models are
given training on labeled and pseudolabeled instances. Zhang
et al. [374] introduced a multiscale CNNs ensemble-based self-
learning (MCE-SL) technique for semisupervised HSI classifi-
cation. In general, the presented MCE-SL method is divided into
two phases. In the first phase, spatial features at various scales are
retrieved from sparse labeled training instances in order to train
multiple CNN models. The second phase includes classifying
the unlabeled instances using the trained multiscale CNNs. After
error correction, the problem of labeling partially incorrect is
alleviated, and unlabeled samples with high confidence will
be added to the original training dataset for the next training
iteration.

Fang et al. [375] proposed multiview-based random rotation
ensemble pruning and presented some state-of-the-art features.
First, employing correlation analysis, the spectral bands are
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partitioned into multiple views to ensure that the subsets of
spectral bands can adequately obtain the target concept. Second,
random rotation, a novel method of space transformation, is
presented to transform each view into a variety of coordinate
spaces, significantly increasing the diversification of the com-
ponent classifiers trained on the transformed spaces. Third, an
accuracy-guided ensemble pruning approach is formed to elimi-
nate component classifiers with minimal complementarity. As a
result, the component classifiers left are put together to produce
an ensemble classifier with high complementarity. Zhang et al.
[376] presented the RS ensemble with improved feature, which
uses improved spatial features to train multiple classifiers. The
presented method addresses two basic problems: the curses of
imbalanced training samples and a high feature-to-instance ratio.
To solve the problem of imbalanced training instances, they
first introduce a similar-neighboring-sample search technique.
Following that, they generate improved RSs with reduced di-
mensionality and more unique features than the actual RSs in
order to mitigate the curse of a high feature-to-instance ratio
more efficiently.

Feng et al. [377] introduced an adaptive semisupervised RoF
for HSIC with sparse training data. The proposal relies on RoF,
a classification method that has proven to be useful in the case
of high-dimensional data. It is altered for SSL by boosting the
number of training examples in the learning phase and mining
high-quality unlabeled examples with an ensemble margin. The
SMOTE method is used to address the issue of class imbalance.
In the second step, out-of-bag examples are employed to deter-
mine the efficient number of instances to include in the training
set. In [378], multiple transferring CNNs are integrated to form
a diverse ensemble classification framework.

Furthermore, an enhanced label smoothing method is intro-
duced to enhance the HSI’s classification performance. In [379],
the vicinity of class noise, a new two-phase ensemble-based data
filtering technique is presented to enhance HSIC performance.
The presented technique combines noise redundancy classifica-
tion models with sensitive techniques.

Recently, Lu et al. [380] have introduced two novel dynamic
ensemble learning techniques employing local weighted resid-
ual (LWR-DEL) and double-weighted residual of multi-CR
classifiers. Initially, the dynamic ensemble learning technique
focused on clustering is employed to present initial information
for the CR classification model. The local weights of every
classification model for a distinct area of competence are then
acquired using previous information. In order to produce vali-
dation instances with global information, the KNN technique is
used to take into account the global information of hyperspectral
data. The global weights for every classification model can be
acquired and applied to limit the locally weighted residuals.
Similarly to LWR-DEL, the global information is also utilized to
limit the residual, and the last classification performance is then
obtained by fusing the double-weighted constrained residuals.
Yao et al. [381] introduce a novel multimodal DL framework
for LULC classification. They achieve this by making minimal
modifications to the conventional vision transformer. Yao et al.
[382] investigate the potential of unsupervised cross-modal fea-
ture representation learning. They achieve this by incorporating

multimodal data into a fully recombined matrix format. Hong
et al. [383] present two innovative network components: a
self-GAN module and a mutual-GAN module. These additions
aim to learn perturbation-insensitive feature representations and
bridge the gap between modalities, enhancing effective and
robust feature transfer. Zhang et al. [384] propose enhancing FE
from LiDAR data using a CNN with an attention mechanism.
It introduces a well-designed cascaded block with a short path
architecture for efficient multistage information exchange.

I. Future Directions of Ensemble and Deep Ensemble

In the prior section, we discussed the most recent advance-
ments in ensemble and deep ensemble approaches for HSIC. Al-
though ensemble- and deep-ensemble-based HSIC architectures
have attracted the attention of the remote sensing community
and demonstrated outstanding classification performance, some
features, such as the regeneration of sequential input data for
ensemble and deep ensemble, demand further investigation. A
significant number of the approaches examined are based on the
HSI pixel as a sequential point, which is the pixel from each
spectral band that makes up a data sequence. While it has the
capacity to substantially increase the input sequence for RNNs,
this enhancement may give rise to an overfitting issue.

As deep ensemble models continue to demonstrate their ef-
ficacy in capturing complex spectral patterns, one key avenue
for exploration involves the integration of attention mechanisms
to enhance their interpretability and focus on salient features.
Researchers may delve into the development of specialized
architectures that leverage the inherent characteristics of hy-
perspectral data, such as its high dimensionality and spectral
variability, to further optimize ensemble performance. In addi-
tion, investigating the fusion of deep ensembles with multimodal
data, such as LiDAR or thermal imagery, could provide a more
comprehensive understanding of complex scenes.

Adapting deep ensemble models to operate in real-time and
edge computing environments, where efficiency is paramount,
represents a critical research direction. As the hyperspectral do-
main continues to evolve, addressing challenges related to lim-
ited labeled data and domain adaptation will be crucial, prompt-
ing the exploration of techniques like SSL and TL within the
ensemble framework. Moreover, advancing uncertainty quan-
tification methodologies within deep ensembles will contribute
to improved model reliability and decision-making transparency.
Another interesting future direction may be incorporating EDE-
based HSIC architectures in a real-world multitemporal HSI
situation.

XII. EXPERIMENTAL EVALUATION

Most research-oriented studies presented in the publications
introduce a thorough experimental analysis to illustrate the bene-
fits and drawbacks of the proposed methods. However, such stud-
ies may have selected various experimental configurations to a
certain extent; for example, training, validation, and test samples
may have a relatively similar percentage; the samples may be
diverse because these samples are ordinarily selected arbitrarily.
As a result, in order to compare various studies introduced in the
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TABLE I
DETAILED DESCRIPTION OF EACH DATASET USED DURING THE EXPERIMENT

TABLE II
AMOUNT OF TRAINING AND TEST DATA OF THE SALINAS DATASET

literature comparatively, the experimental configurations must
be similar.

Such experimental configurations involve relatively similar
samples, and the percentage of samples per round of training in
the cross-validation phase should have been chosen. Generally,
such samples are selected randomly, and consequently, they are
prone to vary for various models if the models are run at various
times.

Another problem with the majority of the latest literary
works is intersecting between training/test examples, i.e., train-
ing/validation examples were chosen arbitrarily for the training
and validation step. However, the whole dataset has been carried
through a testing step, resulting in a heavily biased model (as the
model has already observed the training samples) and increased
accuracy. Hence, in this study, the training/test examples are
selected arbitrarily (since all of the models were run simulta-
neously period); moreover, the preceding point was obtained
critically, and the correlation between such samples appears
void.

A. Experimental Datasets

The first dataset SA was captured by the AVIRIS sensor
through the geographical area of Salinas Valley, CA, USA, with a
spatial resolution of 3.7 m/pixel [385]. The Salinas scene is made
up of 224 spectral bands composed of the wavelength range
of 360–2500 nm and 512 × 217 pixels, as shown in Table I.
The dataset includes 16 classes made concerning vegetables,
vineyard fields, and bare soil. Table II depicts the number of
classes and includes training and test data of this dataset. The

Fig. 14. SA dataset. (a) Source image. (b) Ground truth.

TABLE III
AMOUNT OF TRAINING AND TEST DATA OF THE PAVIA UNIVERSITY DATASET

original and ground truth images of SA data set are shown in the
Fig. 14(a) and (b).

The second dataset PU was collected by an unmanned aerial
optical device, the Reflective Optics Spectrographic Imaging
System over Pavia, Italy, 2002 (ROSIS) [386]. The aircraft
was managed by the German Aerospace Center as part of the
HySens venture, which was funded by the European Union.
After discarding 12 noisy channels, the dataset mainly comprises
640 × 340 pixels with a 1.3-m/pixel spatial resolution and 103
bands containing the wavelength range of 430–860 nm, as shown
in Table I. Moreover, the whole dataset is comprised of nine
classes. The comprehensive details of different classes are given
in Table III. The original and ground truth images of PU data set
are shown in the Fig. 15(a) and (b).

The third dataset is the Purdue Indiana Indian Pines scene IP
[387], which was acquired from the Indian Pines testing site in
North-Western Indiana. The data resolution is 145 × 145, and it
incorporates 200 spectral bands. It covers 145 × 145 pixels with
a 20-m/pixel spatial resolution and 224 spectral bands comprised
from 400 to 2500 nm. The ground truth appends 16 classes of
interest, which are largely diverse crops in various growth stages,
as given in Tables I and IV. The original and ground truth images
of IP data set are shown in the Fig. 16(a) and (b).

The fourth Kennedy Space Center (KSC) dataset was col-
lected in 1996 by AVIRIS [388], with wavelengths ranging
from 400 to 2500 nm. The image of the KSC dataset contains
512 × 614 pixels and 176 spectral bands after the elimination
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Fig. 15. PU dataset. (a) Source image. (b) Ground truth.

TABLE IV
AMOUNT OF TRAINING AND TEST DATA OF THE INDIAN PINES SCENE DATASET

Fig. 16. IP dataset. (a) Source image. (b) Ground truth.

of some low-level signal-to-noise ratio bands. The KSC dataset
consists of 5202 labeled samples, with a total of 13 upland and
wetland classes. The comprehensive details of different classes
are given in Table V. Fig. 16 demonstrates the comprehensive
class detail and ground truth maps. Furthermore, the disjoint
training/test sample maps are shown in Fig. 16(a) and (b). The
original and ground truth images of KSC data set are shown in
the Fig. 16(a) and (b).

The accompanying tables in this document offer valuable
insights into the data used for the subsequent experiments.
Table I, to begin with, serves as a comprehensive overview of

TABLE V
AMOUNT OF TRAINING AND TEST DATA OF THE KSC SCENE DATASET

each dataset employed, providing a succinct yet detailed anno-
tation of their characteristics. On the other hand, Table II docu-
ments the count of distinct samples, that is, the train/test samples
elected from each class, which have been utilized to achieve all
the ensuing experimental outcomes. It is vital to acknowledge the
consistency maintained across all experimental procedures, be
they our primary focus or the competing methodologies under
consideration. Specifically, the quantity of train/test samples,
expressed as a percentage, along with the geographical locations
from where these train/test samples have been sourced, remains
constant across all the experimental techniques. This uniformity
ensures a level playing field and a fair comparison of results,
thereby enhancing the reliability and validity of our findings.

B. Experimental Results and Discussion

The most significant advancements in recent years have
been produced in the areas of HSIC, SVM-RBF1, CFF-200,2

2D-CNN [389], GCNN [225], feedback-attention-based dense
convolutional neural network (FADCNN) [390], NL-GCNN
[391], DECNN [355], MCE-SL [375], TCRC-Boosting [361],
EMT-EL [371], ECNN-PPF-SSF [354], and DHS [392], which
have been taken into consideration when comparing the exper-
imental results in order to support the proposals illustrated in
this survey. The following are few examples of relevant studies
for each of the aforementioned techniques: classification of
hyperspectral remote sensing images with SVM-RBF, CCF-200
for HSIC, 2D-CNN, graph-based method for HSIC (GCNN),
NL-GCNN, and attention-based CNNs for HSIC (FADCNN),
ensemble-based DL based approaches for HSIC (DECNN),
multiclass ensemble-based approach for remote sensing im-
age classification (MCE-SL), boosting-based ensemble-based
approach for HSIC (TCRC-Boosting), extreme-learning-based
ensemble approach for HSIC (EMT-EL), ECNN-PPF-SSF, and
DHS.

1[Online]. Available: https://www.csie.ntu.edu.tw/cjlin/libsvm/
2[Online]. Available: https://github.com/twgr/ccfs

https://www.csie.ntu.edu.tw/cjlin/libsvm/
https://github.com/twgr/ccfs
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TABLE VI
CLASSIFICATION ACCURACIES ACQUIRED BY VARIOUS CONVENTIONAL AND STATE-OF-THE-ART METHODS IN TERMS OF OA, AA, AND KAPPA ON THE PAVIA

UNIVERSITY DATASET

TABLE VII
CLASSIFICATION ACCURACIES ACQUIRED BY VARIOUS CONVENTIONAL AND STATE-OF-THE-ART METHODS IN TERMS OF OA, AA, AND KAPPA ON THE SALINAS

DATASET

TABLE VIII
CLASSIFICATION ACCURACIES ACQUIRED BY VARIOUS CONVENTIONAL AND STATE-OF-THE-ART METHODS IN TERMS OF OA, AA, AND KAPPA ON THE INDIAN

PINES DATASET

All the aforementioned research studies are focused on CNN,
graph-based, and ensemble-based frameworks and are analyzed
on four benchmark HSI datasets, notably IP, PU, KSC, and SA
scene. This survey focuses solely on the effectiveness of all these
models while taking into account the relatively small sample of
training datasets used to classify HSI for joint spatial–spectral
classification.

The experimental results are mentioned here, along with a
thorough analysis of the research results. Tables VI–IX and
Figs. 18–21 demonstrate the acquired accuracies for disjoint
training and test samples. The ten-cross-validation operation was

used to analyze the overall accuracy (OA%), average accuracy
(AA%), and Kappa (κ) accuracy for comparative processes in
all of the results depicted in Tables VI–IX and Figs. 18–21.
For this case specifically, let us suppose the case of Salinas
scene results; the work [392] has the highest OA, AA, and κ
accuracies, which are 99.96%, 99.97%, and 99.95%, respec-
tively, in comparison with the OA, AA, and κ accuracies for
ensemble-based methods comparative results; 99.18%, 99.58%,
and 98.17% for [354], 99.17%, 99.45%, and 98.11% for [371],
99.10%, 99.45%, and 97.56% for [361], 99.08%, 99.54%, and
98.23% for [375], 98.84%, 99.37%, and 97.15% for [355], and
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TABLE IX
CLASSIFICATION ACCURACIES ACQUIRED BY VARIOUS CONVENTIONAL AND STATE-OF-THE-ART METHODS IN TERMS OF OA, AA, AND KAPPA ON THE KSC

SCENE DATASET

Fig. 17. KSC dataset. (a) Source image. (b) Ground truth.

for nonensemble methods are 92.28%, 96.39%, and 89.64%
for [391], 90.58%, 94.56%, and 89.28% for [390], 90.25%,
93.69%, and 89.18% for [225], 89.72%, 95.43%, and 88.58%
for CFF-200, and 88.82%, 94.67%, and 87.57% for SVM-
RBF. Similar findings were produced with the other experimen-
tal datasets. Tables VI–IX highlight the increased accuracies
in bold.

As illustrated in Table II and Fig. 18, the comparison techni-
ques mainly misclassify samples with relatively com-
parable structures (i.e., Grapes_untrained, Corn_senesced_
green_weeds, and Vinyard_untrained classes for the SA scene
dataset). Furthermore, the overall accuracy for Grapes Untrained
is relatively low compared to the other classes because of the
factors stated above. In simple terms, greater accuracy can be ob-
tained by enhancing the number of labeled training samples. As
a result, a greater proportion of labeled training samples can gen-
erate increased accuracy scores for all comparative techniques.

Overall, the techniques in [392], [354], and [371] performed
better (i.e., produced reliable performance) than the other similar
techniques, particularly when there were fewer training samples
with labels. The aforementioned information gives rise to the
conclusion that the quantity of training samples has no effect
on such works. In addition, the accuracy of such techniques
improves with the number of training samples. However, in com-
parison to these techniques, the rest of the techniques can per-
form more effectively with a larger number of training samples.
The same pattern has been demonstrated with a larger number of
training samples. Thereby, analyzing disjoint train/test samples,
the studies [392], [354], and [371] can resolve the problem of
the lack of presence of training samples.

Furthermore, we can deduce that the CNN-based models do
not outperform the ensemble models alone, despite the fact
that unsupervised techniques do not need samples to be la-
beled; when there are no limitations, such techniques may learn
nothing. In addition, the CNN has a symmetric architecture
that also results in excess training parameters, increasing the
complexity of training. The studies [391] and [390] mitigate
the aforementioned problems. The research study [225] does
not use the greedy layerwise strategy, resulting in poor per-
formances; hence, such techniques have a gap for improved
performance.

In fact, due to the scarcity of labeled training instances,
CNN-based classification outperforms classical machine learn-
ing techniques. Whereas CNNs can learn the inner architecture
of unlabeled data, the final feature interpretation may lack task-
driven properties. Furthermore, the graph-based CNN impacts
the choice of the most essential samples for training, allowing
the model to emphasize more on identical samples for HSIC,
although FSL enhances the interpretation of sample relation-
ships to obtain a discriminative decision boundary for HSIC.
TL supports utilization correlation among various HSIs to help
mitigate the amount of training needed as well as the number
of trainable parameters while improving model effectiveness.
When analyzing HSI using only the raw data (i.e., without re-
trieving or learning the features), DA produces enough samples,
increasing the variety of samples.

C. Experimental Analysis of the CNN

This section covers some deep CNN hyperspectral FE meth-
ods: typical convolutional method to a state-of-the-art NL-
GCNN method. Moreover, we performed a series of experi-
mental studies utilizing various cutting-edge research studies
published in recent years. This experimental study is intended
to evaluate the efficiency of the CNN procedures instead of the
model’s performance. The standard models employ fully CNN
FE methods, such as 2-D CNN for HSIC [389], GCNN for HSIC
[225], and, lately, FADCNN [390], to retrieve the fine-grained
spectral–spatial feature representation. In order to retrieve the
intensity-level semantic features and the gradient-level features
from the HSIs, the GCNN process uses a fusion of graph-based
methods.
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Fig. 18. Classification maps of various methods for the Salinas dataset. From left to right: (a) ground truth, (b) SVM-RBF, (c) CCF-200, (d) 2-D CNN, (e) GCNN,
(f) FADCNN, (g) NL-GCNN, (h) DECNN, (i) MCE-SL, (j) TCRC-Boosting, (k) EMT-EL, (l) ECNN-PPF-SSF, and (m) DHS.

Fig. 19. Classification maps of various methods for the Indian Pines dataset. From left to right and from top to bottom: (a) ground truth, (b) SVM-RBF, (c)
CCF-200, (d) 2-D CNN, (e) GCNN, (f) FADCNN, (g) NL-GCNN, (h) DECNN, (i) MCE-SL, (j) TCRC-Boosting, (k) EMT-EL, (l) ECNN-PPF-SSF, and (m) DHS.

All the previously mentioned CNN FE methods have been
tested on four various hyperspectral datasets, such as the IP,
PU, SA, and KSC datasets. Tables VI–IX demonstrate the
experimental accuracy. From all these analyses, it is evident
that the FADCNN method showed better performance than 2-D
CNN, GCNN, and NL-GCNN. All the datasets have shown
a typical pattern, where the GCNN and NL-GCNN methods
outperformed the conventional 2-D CNN and classical machine
learning methods SVM-RBF and CCF-200 processes, respec-
tively. Comparing the performance variation to the NL-GCNN
for other datasets, it showed significant improvement against
the rest of CNN and classical machine learning methods. No-
tably, the stability and classification accuracy of conventional
CNNs can be improved by adding the 2-D CNN to the 3-D
CNN convolution process, which is easy to execute and plug
into.

XIII. CONCLUSION AND FUTURE WORK

A. Conclusion

The rich details stored in HSI data are an enticing feature
that contributes to the use of HSI technology in real-world
applications. Furthermore, advancements in machine learning
techniques boost the integration opportunity of such tools. In
this article, we surveyed novel approaches in HSIC utilizing
cutting-edge DNNs (for example, AE, DBN, RNN, CNN, TL,
FSL, AL/self-learning, and DA), ensemble, and deep ensemble
in a wide range of learning approaches. Moreover, we explored
techniques for overcoming the difficulties of the sparsity of
training data accessibility, such as DA, FSL, TL, and AL. We
chose several comparative studies to perform experimentations
on benchmark HSI datasets using the techniques mentioned in
the previous section.
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Fig. 20. Classification maps of various methods for the Pavia University dataset. From left to right: (a) ground truth, (b) SVM-RBF, (c) CCF-200, (d) 2-D CNN,
(e) GCNN, (f) FADCNN, (g) NL-GCNN, (h) DECNN, (i) MCE-SL, (j) TCRC-Boosting, (k) EMT-EL, (l) ECNN-PPF-SSF, and (m) DHS.

Fig. 21. Classification maps of various methods for the KSC dataset. From left to right: (a) ground truth, (b) SVM-RBF, (c) CCF-200, (d) 2-D CNN, (e) GCNN,
(f) FADCNN, (g) NL-GCNN, (h) DECNN, (i) MCE-SL, (j) TCRC-Boosting, (k) EMT-EL, (l) ECNN-PPF-SSF, and (m) DHS.

B. Future Work

While such HSIC methods represent a task that is fast, re-
markable, and sophisticated, additional research is needed to
boost generalization performance.

1) The primary problem with DNN-based HSIC is a scarcity
of labeled data. Because of the scarcity of labeled data,
HSI data are notorious, and DNNs require a significant
percentage of labeled training data. Section XI explored
several extensively utilized approaches for dealing with
the aforementioned problem, but substantial progress is
still required to make effective utilization of the scarcity
of training data. One solution to this issue could be to
evaluate the incorporation of different learning approaches
mentioned in Section XI in order to capitalize on the joint
advantage. Another strategy is to use a few-shot orK-shot

learning method, which can effectively predict class labels
with only a few labeled examples.

2) Furthermore, it is essential to contribute to the joint ex-
ploitation of spectral–spatial HSI features to support clas-
sification performance acquired by the previously stated
HSIC methodologies. Computationally effective and ro-
bust frameworks are also a promising choice for HSIC.
Hence, the problem of the increased computational com-
plexity of DNNs is of utmost significance, and it is vital
to incorporate parallel HSIC frameworks to boost the exe-
cution of DNNs to reach the computational requirements
of computationally expensive HSI applications. In such
a prospect, the parallel HSIC approaches can be imple-
mented using HPC platforms and highly specialized phys-
ical devices like GPUs and FPGAs. Therefore, incorporat-
ing the aforementioned factors into building a novel HSIC
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approach requires adequately utilizing the insufficient
training samples while analyzing joint spectral–spatial
features of HSI and sustaining a minimum computational
complexity.

3) Another future perspective, adversarial examples or ma-
chine illusions, has garnered substantial attention within
the DL community. They can be considered part of the DA
family, involving the injection of systematic noise into an
image. This injection of noise can lead to a markedly dif-
ferent prediction by the CNN model. Adversarial training
involves incorporating the examples into the training set,
enhancing the model’s resilience against attacks. Given
their ability to expose vulnerabilities in a trained model,
the use of adversarial examples as a DA strategy proves
to be an effective approach.

4) Knowledge distillation has been widely explored in the
context of natural image classification, and its applica-
tion to HSIC has been an emerging area of research.
Knowledge distillation involves training a smaller model
(student) to mimic the behavior and predictions of a larger
more complex model (teacher).

5) Incremental learning is a dynamic paradigm in machine
learning that enables models to adapt and evolve over time
as new data become available. Incremental learning holds
significant potential for HSIC, providing a framework for
continuous adaptation and improvement as new hyper-
spectral data become available. In the context of HSI,
where each pixel in an image is associated with a spectrum
of information across multiple bands, incremental learning
can offer several advantages.
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