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Abstract—Deep learning has gained popularity in hyperspectral
unmixing (HU) applications recently due to its powerful learning
and data-fitting capabilities. As an unmixing baseline network, the
autoencoder (AE) framework performs well in HU by automat-
ically learning low-dimensional embeddings and reconstructing
data. Nevertheless, there are spectral variability and nonlinear mix-
ing problems in the highly mixed region of hyperspectral images,
which can cause interference to structures using only AE. There-
fore, inspired by the effectiveness of mask modeling, we propose a
multiscale convolutional mask network (MsCM-Net) for HU with
two new strategies. First, we propose a mixed region mask strategy
suitable for the HU task, and a multiscale convolutional AE is
adopted as the unmixing baseline network to apply the mask strat-
egy, making the method more robust in solving ill-posed unmixing
problems. In addition, a new initialization strategy is used in which
vertex component analysis (VCA) is combined with density-based
spatial clustering of applications with noise (DBSCAN) to mitigate
the impact of outliers and noise on initialization. The proposed
MsCM-Net performs more accurately than state-of-the-art meth-
ods by comparison experiments on one synthetic and three real
hyperspectral data sets. The effectiveness of the mixed region mask
strategy and DBSCAN-VCA initialization is also demonstrated by
ablation experiments.

Index Terms—Autoencoder (AE), hyperspectral unmixing (HU),
initialization, mixed region mask, multiscale.

I. INTRODUCTION

THE hyperspectral image (HSI) with its high spectral res-
olution allows for the identification and differentiation of

various materials by leveraging abundant spectral information,
resulting in numerous applications, such as target detection [1],
[2], [3], image classification [4], [5], [6], and feature fusion [7],
[8], [9]. However, the low spatial resolution of HSI and the
presence of mixing effects during image acquisition generally
result in mixed pixels, which impedes the development and
application of hyperspectral technology. Hyperspectral unmix-
ing (HU) is an essential technique for addressing the issues
earlier by decomposing the HSI into pure material spectra (i.e.,
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endmember) and a set of abundance fractions representing each
endmember’s proportions within the mixed pixels [10].

The development of HU algorithms is based on different mix-
ing models, i.e., linear mixing model (LMM) [11] and non-LMM
(NLMM) [12]. LMM assumes that the mixed spectrum is a linear
combination of the endmember spectra, and the NLMM consid-
ers the multiple reflections of light between objects. Although
NLMM is more realistic and has better interpretability, it faces
challenges such as the lack of appropriate measures for nonlinear
degrees and prior knowledge. Therefore, LMM is still currently
the most widely used model due to its simple modeling and low
computational complexity.

Deep learning (DL) has developed rapidly in recent years
with the emergence of the big data era and has been used in HU
tasks [13]. Compared with traditional unmixing approaches, DL
can implement various regularization constraints with arbitrary
deep or nonlinear structures [14], [15], [16], [17], [18], [19],
[20]. The generative network provides a new perspective for
solving endmember variation [21], [22], [23], and the convolu-
tional network can use spatial filtering in unmixing [24], [25],
[26], [27], [28]. Autoencoder (AE) serves as the fundamen-
tal framework network for HU tasks, consisting of two main
components: an encoder that gets the latent representation (i.e.,
abundance) of the input HSI and a decoder that reconstructs the
HSI using appropriate weights (i.e., endmember) [29]. Nowa-
days, numerous DL unmixing methods based on AE have been
proposed. For instance, Palsson et al. [17] proposed a deep AE
with different activation functions for unmixing. Wang et al.
[18] proposed a postnonlinear AE structure to focus on the
nonlinear factors present in HSI. Shi et al. [23] developed a
variational AE (VAE)-based generative unmixing structure to fit
any endmember distribution with the help of VAE’s properties
of identifying endmember variability. However, these methods
are not considered spatial information. HSI’s inherent abundant
spatial information in unmixing is important because the pixels
in HSI are strongly correlated with their neighbors. Ghosh
et al. [25] combined convolutional AE with Transformers to
take advantage of the transformer’s capacity to capture global
feature dependencies, enhancing the quality of endmember
spectra and abundance maps. Yu et al. [27] used a multistage
convolutional AE in HU tasks and demonstrated its effec-
tiveness in acquiring extensive contextual information without
sacrificing details.

However, DL-based unmixing methods face the following
challenges: (1) Unmixing is a nonconvex problem [30], and DL
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is inherently a black box mechanism, which leads to uncertainty
in the starting point and direction of gradient descent [31]. A
good initialization will improve this [19], [32], [33]. In HU tasks,
this primarily refers to the initialization of decoder weights,
which represent endmembers. Random initialization was used in
[17] and [24]. However, this will make the results of the network
uncertain. In this regard, existing unmixing methods commonly
used vertex component analysis (VCA) [34] to extract endmem-
bers for initialization [25], [26], [27], [33], [35]. For example,
Xiong et al. [33] used VCA for initialization to introduce prior
knowledge and then unmixing by deep alternating network.
However, ground materials often contain some outliers. As a
pure pixel method, VCA has limitations in handling outliers and
tends to suffer from significant endmember estimation biases,
which can heavily interfere with the initialization results. There-
fore, Dou et al. [19] proposed an outlier detection method based
on the heat kernel similarity to improve initialization by exclud-
ing outliers. But it was considered from the global perspective
of the image and could not exclude as many outliers as possible.
Hong et al. [32] used K-means [36] for the VCA results to
obtain spectral bundles for the subsequent endmember guidance
network. However, K-means is based on the Euclidian distance
[37] and has a weak ability to distinguish spectra. (2) The global
training goal of the AE is to recover the original image, but due
to the presence of noise, the network may eventually converge to
a local minimum [38], [39]. To solve this, the authors in [18] and
[23] considered the nonlinear and spectral variation to deal with
noise, respectively. However, the measurement of the degree
of both was not taken into account, which in fact introduced
additional noise. Guo et al. [15] used denoising AE (DAE) to
deal with noise. However, by adding noise to the whole image
and training it to restore to the original image for denoising, this
method also introduced additional interference to the area with
low noise level. Moreover, these methods do not consider the
spatial information, which leads to an unsatisfactory abundance
map. How to use the spatial information of HSI and at the
same time deal with the areas that will cause interference to
the unmixing in a targeted manner is very important. Based
on the abovementioned, we propose a multiscale convolutional
mask network (MsCM-Net) for HU using two new strategies to
solve these problems.

Initialization is very important in DL training, which deter-
mines the convergence speed and performance of the network
[40]. Proper initialization can make the unmixing network start
from a more accurate starting point and find the optimal value of
the HU task more easily [41]. To address this issue, we propose
a novel initialization method for outlier removal that combines
VCA with density-based spatial clustering of applications with
noise (DBSCAN) [42], [43]. The basic motivation is that typical
materials have continuous spatial distributions, and neighboring
pixels of pure endmembers will likely belong to the same class
[44], [45]. The same classes should have similar spectra and
lower cosine distance. DBSCAN is a density-based clustering
algorithm, unlike classic methods like K-means, which can
detect outliers and use cosine distance to better identify spectral
differences. We first divide the HSI into multiple blocks and the

DBSCAN clustering is applied to exclude outliers. The outliers
can be better removed by dividing the image into small pieces
for local consideration. VCA is then run on the remaining pixels
to obtain endmembers.

The region containing strong noise which could affect un-
mixing result is defined as the highly mixed region. These
regions usually contain anomalies generated by factors such
as nonlinearity and spectral variation, and LMM cannot re-
construct them well [32], [46]. If these regions are trained
directly, these redundant and interfering information will also
affect the gradient descent direction, making it easier for the
unmixing results to shift in the direction of the noise. Mask
modeling has made significant progress in the field of com-
puter vision (CV) [47], [48], [49], [50] in recent years. The
mask mechanism is essentially a noise type of DAE, which
can extract discriminant representations from masked images
[51], [52]. But it has no relevant application in the HU field
at present. We propose a mixed region mask (MRM) strategy
that is suitable for HU tasks, aiming to reduce noise effects. By
hiding the information of some pixels in the highly mixed region
obtained by OSTU [53] automatic thresholding, the network
can focus more on learning the mapping relationship between
endmember and the abundance of relatively pure region, so as
to obtain more accurate unmixing results. Inspired by the mul-
tiscale convolutional autoencoder (MuCAE) [27], the baseline
network was built to apply MRM. By considering multiscale
information, invariant features at different scales can be mined to
help obtain more useful features [54]. The application of MRM
in MuCAE realizes the use of spatial information while resisting
the interference of noise, and further improves the accuracy of
the results.

In summary, the main contribution of this article has threefold.
1) We propose a multiscale convolutional mask network

called MsCM-Net. A new mask strategy for mixed region,
MRM, which is suitable for HU tasks, is proposed and
applied to MuCAE. MRM is a mask mechanism that is
executed at the pixel level. It helps AE to have the ability to
resist the interference of noise in the highly mixed region,
resulting in greater accuracy and stability than previous
methods.

2) A new initialization method called DBSCAN-VCA to
initialize decoder weights is presented. Compared with
only using VCA, DBSCAN-VCA initialization can ex-
clude outliers from local areas, thereby providing better
initialization results and promoting better convergence of
unmixing networks.

3) Ablation experiment and comparison experiment prove
the effectiveness and necessity of the proposed MRM and
DBSCAN-VCA initialization, and also prove the effec-
tiveness of multiscale network applied to MRM.

The rest of this article is organized as follows. Section II
describes the proposed MsCM-Net method. Section III re-
ports the experimental results in synthetic and real data sets.
Section IV provides relevant discussion to verify the effect
of the proposed strategy. Finally, Section V, concludes this
article.
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Fig. 1. Framework of AE-based unmixing network. A represents abundance
maps and M represents the endmembers.

II. PROPOSED METHOD

A. Related Work About AE-Based Method for Unmixing

According to the LMM, the unmixing problem can be
formulated as follows:

Y = MA+N (1)

where Y ∈ R
L×N is the observed HSI with L bands and N

pixels. N ∈ R
L×N is the noise matrix. M ∈ R

L×p represents
the endmember matrix with p endmember categories, and A ∈
R

p×N denotes the corresponding abundance matrix. Further-
more, the abundance vectors aj should satisfy the abundance
nonnegative constraint (ANC) and the abundance sum-to-one
constraint (ASC) by the following equations:

aj ≥ 0 (2)

p∑
i=1

aij = 1. (3)

Since the structure of AE is suitable for solving the unmixing
problem, it is widely used in HU tasks. An AE generally consists
of an encoder and a decoder. As shown in Fig. 1, the encoder
converts the input HSI into a latent low-dimensional repre-
sentation. The decoder reconstructs the HSI from the learned
latent representation. The difference between the reconstructed
image Ŷ and the original observed data Y is used to train the
AE. Meanwhile, the low-dimensional representation is regarded
as the obtained abundance. The weight matrix of the decoder
is regarded as the endmember results. ANC and ASC can be
implemented using a suitable activation function like Softmax.

B. Multiscale Convolutional Mask Unmixing Network

Our method mainly includes the following process: First,
the initialized decoder weights are obtained through DBSCAN-
VCA. This will be elaborated in the following Section II-C. The
next part is the MsCM-Net, which is introduced in this section.
The flowchart of the method is shown in Fig. 2.

By introducing mask modeling and the multiscale mecha-
nism, the proposed MsCM-Net can obtain contextual informa-
tion from different scales and eliminate noise interference in
highly mixed regions. Fig. 3 illustrates the proposed MsCM-Net

Fig. 2. Flowchart of the proposed method.

architecture. The proposed network consists of two structures:
mixed region mask strategy and multiscale convolutional AE.

1) Mixed Region Mask: The nonhomogeneous regions are
unbalanced parts of the data set, and complex DL models with
numerous parameters may amplify the effects of these unbal-
anced parts. The existing mask strategy is usually to randomly
select a certain percentage of patches in the entire image for
masking, but for HSI, this may lose lots of details and introduce
extra noise. So we propose MRM, a mask strategy performed at
the pixel level in the mixed region.

Some regions containing factors, such as nonlinearity and
endmember variation become noise or anomalies in the image
due to the complex mixing mechanism. These regions are de-
fined as highly mixed regions, which often interfere with the
optimization direction of the network. They have significant dif-
ferences compared with the surrounding relatively pure pixels.
Inspired by this, a similarity matrix can be learned by measuring
the similarity of the neighboring pixels over the entire image, and
the similar (i.e., relatively pure) region and the nonsimilar (i.e.,
highly mixed) region are divided by threshold segmentation.
Then we randomly mask the pixels in nonsimilar areas to reduce
noise effects, and take the resulting masked image as the input
image. Random mask means to select a mask ratio and mask
pixels of this ratio in nonsimilar areas. This is to avoid com-
pletely ignoring the details that these areas contain. The target
image is the corresponding original HSI. Specifically, for the ith
pixel, its value in the similarity matrix di could be estimated by
measuring the similarity between spatially neighboring pixels
as follows:

di =
∑
j∈Ni

sij (4)

where Ni is the neighborhood of the ith pixel that includes
surrounding four pixels. sij is the similarity between the ith pixel
yi and its neighboring pixel yj . The cosine similarity is used to
calculate similarity, which is a classical distance measure in HU
study [55], [56]. The value range is [−1, 1], where positive and
negative values indicate that the vectors are in the same direction
or opposite direction. A value closer to 1 indicates that the two
vectors are more similar. The calculation is as follows:

sij =
yiyj

‖ yi‖2 ‖ yj ‖2
. (5)

After obtaining the similarity matrix, the OSTU algorithm is
used to get the threshold to distinguish similar and nonsimilar
regions automatically. OSTU uses the greatest between-class
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Fig. 3. Overview of the MsCM-Net. It is mainly composed of mixed region mask and multiscale convolutional AE. The red area in masked image indicates the
mask area.

Fig. 4. Original image (left) and the masked image obtained (right). The mask
is implemented at the pixel level. The masked pixels are in red. (a) Samson.
(b) Urban.

variance as the criterion for automatically selecting the threshold
[57]. The goal of OSTU is as follows:

max g (t) = w0 (u0 − u)2 +w1(u1 − u)2 (6)

where t is the segmentation threshold. w0 and u0 are the
proportions and mean values of similar regions in the matrix,
respectively. w1 and u1 are the proportions and mean values of
nonsimilar regions in the matrix, respectively.u is the mean value
of all regions. The similarity values greater than t are similar
regions, while those less than t are nonsimilar regions. Next, a
mask label matrix of the same size as the HSI is constructed
at each epoch. All values are set to 1 at first. Then the position
index of a certain number of pixels in mixed areas is randomly
selected and change the mask label matrix value at that location
to 0. The number selected is the total number of pixels in mixed
areas multiplied by the mask ratio. Therefore, the mask ratio is
only applied to the highly mixed region obtained by OSTU. The
mask ratio range is [0, 1]. Finally, we multiply the obtained mask
label and whole HSI. The similar regions remain unchanged, and
all band values of a certain ratio of pixels in the mixed region
become 0 to obtain the masked image. In this way, since the
network does not know the original content of the pixels that
become 0 (zero vector), it focuses on learning the features of the
relatively pure region. Fig. 4 shows the masked image obtained

TABLE I
NETWORK CONFIGURATION FOR EACH SCALE IN THE PROPOSED MSCM-NET

ARCHITECTURE

and the original image. The red area is the masked pixels, which
can be seen that it usually appears in the transition area.

2) Multiscale Convolutional AE: We modify and use Mu-
CAE to validate and further improve the effect of MRM. What
we input to the network at both training and testing time are
masked image. The network configuration for each scale in the
MuCAE is shown in Table I. Blocks 1–4 represent the encoder,
and block 5 is the decoder. It is worth noting that when the
scale is 1/4, the unit in block 1 is the band number L. Because
this layer does not perform feature fusion. The encoder uses
3 × 3 convolution with LeakyReLU as the activation function.
Batch normalization is to prevent the activation value after
LeakyReLU from being too large and causing the gradient to
explode. Dropout is to prevent overfitting. The last layer of the
encoder uses the softmax activation function to meet the ANC
and ASC at the same time. The abundance map and endmember
are obtained from the output of the encoder in the 1/1 scale (i.e.,
the original scale).

Since the pixel value of the highly mixed region in the
masked image is replaced with 0, the average pooling may not
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be representative. Therefore, the masked image of the original
scale is downsampled to half and quarter of the original size,
respectively, by using max pooling to obtain 1/4 scale and 1/2
scale. For 1/4 scale to 1/2 scale, each scale layer inputs the
output of block 4 to the latter large-scale layer according to the
following equation to integrate multiscale information:

O∗ = O ⊕ TransConv(F) (7)

where TransConv denotes the 2 × 2 transposed convolution and
⊕ represents the concatenate operation. F ∈ R

p×N represents
feature maps of encoder after softmax operation at previous
small-scale layer, using transposed convolutional layer for in-
creasing scale. Increasing the scale by transposed convolution
can lead to better feature maps through network learning. O ∈
R

L×N represents the original mask input for the current layer.
O∗ represents the fused information.

Our objective function has two loss terms, including spectral
angle distance loss (L S) in (8) and L1/2 sparse loss (L P ) in (9)

LS = arccos

(
〈Y, Ŷ〉

‖ Y‖2 ‖ Ŷ‖2

)
(8)

LP =

N,p∑
i,j=1

a
1/2
ij (9)

where Y represents the original HSI, and Ŷ represents the
reconstructed HSI. It should be noted that Y is the unmasked
image, and the image input into the network for training and
testing is the whole image after the random mask. L1/2 sparsity
loss gains more zero elements in the abundance by penalizing
nonzero elements, since usually most pixels in HSI are mixed by
only a few endmembers [58]. It plays a sparse constraint on the
abundance estimation, which is helpful to obtain more accurate
unmixing results. Finally, the overall loss of MsCM-Net can be
formulated as follows:

L = L S + αL P (10)

where α is the tradeoff parameter. Note that the loss function is
applied to all scales.

C. DBSCAN-VCA Initialization

Because the unmixing problem is nonconvex, the optimiza-
tion process could benefit from a good initialization of decoder
weight. However, outliers in the HSI would lead to poor initial-
ization and strongly interfere with the unmixing solutions. Thus,
we propose a new initialization method called DBSCAN-VCA
initialization.

DBSCAN is a clustering algorithm based on density space.
Its clustering principle is simply that the density of each cluster
is higher than the density around the cluster, and the noise
density is smaller than that of any cluster. The schematic diagram
is shown in Fig. 5. The parameters of DBSCAN include the
distance threshold D and the quantity threshold Q. If a sample
contains more than Q points in D-domain, the sample is a core
point. Suppose there is a data set C, f is a sample in it, then the

Fig. 5. DBSCAN diagram. A is the core point, B is the boundary point, and
C is the outlier. D is the distance threshold and the quantity threshold Q is 5.

expression for the D-domain of sample f is

Ddomain (f) = {g ∈ C | dist (f, g) ≤ D} (11)

where g is the set of points in the field of f. If the number of points
of a sample in D-domain is less than Q but it falls in the domain
of the core point, the sample is a boundary point; if a sample is
neither core nor boundary point, the sample is an outlier. The
distance measurement method of DBSCAN is chosen as cosine
similarity in (5).

Since the distribution of ground objects is continuous, pix-
els in locally smaller neighborhoods should be more similar.
Therefore, DBSCAN can be used to exclude pixels with large
spectral differences in smaller regions. DBSCAN-VCA first
divides the HSI into several patches in a small size of 4× 4, then
uses DBSCAN clustering within each patch. A small distance
threshold and a large quantity threshold are selected, and pixels
with large spectral differences between the surrounding pixels
in a 4 × 4 region are excluded as HSI outliers. Next, VCA is
used on the remaining pixels to extract the initial endmembers.

III. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method on several data sets. One synthetic and three real data
sets are used for testing. First, we analyze the noise robustness
and hyperparameter sensitivity of the method on synthetic data.
The effect of mask ratio on unmixing is also tested. And then,
to evaluate the accuracy and consistency of the method, the
experiments are repeated fifteen times and report the average and
standard deviation of the results. The average value represents
the accuracy of the method, that is, whether it can produce
correct unmixing results. The standard deviation represents the
consistency of the method, i.e., whether it can produce the same
result in each run.

Two classical and five state-of-the-art DL unmixing methods
are chosen for comparison: VCA [32], L1/2 sparsity-constrained
nonnegative matrix factorization (L1/2-NMF) [56], deep AE un-
mixing network (DAEU) [17], nonlinear AE unmixing network
(NLAEU) [18], probabilistic generative model for hyperspectral
unmixing (PGMSU) [23], transformer AE unmixing network
(TAEU) [25], and multistage convolution AE unmixing network
(MuCAEU) [27].

A. Data Description

1) Synthetic Data Set: The synthetic data set is simulated using
five endmember references with 200 bands selected from the ad-
vanced spaceborne thermal emission and reflection radiometer
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Fig. 6. RGB image of four datasets. (a) Synthetic data. (b) Samson. (c) Urban. (d) Washington DC.

TABLE II
PARAMETER SETTINGS IN OUR EXPERIMENTS

(ASTER) spectral library [59], and the corresponding abundance
maps satisfy the ANC and ASC with a size of 60 × 60 pixels.
It should be noted that the abundance maps follow a Dirichlet
distribution.

2) Samson: The SAMSON sensor [60] acquired this widely
used real data set. It is an image cropped from a larger im-
age, having 95 × 95 pixels with 156 channels, covering the
0.4–0.9 μm wavelength range. There are three material types:
Water (#1), Soil (#2), and Tree (#3).

3) Urban: This popular real data has 307 × 307 pixels, with
210 bands covering the 0.4–2.5 μm wavelength range. After
removing the destroyed and noisy bands, 162 bands remain.
Four materials are observed in the scene: Asphalt (#1), Grass
(#2), Tree (#3), and Roof (#4).

4) Washington DC: The real data are captured from the
hyperspectral digital image collection experiment (HYDICE)
sensor [61]. It has 191 bands covering the wavelength ranging
from 0.4 to 2.4 μm. Due to the large size of the raw HSI, a
subimage is cropped with a size of 290 × 290. Five materials
are observed in the scene: Grass (#1), Water (#2), Roof (#3),
Road (#4), and Tree (#5).

The real data and the corresponding ground truth (GT) are
publicly available data sets, that can be obtained from the website
https://rslab.ut.ac.ir/data. The RGB image of four data sets is
shown in Fig. 6.

B. Experimental Setup

1) Implementation Details: We use an Adam optimizer with
a weight decay of 1e-4 for Urban data set and 1e-3 for others. The
number of epochs is 700. The learning rate decreases by G% after
every S epoch is trained. Set the slope of the LeakyReLU to 0.2.
Drop out 0.25 is used to prevent the fitting. For DBSCAN, we set
D to 1e-3 for the real data sets, D to 0.2 for the synthetic data set,
and Q equal to 13. Other more specific details are illustrated in
Table II. The threshold value obtained automatically by OSTU

in the experiment and the total number of pixels divided into
the highly mixed region (represented by TN) are also listed in
the table. The mask ratio is set to 0.9 for all experiments, which
means that 90% of the TN pixels in the highly mixed region are
masked. HU is an unsupervised task that does not require labeled
samples for training, and the network evaluates the quality of the
unmixing results based on the difference between the input and
output. So the test can be done directly on the training set. In
addition, selecting subsets for training may result in missing
certain endmembers (i.e., some ground objects are not present
in the subimage) [33]. So each unlabeled entire data set after
MRM processing is simultaneously used as training set and test
set to train the network and test the effect.

2) Evaluation Metrics: In the experiment, two commonly
used evaluation metrics are introduced to assess the performance
of algorithms: spectral angle distance (SAD) and root mean
square error (RMSE), which are defined as follows:

SAD (m̂i,mi) = arccos

(
m̂T

i mi

‖ m̂i‖2 ‖ mi ‖2

)
(12)

RMSE (âj , aj) =

√
1

N

∑N

j=1
‖ âj − aj ‖22 (13)

where m̂i and mi denote the extracted endmember and the
reference endmember, respectively. âj and aj are the estimated
abundance and the reference abundance, respectively. The small
values of SAD and RMSE imply better unmixing.

C. Experiment With Synthetic Data Set

1) Noise Robustness Analysis: To investigate the robustness
of the proposed method, different signal-to-noise ratio (SNR)
values from 5 to 30 dB are added in the synthetic experiment.
Table III illustrates the results of the synthetic data set with
different SNR values in terms of the SAD and RMSE. At high
noise intensity (SNR = 5, 10 dB), as expected, the proposed
MsCM-Net method achieves the best average SAD and average
RMSE compared with those of other state-of-the-art methods.
Also, the standard deviation of MsCM-Net is the lowest, out-
performing the other state-of-the-art methods by a large margin.
This is because MsCM-Net masks the pixels that interfere with
the unmixing results. At relatively low noise intensity (SNR =
20, 30 dB), it still has the best average and standard deviation
in terms of SAD. For the abundance comparisons, the proposed
method produces the best standard deviation and achieves the
comparable average RMSE. The main reason for the relative
decline in abundance estimation ability is that MsCM-Net will

https://rslab.ut.ac.ir/data
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TABLE III
SAD AND RMSE FROM THE SYNTHETIC DATA SET WITH DIFFERENT SNR

Fig. 7. Parameter sensitivity analysis of the proposed MsCM-Net method in the synthetic data set. (a) SNR = 5 dB. (b) SNR = 10 dB. (c) SNR = 20 dB.
(d) SNR = 30 dB.

Fig. 8. Mask ratio analysis of the proposed MsCM-Net method in the synthetic data set. (a) SNR = 5 dB. (b) SNR = 10 dB. (c) SNR = 20 dB.
(d) SNR = 30 dB.

mask some pixels, which will lose some information under
low noise. Generally, methods that use convolutional networks
to consider spatial information, including TAEU, MuCAEU,
and MsCM-Net, commonly perform better. It shows that it is
essential and correct to make full use of spatial information.
Overall, the proposed method exhibits competitive robustness
in abundance and endmember estimation under different noise
levels, especially in high noise level scenarios.

2) Parameter Analysis: The performance of the proposed
MsCM-Net method is somewhat sensitive to the setting of
regularization parameter α. For this reason, the corresponding
experiments are conducted to investigate the effects of parameter
setting, as shown in Fig. 7. It can be observed that the general
trend is that the best RMSE result comes from α between 6
and 10. And the SAD results change very little after α = 12.
However, SAD and RMSE results consistently improved when

SNR = 30 dB. This may be because the synthetic data set is
more sparse in higher SNR circumstance. There is a noticeable
improvement in unmixing performance when setting the α from
zero to nonzero. The improvement validates the necessity of
adding the sparse regularization term.

3) Mask Ratio Analysis: We conduct corresponding experi-
ments to verify whether the mask modeling is valid and the effect
of the mask ratio on the unmixing solutions. The result is shown
in Fig. 8. It can be obviously observed that when the mask is
added, that is, when the mask ratio is from zero to nonzero, the
results of SAD and RMSE are significantly improved at different
noise levels. For endmember extraction, the general trend is that
the larger the mask ratio, the better. This is because the remaining
pixels can be better unmixed by a linear decoder. In terms of
abundance estimation, RMSE shows a trend of decreasing first
and then increasing with the increase of mask ratio. This may be
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TABLE IV
SAD AND RMSE FROM THE SAMSON DATA SET

Fig. 9. Abundance maps from the Samson data set obtained by the different methods.

Fig. 10. Plots of all extracted endmembers by all methods (blue) and the reference endmembers (red) for the Samson data set.

because a larger mask ratio will lose more spatial information.
In high SNR circumstance, the entire mask (mask ratio = 1)
produces poor unmixing results because the highly mixed region
is not involved in training at all, which also affects the unmixing
performance. Therefore, a general trend for the mask ratio setting
can be summarized empirically. It is recommended to set a higher
ratio, which will extract better endmembers. Although this may
not necessarily be the optimal abundance result, it will be within
the acceptable range.

D. Experiment With Samson Data Set

Table IV and Fig. 9 present the unmixing results and the
corresponding abundance maps, respectively, in the Samson data
set. It can be seen that the proposed MsCM-Net method achieves
the best performance in terms of the SAD and RMSE, which
validates the effectiveness of the proposed method. In addition,

the abundance maps obtained by MsCM-Net are visually similar
to the ground truth in Fig. 9. Fora illustrative purposes, all end-
members extracted by all methods, with corresponding GTs, are
shown in Fig. 10. From the figure, we can see that MsCM-Net has
good accuracy and consistency compared with other methods.
This means that, it can stably extract accurate endmembers in
multiple runs.

E. Experiment With Urban Data Set

The Urban data set has a larger size than the Samson data set
mentioned earlier. Table V illustrates the results of different al-
gorithms in the Urban data set, and the corresponding abundance
maps are depicted in Fig. 11. As seen from Table V, the proposed
MsCM-Net method significantly improves performance and also
achieved the best results in terms of endmember and abundance
estimation, including standard deviation. Especially in terms
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TABLE V
SAD AND RMSE FROM THE URBAN DATA SET

Fig. 11. Abundance maps from the Urban data set obtained by the different methods.

Fig. 12. Plots of all extracted endmembers by all methods (blue) and the reference endmembers (red) for the Urban data set.

of endmember extraction, the best SAD values and standard
deviations are achieved on all materials. Compared with the
second-best value, the average SAD error is reduced by 66.1%
and the standard deviation by 95%. For illustrative purposes,
all endmembers extracted by all methods, with corresponding
GTs, are shown in Fig. 12. It is obvious that the MsCM-Net can
extract more accurate endmembers in each run, which further
validates its effectiveness for HU in real scenarios.

F. Experiment With Washington DC Data Set

The Washington DC data set is similar to the Urban data set
in that it has a large size and complex material distribution.
Table VI lists the performance assessment for all algorithms,
and the corresponding abundance maps are displayed in Fig. 13.
The proposed method achieves the best results on average SAD,
average RMSE, and their standard deviations. The average SAD
value is the only one less than 0.1. The average RMSE of
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TABLE VI
SAD AND RMSE FROM THE WASHINGTON DC DATA SET

Fig. 13. Abundance maps from the Washington DC data set obtained by the different methods.

TABLE VII
EFFECTS OF COMPONENTS IN OUR DESIGN

abundance map is the only one less than 0.2. It is further
proved that the proposed MsCM-Net method has outstanding
advantages in dealing with complex situations. For illustra-
tive purposes, all endmembers extracted by all methods, with
corresponding GTs, are shown in Fig. 14.

IV. DISCUSSION

A. Ablation Experiment

We gradually add different components in our design to
investigate the effectiveness of each component. Table VII lists

the results. The single-scale model is the baseline method. It only
considers the information at the original scale, and the model
architecture is consistent with Table I. Two-scale, three-scale,
and four-scale refer to continue to add 1/2 scale, 1/4 scale,
and 1/8 scale information, respectively. It can be seen that after
the addition of MRM, the unmixing accuracy of each data set
is significantly improved. Especially in terms of the average
SAD value, which is increased by 67% on Samson and 56% on
Urban. After adding DBSCAN-VCA initialization, the accuracy
and stability of the method are further improved. When the
1/2 scale, 1/4 scale, and 1/8 scale are gradually added, it can
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Fig. 14. Plots of all extracted endmembers by all methods (blue) and the reference endmembers (red) for the Washington DC data set.

Fig. 15. Experimental results of different network configurations. The height of the column and the values on the column represent the average. The black line
is the error bar and the length represents the size of the standard deviation. (a) Synthetic (10 dB). (b) Samson. (c) Urban. (d) Washington DC.

be found that when considering the information of the three
scales, the unmixing accuracy is further improved compared
with that of the single-scale network. However, after the addition
of the fourth scale, there is no significant increase or even
decrease. In summary, the ablation experiment demonstrates
the effectiveness of the proposed MRM and DBSCAN-VCA
strategies. The performance can be improved by using multiscale
network after applying the new strategies. Next, the rationality
of the network structure setting is also tested. We use three
configurations for the experiment, namely average pooling and
transposed convolution, max pooling and bilinear upsampling,
and max pooling and transposed convolution (i.e., the setup for
MsCM-Net). The experimental results are shown in Fig. 15. It
can be seen that max pooling and transposed convolution can
obtain better unmixing results, indicating that the choice of this
configuration is correct. Then we will discuss the effect of MRM
and DBSCAN-VCA further.

1) MRM: The patches mask (PM) is commonly used in
CV field, which divides the image into several small patches

proportionally and masks them. While MRM is masking at the
pixel scale. In addition, the existing PM models usually use
the masked image in network training and the original image
in network testing. However, the main purpose of MRM is
to mask the interference of noise in highly mixed regions, so
it inputs masked images in both processes. In order to verify
the applicability of the proposed MRM in HU, the single-scale
network is used to test the effect of PM with a mask ratio of
0.15 and 0.05, respectively. The effect when MRM inputs the
original image in network testing (called OMRM) is also tested.
The results are shown in Table VIII. To explore only the effects of
the mask mechanism, all experiments in the table are initialized
using the original VCA. It can be seen that for the Samson
data set, PM introduces a lot of additional noise, resulting in
unstable results. For the other three data sets, decreasing the
mask ratio leads to an improvement in abundance, but the
endmember extraction accuracy does not improve. This may
be because with a lower mask ratio, less information is ignored
and the abundance naturally improves. But the masked area is
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TABLE VIII
RESULTS OF EFFECTIVENESS EXPERIMENTS BETWEEN PM AND MRM

Fig. 16. Each row from left to right shows the endmember extraction results (blue curve) and reference endmembers (red) from VCA initialization, DBSCAN-VCA
initialization, and HKS-VCA initialization of the data set. (a) Samson. (b) Urban. (c) Washington DC.

TABLE IX
RESULTS OF DBSCAN-VCA NECESSITY EXPERIMENTS

also reduced and is not necessarily the mixed area that would
interfere with the unmixing. These areas are still input into the
network during testing and still affect the unmixing. It is also
better to input the masked image both for training and testing
than to switch to the original image for testing. In summary,
MRM that is specific to mixed regions is more suitable for
HU tasks.

2) DBSCAN-VCA: We use three real data sets to verify the
effectiveness of DBSCAN-VCA initialization. Fig. 16 shows the
results of using VCA initialization, DBSCAN-VCA initializa-
tion, and the VCA initialization based on heat kernel similarity
(HKS-VCA) proposed in [19]. The number of runs is 15. It is
obvious that the initial results of adding DBSCAN are more
similar to ground truths and more stable than the other two
methods.

In order to further verify whether the good initialization
generated by DBSCAN-VCA is beneficial to other methods,
we choose two methods, TAEU and NLAEU, to conduct

experiments on three real data sets in combination with
DBSCAN-VCA. The results are shown in Table IX. It can be
seen that good initialization plays an obvious role in improving
both methods, which proves the necessity of this strategy.

B. Computational Cost

We compare the computational complexity of all test methods,
and the result of the running time is shown in Table X. All
the experiments are conducted on the same PC with an Intel
12th i7 CPU, 16-GB memory, and one NVIDIA GeForce RTX
3060 graphic card. It can be seen that the proposed MsCM-Net
method has a competitive computational cost compared with
other methods on relatively small data sets, such as the Samson
data set and the Synthetic data set. However, it takes more time
to run on large data sets, including the Urban data set and
the Washington DC data set, because of the DBSCAN-VCA
initialization. But the computational cost is still acceptable.
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TABLE X
COMPUTATIONAL COST OF ALL METHODS ON DIFFERENT DATA SETS IN TERMS OF SECONDS (S)

V. CONCLUSION

In this article, we propose a new multiscale convolutional
mask unmixing network named MsCM-Net. We discuss the
challenges faced by DL-based unmixing methods and give the
corresponding solutions. Through the mixed region mask strat-
egy suitable for HU tasks, MsCM-Net can reduce the influence
of noise present in highly mixed regions, making the unmixing
process more robust. Based on the consideration of local sim-
ilarity, a new initialization strategy combining DBSCAN and
VCA is proposed. Benefiting from the good initialization of
DBSCAN-VCA, more reasonable and superior unmixing results
are further yielded. Extensive experiments on synthetic and real
data sets demonstrate the effectiveness and robustness of the
proposed method. Especially on low SNR or relatively complex
data sets, the proposed method has outstanding advantages
over other state-of-the-art unmixing approaches. The ablation
experiment also demonstrates the advantages of MRM in HU
tasks compared with existing patches mask. The benefits of good
initialization are also proven. In the future, we will further study
the application of mask modeling in HU.
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