
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 3489

Open Set Recognition and Category Discovery
Framework for SAR Target Classification Based on

K-Contrast Loss and Deep Clustering
Mingyao Chen , Jing-Yuan Xia , Tianpeng Liu , Li Liu , Senior Member, IEEE,

and Yongxiang Liu , Member, IEEE

Abstract—Synthetic aperture radar automatic target recogni-
tion (SAR ATR) has been widely studied in recent years. Most ATR
models are designed based on the traditional closed-set assump-
tion. This type of ATR model can only identify target categories
existing in the training set, and it will result in missed detection
or misclassification of unseen target categories encountered in
battlefield reconnaissance, posing a potential threat. Therefore, it
is of great significance to design a model that can simultaneously
achieve known class classification and unknown class judgment.
In addition, researchers usually use the obtained unknown class
data for model relearning to enable it to recognize new categories.
However, before this process, it is necessary to manually interpret
and annotate the obtained unknown class data, which undoubtedly
requires a large time cost and is difficult to meet the timeliness
requirements. To solve these problems, we propose a framework
that integrates the open-set recognition module and the novel class
discovery module. By introducing the K-contrast loss, the open-
set recognition module can accurately distinguish unknown class
data, classify known class data, and then transfer the known class
knowledge through deep clustering for clustering annotation of
unknown class data. Extensive experimental results on the MSTAR
benchmark dataset demonstrate the effectiveness of the proposed
methods.

Index Terms—Category discovery, deep embedded clustering,
open set recognition, synthetic aperture radar (SAR) target
recognition.

I. INTRODUCTION

THE rapid advancement of synthetic aperture radar (SAR)
systems has enabled the collection of vast amounts of

image data in a short period of time. The interpretation of
this data is a labor-intensive process that often fails to meet
the demands of real-time applications. Therefore, the ability to
automatically recognize targets within a short timeframe has
become an essential factor for successful battlefield reconnais-
sance and intelligence generation. Currently, most research is
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based on the ideal assumption that the data used in the training
process contain all the target categories to be identified. These
studies have achieved high accuracy results on closed-set testing
through supervised training [1], [2], [3], [4], [5] or feature based
models [6], [7], [8]. However, in practical applications, we are
more concerned about targets that have not appeared in the
training set. These targets are often missed or misclassified by
traditional methods, which can pose potential threats.

The aforementioned issues pose a greater demand on the
SAR automatic target recognition (ATR) model. First, the model
needs to accurately determine whether the target belongs to a
category that has appeared in the training set. We can refer
to the categories present in the training set as known classes
and those not present as unknown classes. Recognition of a
test set containing both known and unknown classes can be
defined as an open set recognition (OSR) problem [9]; that is,
through training, it can determine whether the test sample is
a known class and correctly classify the known class samples.
In recent years, researchers have conducted extensive research
on OSR in the field of computer vision. In work [10], a novel
OpenMax layer is proposed to replace the traditional SoftMax
layer, which estimates the probability of an input being from
an unknown class. This enables the model to simultaneously
determine whether the input sample is known and complete
the classification of in-distribution data. To improve the robust-
ness of convolutional neural networks in OSR and maintain
their high accuracy in closed-set recognition (CSR), network
structures such as convolutional prototype networks (CPN) [11]
and generative adversarial networks (GAN) [12], [13], [14] are
used in OSR. The above methods have demonstrated excellent
performance on optical datasets. However, due to significant
differences in imaging mechanisms, target characteristics, and
scene applications between radar images and optical images,
OSR methods designed for the optical image domain cannot be
directly applied to radar target recognition.

Some researchers have proposed OSR methods for the SAR
field by combining SAR image characteristics, which can op-
timize the current ATR system more effectively. Scherreik and
Rigling introduced a novel method known as the probabilistic
open set support vector machine (POS-SVM) for OSR [15], and
later enhanced the POS-SVM and first applied it to the OSR
of SAR targets [16]. Inspired by the use of GAN to complete
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abnormal detection tasks in [17] and [18], Ma et al. [19] divided
the SAR OSR task into two stages: abnormal detection and
known class classification. Using targets in the known class
to train the generator and discriminator, the scores of the test
samples output by the discriminator are used in the abnormal
detection stage to judge unknown classes by comparing them
with the set threshold [19]. Despite achieving significantly better
results than other methods when the number of known classes is
three, the method suffers from unstable GAN training, leading
to a significant drop in performance when the number of known
classes increases. In practical applications, the number of known
classes to be classified should be relatively large. In view of
this, Ma et al. [20] introduced the multiscale structural simi-
larity (MS-SSIM) loss to obtain a representation that contains
more structural information about SAR targets. By constructing
clearer boundaries, they improved the distinguishability of test
samples and achieved excellent results in scenarios with more
known classes.

Since the observed scene is dynamically changing, the number
of observed target categories is increasing over time. This puts
forward another requirement for the ATR model, that is, further
processing of the detected unknown class data. At present,
most studies focus on incremental learning. By using limited
labeled new category samples to fine-tune the classifier or feature
extractor, the model can identify new categories at the lowest
possible cost [20], [21], [22]. Such methods of handling detected
unknown class data are indeed appealing, but they overlook
some essential steps: Determining the number of categories
of unknown classes in a batch, followed by classification and
labeling. This process, without a doubt, demands consider-
able human resources. Naturally, we hope that the model can
automatically implement the above process, which is called
category discovery. It is challenging to determine the number
of categories in a dataset composed of unlabeled samples of
unknown classes and perform clustering accordingly. However,
we can reduce the ambiguity of clustering and enhance the
quality of newly discovered classes by transferring the prior
knowledge of labeled known-class samples of SAR target [23].
Deep embedded clustering (DEC), as a learning-based clustering
method, simultaneously clusters the data and learns a proper data
representation, which can effectively meet the requirements of
the above-mentioned scenarios [24], [25], [26]. In [23], deep
transfer clustering (DTC) is formally proposed and studied
as a separate problem. It creatively suggests using a labeled
probe subset to better estimate the number of unknown classes
and introduces temporal ensembling and π-model consistency
loss [27] to improve the performance of the DEC model. Zheng
et al. [28] drew inspiration from the above methods and com-
bined DTC with OSR, using the multidomain applicable I-mix
contrastive learning for improvement. Although these methods
have achieved good results on optical datasets, they perform
poorly on SAR datasets due to the inadaptability of the image
enhancement methods used by the π-based consistency model
in the SAR field and the demand of I-mix for large sample sizes.
The work in [29] employed DEC for SAR ship OSR and category
discovery. It employs both known and unknown classes for
unsupervised training in the OSR stage. Subsequently, the model

is fine-tuned using known class label data for novel category
discovery. However, this approach faces limitations in practical
scenarios where the OSR model training stage does not have
access to data of unknown classes.

Inspired by the above limitations analysis, this article pro-
poses an innovative OSR and novel category discovery frame-
work. First, we build a feature extraction network called K-
contrast Net, which consists of a trunk network composed of
multiple residual blocks and two projection head branches. One
branch reduces the empirical risk through the cross entropy loss,
and the other branch reduces the open space risk by introducing
the K-nearest neighbor (KNN) contrast loss. Both branches
participate in network optimization together. Second, the sample
representations are extracted from the trained K-contrast Net,
and the outlier data detection is realized by a local outlier factor
(LOF) classifier [30]. The detected known classes are classified
and stored as labeled data in temporary memory. The third step
is to divide a portion of the labeled known class samples into a
probe set and use it together with the unknown class samples to
estimate the number of unknown classes. At last, the number of
unknown classes estimated in the previous step is used for deep
transfer clustering, and the clustering results are optimized by
using the prior of known classes to complete the classification
of unknown classes. Extensive comparisons with other meth-
ods on the moving and stationary target automatic recognition
(MSTAR) dataset verify the effectiveness and extensibility of
our method. The main contributions of our work are summarized
as follows:

1) Framework: A framework combining OSR with unknown
class number estimation and unknown class classification
is proposed, which makes up for the gap between OSR
and incremental learning that requires manual labeling of
unknown classes.

2) OSR: The proposed K-contrast Net incorporates the K-
nearest neighbor contrast loss, mitigating open space risk.
Compared to other comparison methods, it demonstrates
superior multiclass OSR performance.

3) DTC+: By designing the image enhancement method in
the consistency loss based on the π-model, the perfor-
mance of DTC on SAR targets is further improved.

The rest of this article is organized as follows: In Section II,
the related works are introduced in detail, including OSR and
deep embedded clustering. Section III presents our proposed
framework. The experimental results and related discussions are
presented in Section IV. Finally, we provide the conclusion of
the entire article in Section V.

II. RELATED WORKS

A. Open Set Recognition

Traditional classification methods based on the closed-set
assumption can only classify objects that have appeared in the
training set, and it is difficult to handle unknown class targets
that may appear in battlefield reconnaissance. To address this
limitation, researchers typically define the classes that have
appeared in the training set as known classes and those that
have not appeared as unknown classes. The task of determining
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whether the class of the test target is known and classifying the
known class samples is called OSR.

The existing OSR methods can be roughly categorized into
machine-learning-based (ML-based) methods and deep-neural
network-based (DNN-based) methods. ML-based methods have
played an important role in previous years due to their good
interpretability and domain adaptability. In this kind of method,
OSR is described as an open-set risk function minimization
problem [31] and studied around it. In [32], Scheirer proposed
the Weibull-corrected support vector machine (W-SVM), which
combines the SVM with extreme value theory (EVT) for score
correction. The PI-SVM algorithm [33] utilizes EVT to model
the decision boundary. Subsequently, Scherreik and Rigling [15]
proposed the POS-SVM algorithm, in which the algorithm as-
signs a unique threshold to each training class memory region.
The work in [34] proposed the sparse representation-based OSR
algorithm, which utilizes EVT to fit the tail of the reconstruc-
tion error for both the matched and unmatched classes. Rudd
et al. [35] proposed a thresholding algorithm by fitting the
marginal distribution of the samples using EVT. With the rapid
development of neural networks, researchers have tried to solve
the OSR problem through the powerful computing power of deep
neural networks. For example, Bendale and Boult [10] replaced
the traditional SoftMax layer with OpenMax, which is the first
DNN-based method of OSR. Oza and Patel [36] proposed the
C2AE algorithm using the class-conditioned autoencoder. The
authors in [12], [13], and [14] used the adversarial training
advantages of GAN to improve the OSR effect.

Due to the differences in imaging mechanisms, target char-
acteristics, and scene applications between radar images and
optical images, the above methods do not perform well in SAR
OSR. Researchers have put forward numerous OSR methods
for SAR characteristics and have obtained satisfactory results
when the number of known classes is small [19], [20], [21], [29],
[37]. As the number of known classes increases and the risk of
open space further escalates, there is still significant room for
improvement in the above-mentioned methods. Therefore, we
will try to address this issue in this article.

B. Deep Embedded Clustering

Deep clustering is to combine the clustering model with the
network model and jointly optimize representation learning and
clustering through clustering loss and network loss. The general
paradigm of deep clustering can be expressed as follows:

minL = αLn + βLc, α ≥ 0, β > 0 (1)

where Ln represents the network loss and Lc represents the
clustering loss. We can classify DEC from the perspective of the
specific strategy used by the two losses. From the perspective
of the neural network models adopted, representative methods
include AE based [38], VAE based [39], GAN based [40], GNN
based [41], and contrastive learning based [42]. From the per-
spective of the design of clustering loss Lc, the typical methods
are K-means based [43], spectral clustering based [44], subspace
clustering based [38], and Kullback–Leibler divergence based
(KL based) [23], [24], [25]. Among them, the KL-based methods

make the samples closer to the center of the cluster closer
by minimizing the KL loss, which makes the data easier to
distinguish in the feature space. The authors in [23] and [25]
extended it to the field of transfer learning so that it can use the
known class data distribution as a priori to cluster the unknown
class data, which is very suitable for the application scenario of
OSR. However, the application of this kind of method to SAR
images is still limited. In [29], deep transfer clustering is used for
unknown class clustering of SAR ships, but it needs unknown
class sample data in the training stage of the OSR model, which
has great limitations in practical applications. Therefore, there
is still much room for improvement in the application of DEC
in SAR image novel category discovery.

III. PROPOSED METHOD

A. Framework

In this section, we propose the OSR and category discovery
framework for SAR images. The overall framework is shown
in Fig. 1(a). Specifically, the framework is composed of two
important parts, including OSR and category discovery. In the
first part, the main task can be divided into two stages, namely,
representation learning and outlier detection based on the LOF
classifier. In the first stage, we propose K-contrast Net for rep-
resentation learning and use cross-entropy loss and K-contrast
loss for joint training. The SAR image xi in Dtest is first fed
into the trained K-contrast Net to extract feature vectors zi, as
follows:

zi = fKCN(xi). (2)

Here, fKCN denotes the process of extracting features with K-
contrast Net. Then, we can obtain its predicted class yi through
the classification head:

yi = argmax
y

{hy(zi)}, (3)

where hy(zi) represents the score of the sample zi belonging
to the class y. We extract all the features of Dtest for the outlier
detection stage. The training set Dtrain is used to fit the LOF
classifier so that it can distinguish between known and unknown
samples based on the density in the feature space. Then, we
select the LOF threshold by calculating the best macro F1-score
and accuracy over known classes on the validation set divided
during the training phase. We determine the feature vector whose
LOF classifier result is greater than the set threshold as an
unknown class and store its corresponding sample in the memory
buffer Dunknown. The feature vectors whose results are lower
than the threshold are determined as known classes, and the
corresponding samples and prediction labels y are stored in
Dknown, as follows:{

Dknown · append(xi, yi), LOF (zi) ≤ threshold
Dunknown · append(xi), LOF (zi) > threshold.

(4)

The second part includes two modules: unknown class num-
ber estimation UNE(·) and improved deep transfer clustering
DTC+(·), as shown in Fig. 1(d) and (e). We divide Dknown (M
classes) into probe sets Dl (Nl classes) and Dprobe (M −Nl
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Fig. 1. Framework of the proposed method.

classes), and there is no overlap class between them. Then, we
use Dl to train the lightweight model and use the trained model
to extract the representations, as follows:

zq = fL(xq), xq ∈ Dprobe ∪Dunknown. (5)

We estimate the number of unknown classes U through the
unknown class number estimation module UNE(·):

K = UNE
(
{z1, y1}, {z2, y2}, . . . , {zp, yp}

{zp+1}, {zp+2} · · · {zp+l}
)

{z1, y1}, . . . , {zp, yp} ∈ D∗
probe

{zp+1}, . . . , {zp+l} ∈ D∗
unknown (6)

where D∗
probe and D∗

unknown are composed of the representations
extracted from Dprobe and Dunknown, respectively.

Finally, we use the trained lightweight model to transfer
the knowledge of the known class samples to the new class,
and use Dunknown to fine-tune the model to better perform the
classification of unknown class samples:

ŷp+j = DTC+(zp+j), j ∈ [1, 2, . . . , l] (7)

where ŷp+j is the predicted new category label of zp+j .

B. K-Contrast Net

To simultaneously reduce empirical risk and open space risk,
and enhance the accuracy of both inlier classification and outlier
detection, we introduce the K-contrast Net, as illustrated in

Fig. 1(b). The network consists of a feature extractor composed
of many bottlenecks and two projection heads. One is called
the classification head, which maps the feature vectors to an
M-dimensional space (assuming the number of known classes
is M ) and calculates the cross-entropy loss. The other is called
the contrastive head, which calculates the K-contrast loss after
the features pass through two fully connected layers and are
compared with other samples. The reasons for this design will
be explained in detail below.

First, when the known class samples are used for training, we
define the open space as follows [45], [46]:

O = So −
⋃
i∈M

Sr(xi) (8)

where Sr(xi) is a closed ball of radius r spanned by the known
class training sample xi. M is the number of all known class
samples for training. Let So be a ball that includes all known
class training examples as well as the open space O. Then,
probabilistic open space risk RO(f) can be defined as

RO(f) =

∫
O f (x, θf ) dx∫
So

f (x, θf ) dx
(9)

where f represents the discriminator, which is 1 when the sample
x is a known class, and 0 otherwise. We extract the representation
of SAR images through K-contrast Net for downstream tasks. A
good representation should accomplish accurate classification
of known class samples and identification of unknown class
samples, which correspond to the reduction of empirical risk
RE and open space risk RO, respectively. For the empirical risk
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Fig. 2. (a) Original distribution of known class samples and unknown class samples. (b) Distribution of known class samples and unknown class samples when
interclass open space risk loss is introduced. (c) Distribution of known class samples and unknown class samples when the joint loss function is introduced.

RE , we utilize a fully connected layer to perform dimension
reduction and incorporate the cross-entropy lossLce to optimize
the network

Lce =
1

M

∑M
i=1 − log

exp (hyi
(zi))∑

k∈M exp (hk(zi))
(10)

where zi represents the representation extracted by the feature
extractor, h(·) represents the classification head, and hk(zi)
represents the score of the sample zi in the kth class.

Next, we consider the optimization of the open space risk.
According to [46], unknown class samples in the feature space
may appear between each known class, as shown by the red
asterisks in Fig. 2(a). They may also appear within the space
formed by the known class samples, as shown by the blue
asterisks in Fig. 2(a). We can reduce the risk of classifying
interclass unknown class samples as known classes by bringing
similar samples closer together, reducing intraclass variance,
and increasing interclass variance. In order to do this, for a
single training sample γ and its k-nearest neighbors set Z (from
the same class), we define its interclass open space risk loss in
training as follows:

Linter,γ = −
∑
zi∈Z

log

∑
zl∈D∗ exp (γ · zl/δ)∑

zv∈Do

⋃{zi} exp (γ · zv/δ) (11)

where D∗ denotes all training samples whose classes are the
same as γ, and Do denotes all training samples whose classes
are different from γ. δ is a temperature coefficient, which can
regulate the tension and repulsion between the contrast samples.
Through analysis, it can be seen that the molecular term of the
loss reduces the distance between the current sample and all
the samples of the same class, and the denominator extends
the distance between the current sample and all the samples of
different classes. This leads to an interclass variance reduction
in the feature space, making the different classes more distin-
guishable from each other, as shown in Fig. 2(b). As a result,
more interclass unknown class samples can be distinguished,
but unknown class samples within the known class range will be

more difficult to correctly recognize due to the smaller intraclass
variance.

To address this issue, we introduce intraclass open space risk
loss as follows:

Lintra,γ = −
∑
zi∈Z

log
exp (γ · zi/δ)∑

zl∈D∗ exp (γ · zl/δ) . (12)

The molecular term of the Lintra,γ only reduces the distance
between the current sample and its k-nearest neighbor samples of
the same class, and the denominator pushes away the distances to
other samples of the same class. This forces a single known class
that was originally a whole clustering space to split into multiple
smaller clusters, and the samples in the cluster are closer, as
shown in Fig. 2(c). Therefore, the unknown class samples within
the known class range are easier to recognize. The above two
loss functions are jointly involved in the optimization, so we
combine them into the following loss function, which is named
K-contrast loss:

Lk−cnt = Lintra + Linter

= −
M∑
j=1

1

|Z|
∑
zi∈Z

[
log

exp(γj · zi/δ)∑
zl∈D∗ exp(γj · zl/δ)

+
∑
zi∈Z

log

∑
zl∈D∗ exp(γj · zl/δ)∑

zv∈Do

⋃{zi} exp(γj · zv/δ)

]

= −
M∑
j=1

1

|Z|
∑
zi∈Z

log
exp(γj · zi/δ)∑

zv∈Do

⋃{zi} exp(γj · zv/δ) .

(13)

Combining it with Lce to jointly optimize the feature extrac-
tor, the joint loss function of the training process is as follows:

Lcon = μ · Lce + (1− μ) · Lk−cnt (14)

where μ is a hyperparameter to control the weight of each part
of the loss.
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C. Unknown Class Sample Detection Based on LOF

Through the trained K-contrast Net, we extracted the repre-
sentation of the test samples. Subsequently, we detect unknown
class samples among them. Recent studies on SAR OSR typ-
ically use statistics-based methods to achieve the rejection of
unknown class samples [20], [21], but they need to assume that
the data obeys a specific probability distribution, which limits the
scope of application. In contrast, we use LOF-based unknown
class detection, which does not depend on data distribution.
According to [47], we define the reachability distance of an
object p w.r.t. object o as follows:

reach−distk(p, o) = max{k−distance(o), d(p, o)} (15)

whered(p, o) is the distance between p and o, andk−distance(o)
is the distance of o to itskth nearest neighbor. Based on the reach-
ability distance, the local reachability density (lrd) is defined as

lrdk(p) = 1/

⎛
⎜⎝

∑
o∈Nk(p)

reach−distk(p, o)

|Nk(p)|

⎞
⎟⎠ (16)

where Nk(p) is the k-nearest neighbors of p. According to the
above equation, if a data point is relatively distant from other
points, its local reachability density is small. However, for scenes
with an imbalanced known class distribution, measuring the
degree of anomaly of a data point should not only depend on
its absolute local density but also on its relative density with
neighboring data points. Therefore, the abnormal score of a
sample is defined as follows:

LOFk(p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)| . (17)

The above equation calculates the outlier degree of p. It is easy to
see that when the local reachability density of p is lower, the local
reachability density of the k-nearest neighbors of p is higher,
and the LOF score of p is correspondingly higher. By setting a
threshold, we can determine the samples whose LOF scores are
greater than the threshold as unknown classes. Finally, we store
the corresponding images and labels of the known class samples
into Dknown and the corresponding images of the unknown class
samples into Dunknown.

D. Unknown Class Number Estimation (UNE)

In our proposed framework, the UNE module is employed
to estimate the number of unknown classes by using the prior
information provided by the known class samples. The archi-
tecture of the UNE module is shown in Fig. 1(d). Suppose that
there areM known classes inDknown, we takeNl classes to form
Dl, and the remaining M −Nl classes are used as the probe set
Dprobe combined with the Dunknown for class number estimation.
Then we propose a lightweight model, as shown in Fig. 1(c),
and use Dl to train it. The training uses cross-entropy loss for
supervised classification training. By doing so, the model learns
the information of known classes.

Next, we use the trained model to extract the features of
samples in Dprobe and Dunknown for the subsequent clustering
process. The corresponding feature sets of the above two are
D∗

probe andD∗
unknown. We then further split theD∗

probe into a subset
D∗

probe,v of L classes and a subset D∗
probe,a of (M −Nl − L)

classes, which we call the validation probe set and anchor probe
set, respectively. We use a semisupervised k-means algorithm
withU + (M −Nl) centers to estimate the number of classesU
inD∗

unknown. Specifically, we enforce features in the anchor probe
set D∗

probe,a to be assigned to the corresponding clusters accord-
ing to their ground-truth labels during clustering, while features
in the validation probe set D∗

probe,v are treated as unlabeled data.
We conduct experiments by changing the U value several times
and evaluate them using average clustering accuracy (ACC) and
cluster validity index (CVI), which are defined as follows:

ACC = max
g∈Sym(L)

1

N

N∑
i=1

1 {ȳi = g(yi)} (18)

CV I =
∑

z∈D∗
unknown

b(z)− a(z)

max{a(z), b(z)} (19)

where ȳi and yi represent the ground-truth label and clustering
assignment for sample zi ∈ D∗

probe,v and Sym(L) is the group of
permutations of L elements (as a clustering algorithm recovers
clusters in an arbitrary order). a(z) represents the average dis-
tance between sample z and all other samples within the same
cluster. b(z) represents the smallest average distance of sample
z to all samples in any other cluster. The ACC on D∗

probe,v and
the CVI on D∗

unknown are recorded in each experiment. Finally,
the U value corresponding to the highest accuracy and the U
value corresponding to the highest CVI are obtained, and the
average of the two is the estimation result of the number of
unknown classes. If the average of the above two estimates is
a noninteger, round it down. The detailed approach is given in
Algorithm 1.

E. Improved Deep Transfer Clustering (DTC+)

Our method is based on the DTC incorporating consistency
loss proposed in [23], and it is enhanced by designing specifi-
cally tailored enhancement methods for SAR images. According
to [23], we use the pretrained lightweight model to extract fea-
tures ofDunknown, use PCA to reduce the feature dimension to the
estimated unknown class number U , and use the k-means algo-
rithm to initialize the cluster centersC = {νk, k = 1, 2, . . . , U},
as shown in Fig. 1(e). After that, we use PCA as the last
layer of the model, replacing the previous classification head.
The parameters of this layer will participate in the subsequent
fine-tuning process with the pretrained model. We fine-tune the
model using samples fromDunknown, and the loss function for this
process consists of two parts: Kullback–Leibler (KL) divergence
loss and consistency loss.

In the first part, we use the KL divergence of two distribu-
tions as the loss instead of directly minimizing the k-means
objective function. Otherwise, the optimization process will
quickly collapse the learned representation vectors to the closest
cluster centers, thus losing the representation learning effect.
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Algorithm 1: Unknown Class Number Estimation.

Based on this, we let P (k|i) be the probability of assigning
sample i ∈ {1, 2, . . . , N} to cluster k ∈ {1, 2, . . . , U}, and use
the following parametrization of this conditional distribution by
assuming a students t distribution:

P (k|i) ∝
(
1 +

||zi − νk||22
α

)−α+1
2

. (20)

Since the data sampling process is uniform and random, it
satisfies p(i) = 1/N . Then we can get:

P (i, k) =
P (k|i)
N

. (21)

Instead of maximizing the likelihood of P directly, we map it
to a sharper distribution Q. Let Q(k|i) ∝ P (k|i) · P (i|k), then
we can get the following results through the Bayes rule:

Q(k|i) ∝ P (k|i)2
N∑
i=1

P (k|i)
. (22)

The molecular part of the above equation makes the distribution
sharper by increasing the power, and the denominator part bal-
ances it by normalizing according to the frequency per cluster. In
this way, we can construct a new distributionQ corresponding to
the current P at each epoch. By minimizing the KL divergence
between joint distributions Q(i, k) = Q(k|i)/N and P (i, k),
we can sharpen the distribution P , so that the samples close
to the cluster center become closer and the samples are easier
to distinguish in the feature space. The KL divergence loss is

defined as

LKL = KL(Q||P ) =
1

N

∑
i

∑
k

Q(k|i) ln Q(k|i)
P (k|i) . (23)

During the fine-tuning process, the distribution Q and the model
parameter are alternately updated, and the detailed steps are
shown in Algorithm 2.

In the second part, we introduce the consistency loss based on
the π-model [27]. By drawing the model output results of two
randomly enhanced views of the same data closer, the model
can learn some invariances (such as rotation invariance), ignore
background, speckle noise, and other secondary factors, and
learn more discriminative representations. Suppose that the two
enhanced views τ1(x) and τ2(x) of the same SAR image x are
input into the model, and the sample assignment probabilities
output are P1(k|i) and P2(k|i), respectively. Then, the loss
function is defined as follows:

Lπ =
1

N

1

U

∑
i

∑
k

||P1(k|i)− P2(k|i)||22. (24)

Although the image enhancement methods proposed in [23]
(random translate with reflect) and [28] (I-mix) perform well in
the fields of optical images and natural language processing, they
are not effective in SAR images due to the imaging mechanism
and data size of the SAR image set. In fact, these methods
may even collapse the fine-tuning process into random results.
Based on our previous research experience with contrastive
learning of SAR images in the SimCLR framework [48], we
find that random-resized-crop and random-horizontal-flip can
achieve better representations. Therefore, we design the en-
hanced method as a combination of random-resized-crop and
random-horizontal-flip to better learn the structural features of
SAR and rotation invariance from a top-down perspective.

Finally, we combine the two loss functions and use β(t) to
balance them, as follows:

Lft = β(t)LKL + (1− β(t))Lπ. (25)

β(t)will decrease with the increase of the training epoch number
to adjust the weight of each part of the loss function. Moreover, in
order to prevent the training from collapsing to random cluster-
ing due to the small number of samples, we set the condition that
the KL divergence loss should be disabled. When the iteration
reaches a certain number of epochs, only the consistency loss
will be used for subsequent optimization.

IV. EXPERIMENTS

In this section, we conducted extensive experiments on the
MSTAR dataset to demonstrate the effectiveness of our frame-
work. First, we provide a detailed introduction to the MSTAR
dataset. Second, we compare our approach with existing meth-
ods under multiple scenarios to validate the OSR performance
on multiclass targets. Third, we verify the novel class discov-
ery performance of our method, i.e., unknown class number
estimation and classification capability, under different data
distribution scenarios. Finally, we conduct ablation studies and
discuss the impact of some hyperparameters on the experimental



3496 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Algorithm 2: Improved Deep Transfer Clustering.

results. The laptop used in our experiments has an Intel Core
i9-13900HX CPU, an NVIDIA GeForce RTX 4060 Laptop
GPU, and 16 GB of RAM on the Windows 11 system.

A. Dataset

In this article, we utilize the MSTAR dataset for our experi-
ments. The MSTAR is a standardized database for SAR target
recognition that encompasses ten classes of ground targets,
including BMP2, BTR70, T72, BTR60, 2S1, BRDM2, D7, T62,
ZIL, and ZSU. Among these targets, BMP2 and T72 are distin-
guished by three variants, namely BMP2-c9563, BMP2-c9566,
BMP2-c21, T72-132, T72-812, and T72-s7. For our experiment,
we treat BMP2-c9563 and T72-132 as the reference forms for
these two classes. The radar operates in the X-band and employs
spotlight mode imaging with an image resolution of 0.3 m ×
0.3 m. Each image spans an elevation angle of approximately
3◦, with data acquisition depression angles set at 15◦ and 17◦,
respectively. Similar to the literature [12], [21], we designate
17◦ as the training set and 15◦ as the testing set. Fig. 3 illustrates
various target objects and their corresponding optical images. It
can be seen that different types of SAR images exhibit high
similarity and are more difficult to distinguish than optical
images. In this article, the images are uniformly cropped to the
size of 64 × 64 to reduce the fitting of background information

Fig. 3. SAR images and corresponding optical images of ten classes of targets
in MSTAR dataset. (a) 2S1. (b) BMP2. (c) BRDM2. (d) BTR60. (e) BTR70.
(f) D7. (g) T62. (h) T72. (i) ZIL131. (j) ZSU234.

TABLE I
NUMBER OF 10-CLASS TARGETS

and speckle noise interference during the training process. The
numbers of the 10-class targets are shown in Table I.

B. Multiclass OSR

In this section, we focus on verifying the performance of
our framework on multiclass OSR. We choose the MS-SSIM
autoencoder (MS-SSIM-AE) [20] and EVM [35] as comparison
algorithms because MS-SSIM-AE is a recent optimal baseline
for OSR in SAR, while EVM is a representative classical algo-
rithm. Similarly, W-SVM [32] and OSmIL [21] are also used to
study the OSR of SAR images. Since OSmIL is not publicly
available and the results in [20] prove that MS-SSIM-AE is
significantly better than OSmIL, we do not take it into account.
Moreover, W-SVM is significantly inferior to EVM under all
indicators, so we only need to prove the advantages of our
method by comparing the results of EVM.

To facilitate comparison, we follow the settings in [20] and
select M classes as known classes. In order to fully demonstrate
the OSR ability of our method under different number of cate-
gories, the number of known classes is taken from 6 to 9, and a
new class is added each time compared with the previous setting,
rather than randomly selecting the known classes, to minimize
the change in training data. The detailed settings are as shown in
Table II. We train the K-contrast Net using the known classes in
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TABLE II
MSTAR DATASET DIVISION UNDER DIFFERENT KNOWN CLASS NUMBER SCENARIOS

TABLE III
EXPERIMENTAL RESULTS OF THE METHODS UNDER DIFFERENT KNOWN CLASS SETTINGS

the training set. During testing, we use all categories for testing,
i.e., the testing set includes both known and unknown classes.
After training, the K-contrast Net not only needs to recognize
and classify the known M classes of targets, but also identify
the remaining (10-M ) classes of targets as unknown. Similar
to [12], [20], [21], we use F1-score and accuracy to evaluate the
OSR integral performance of each method, as defined in (28)
and (29):

precision =

∑N
i=1precisioni

N
, precisioni =

TPi

TPi + FPi

(26)

recall =

∑N
i=1recalli
N

, recalli =
TPi

TPi + FNi
(27)

F1− score = 2× precision × recall
precision + recall

(28)

ACC =

∑M
i=1TPii

NAll
(29)

whereTP andFP denote the counts of correctly and incorrectly
recognized test samples to be known classes, and FN is the
count of incorrectly identified test samples as unknown classes.
N represents the number of classes, and NALL represents the
number of test samples. We set the μ in (14) to 0.9 and set the K
value in the K-contrast loss to 40. The number of training epochs
for all experiments is set to 100. The experimental results are
shown in Table III. It can be seen that our method has better
results than the previous optimal baseline in most scenarios.
Specifically, when the number of known classes increases, the
performance of other methods declines, while our method re-
mains stable. In the cases where the known class number M =
7, 8, 9, our method has a higher F1-score than MS-SSIM-AE [20]
by 0.65, 0.22, and 4.50, respectively, and higher accuracy than
MS-SSIM-AE by 0.15, 0.28, and 5.18, respectively. When M
= 6, our method is inferior to MS-SSIM-AE, which is due to
the insufficient model training caused by the reduction in the
number of training samples. Nevertheless, the results obtained

by our method are still much higher than those of EVM. In
summary, our method exhibits excellent OSR performance in
multiclass scenarios.

C. Estimation of the Number of Unknown New Classes

Before clustering the unknown samples, we need to estimate
the number of classes in them. We design experiments under
four scenarios where the known class numbers M = 6, 7, 8,
and 9, respectively. When M = 6 or 7, we take two classes
of known class samples as the probe set Dprobe, with one class
used as the anchor probe set Dprobe,a and the other as the valid
probe set Dprobe,v . When M = 8 or 9, we take three classes of
known class samples as Dprobe, and divide the Dprobe,a and the
Dprobe,v according to a 2:1 classes ratio to transfer more known
class information for estimation. The experimental results are
shown in Table IV. It can be seen that in the above settings,
the number of unknown classes can be estimated without error,
which indicates that the method can stably provide accurate
estimation and serve the next clustering process.

D. Unknown Class Sample Clustering

In this section, we demonstrate the performance of the pro-
posed method on unknown-class sample clustering. According
to the setting of M = 7 in Table IV, we fine-tune the pretrained
model with the remaining three unknown classes and classify
them according to the estimated number of unknown classes in
the previous experiment. We directly use k-means [49] as a base-
line to demonstrate the difficulty of clustering without optimiza-
tion and compare our method with KCL [24], MCL [25], Rank-
ing Statistics (RS) [50], DTC, and some variants of DTC [23].
Among them, DTC-Baseline uses DEC loss for model training,
DTC-TE incorporates consistency constraints between current
prediction and temporal ensemble prediction of each sample,
and DTC-π introduces consistency loss between samples and
their enhanced views. Different from the DTC-π algorithm, our
method replaces the image enhancement method with a more
suitable method for SAR targets and sets a threshold for KL
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TABLE IV
UNKNOWN CLASSES NUMBER ESTIMATION RESULTS

TABLE V
RESULTS OF TRANSFERRING FROM KNOWN CLASS TO UNKNOWN CLASS

divergence loss. When using the RS method, first, all the samples
to be detected are used for unsupervised pretraining of the model
simultaneously, and then the known class samples are used for
supervised fine-tuning. Finally, positive sample pairs of the same
class are constructed using high-similarity samples with the
same indices in the feature amplitude top-5, and pseudolabels are
created for training. When the training reaches a certain number
of epochs, the KL divergence loss is disabled. In addition,
we compute the consistency loss between two enhanced views
instead of that between an enhanced view and its original image,
which is more conducive to the role of consistency constraints
in representation learning. The experiments use clustering ac-
curacy (ACCu), normalized mutual information (NMI) [51],
and adjusted rand index (ARI) [52] as metrics, all of which are
larger means better effect. The experimental results are shown
in Table V. It can be observed that our method outperforms
other methods in all metrics, with a 16.56% improvement in
clustering accuracy compared to directly using k-means and a
4.38% improvement compared to the optimal DTC variant. The
RS method requires constructing pseudolabels from samples
that meet the top-5 condition. However, it is challenging for
the features extracted from SAR images to meet this condition,
resulting in a limited number of positive sample pairs available
for training in each epoch, leading to suboptimal clustering per-
formance. Our method has a 4.35% higher accuracy compared
to the RS method.

To select the most appropriate combination of image enhance-
ment for SAR targets and explore, which consistency constraint
can better guide the clustering, we conduct extensive exper-
iments on combinations between random-resized-crop [48],
random-horizontal-flip [48], random-vertical-flip [48], random-
translate-with-reflect [23], and random-rotation [53], which are
represented by Crop, Flip-H, Flip-V, Trans, and Rotate in subse-
quent experiments. Crop randomly cuts 0.4–1.0 of the original
image area and resizes it to the original image size. Trans cuts a

TABLE VI
STUDY ON CONSISTENCY LEARNING IMAGE ENHANCEMENT STRATEGIES

part of the original image and translates it randomly, then fills the
remaining part with the original image patches. Rotate randomly
rotates the original image in the range of [−5, 5], and the empty
part caused by rotation is filled with white. Flip-H and Flip-V flip
the original image horizontally and up and down at a probability
of 0.5, respectively. We continue to experiment with the setting
of M = 7, and the results are shown in Table VI.

It can be seen that the combination of Crop with Flip-V or Flip-
H can obtain better results, but the combination of these three
will make the performance slightly worse. We think that it is
due to the excessive combination categories caused by excessive
enhancement methods, which makes the representation learning
unstable. In summary, using the combination of Crop and Flip-H
to enhance the consistency constraint can significantly improve
the effect of DTC.

E. Ablation Experiments

In the above experiments, we compared our approach with
other state-of-the-art methods. In this part, we conducted abla-
tion studies to demonstrate the effectiveness of the introduced
K-contrast loss and the influence of the choice of M .

1) Effect of K-Contrast Loss: To demonstrate the improve-
ment of OSR performance by introducing K-contrast loss, we
remove the contrastive head from the K-contrast Net and only
use the classification head to train the network. We then use
the trained network to extract features, classify test samples,
and finally use the LOF classifier to detect unknown class
samples. The experimental results of OSR are compared with
those obtained when the contrastive head is used, as shown
in Table VII. The left column of the table is the result of not
introducing K-contrast loss, that is, only using cross-entropy
loss for training. The right column is the result of introducing
K-contrast loss and joint training with cross-entropy loss. It can
be seen that the introduction of K-contrast loss can bring great
improvement in all scenarios. Specially, from M = 6 to 9, the
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TABLE VII
COMPARISON BEFORE AND AFTER THE INTRODUCTION OF K-CONTRAST LOSS

Fig. 4. t-SNE visualization of features of some MSTAR samples in different
methods. (a) LOF-CE. (b) Our methods.

recognition accuracy has improved by 7.83, 6.34, 5.72, and 5.39,
respectively. The F1-score has been improved by 4.35, 3.95,
4.36, and 5.52, respectively.

To visualize the performance of our method more intuitively,
we choose the scene of M = 7, randomly select samples from
each class, and use t-SNE to visualize the results obtained
under the two methods, as shown in Fig. 4. Compared with
only using cross-entropy loss for training, our method splits the
large clusters into multiple small clusters, and the samples in
small clusters are closer, which reduces the open space risk.
This provides more opportunities to recognize unknown class
samples between classes, such as unknown class points within
blue points and purple points.

2) Influence of the Choice of K in K-Contrast Loss: To dis-
cuss the effect of the choice of K in the K-contrast loss on the
performance of OSR, we compare the experimental results under
different K values while fixing the other hyperparameters. We
chose the scenario with M = 7 from Table II for the experiment
and set K in the K-contrast loss to 10, 20, 30, 40, 50, and 60,
respectively. The results are shown in Fig. 5. We observe that the
F1-score and accuracy tend to increase first and then decrease
as the value of K increases. This is because when K starts from
0 and increases, the K-contrast loss plays a role in dividing the
known classes into smaller clusters, reducing the open space
risk and improving the OSR performance. However, when K
continues to increase, the semantic space of the known classes is
overcompressed, leading to more unknown class samples within
the known class range being misclassified as known classes,
resulting in a decline in performance. Therefore, we should
select an appropriate K value based on the number of known
classes and the dataset scale.

V. CONCLUSION

In this article, we propose a framework that integrates SAR
image OSR, unknown class count estimation, and unknown

Fig. 5. Influence of the change of K value on the accuracy and F1-score.

class target classification, providing a new approach for ATR
and unknown sample processing in battlefield reconnaissance.
In the OSR module, we propose the K-contrast Net, which
combines the K-contrast loss with the cross-entropy loss, al-
lowing the K-contrast Net to divide a category into smaller,
tighter clusters, reducing the open space risk, and leading to
a more accurate classification and rejection performance com-
pared with other state of the arts. Under the guidance of the
known class knowledge learned by the lightweight model, we
estimate the number of unknown classes by deep clustering
and classify the unknown class samples, thereby reducing the
time cost of manual interpretation and labeling. The KL di-
vergence loss and the consistency loss are introduced into the
clustering process. By setting a stop threshold and designing the
enhancement method suitable for SAR images, the fine-tuning
training process is smoother and the deep clustering effect is
improved. The experimental results show that our proposed
framework can be well applied to scenarios with high real-time
requirements.

In practical application scenarios, sometimes we do not have
enough reconnaissance time to collect a large number of ob-
servation data of the same unknown class sample, and the
obtained unknown class data may be much less than the data
of the class used for training, which leads to the problem of
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few-shot deep clustering. In the future, we will further expand
our work to enable our proposed framework to perform well in
the classification and annotation of few-shot unknown classes.
Besides, we will conduct research on more advanced SAR image
augmentation techniques. Furthermore, if there are SAR datasets
with a large number of classes and a balanced distribution of
samples in the future, we will carry out research on OSR for
such targets.
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