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Abstract—Due to their remarkable capabilities of generation,
deep-learning-based (DL) generative models have been widely ap-
plied in the field of synthetic aperture radar (SAR) image synthesis.
This kind of data-driven DL methods usually requires abundant
training samples to guarantee the performance. However, the
number of SAR images for training is often insufficient because
of expensive acquisitions. This typical few-shot image generation
(FSIG) task still remains not fully investigated. In this article, we
propose an optical-to-SAR (O2S) image translation model with a
pairwise distance (PD) loss to enhance the diversity of generation.
First, we replace the semantic maps used as the input of network in
previous studies with more easily available optical images and apply
the popular pix2pix model in image-to-image translation tasks as
the foundation network. Second, inspired by the FSIG works in the
traditional computer vision field, we propose a similarity preser-
vation term in the loss function, which encourages the generated
images to inherit the similarity relationship of the corresponding
simulated SAR images. Third, the data augmentation experiments
on the MSTAR dataset indicates the effectiveness of our model.
With only five samples for each target category and six categories
in total, the basic O2S network boosts the classification accuracy
by 4.81% and 2.27% for data of depression angle of 15° and 17°,
respectively. The PD loss is capable of bringing additional 2.23%
and 1.78% improvement. The investigation on similarity curves
also suggests that the generated images enhanced by the PD loss
have closer similarity behaviors to the real SAR images.

Index Terms—Deep learning (DL), few-shot image generation
(FSIG), image-to-image translation (I2I), synthetic aperture radar
(SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has become an essential
tool for land survey, Earth remote sensing, environment

monitoring, etc., since it is capable of providing day-and-night,
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weather-independent, and high-resolution images [1]. As the
SAR signal processing and imaging techniques advance, the
classification and recognition of targets of interest in SAR im-
ages have been paid more and more attention, which leads to
the task of automatic target recognition (ATR) [2], [3], [4]. With
the rapid development of deep learning (DL) methods recent
years [5], many works have been done to apply DL approaches
to ATR task [6], [7], [8]. However, training a well-performing
DL model needs a large amount of data, which is often limited
for SAR ATR task since the acquisition of SAR image is hard
in practice. The lack of training samples in DL is usually named
as few-shot learning (FSL) problem [9].

Data augmentation (DA) [10] is a common category of meth-
ods to tackle the problem of insufficient training images for the
DL model. One way of DA is to introduce more data by basic
image manipulation of initial samples or utilizing other sources
of data. For the SAR ATR task, images given by simulation are
often applied to augment the dataset [11], [12], [13]. Another
widely used category of DA methods is to generate more data
by DL. Among these models, generative adversarial network
(GAN) [14] and its various variants have achieved remarkable
performance [15], [16], [17], [18], [19]. This kind of models
consist of two modules, the generator that attempts to output
images as realistic as possible and the discriminator, which tries
to distinguish the generated images from the real ones. Because
of its impressive capability of generation, we choose the GAN
as the foundation of our approach.

The lack of training samples also results in the unrealistic
outputs of DL generation models. The generation task under
this condition is usually referred as few-shot image genera-
tion (FSIG). There exist already several GAN-based works
focusing on this problem in the traditional computer vision
field [20], [21], [22], [23], [24], [25], but the FSIG of SAR still
remains not fully explored. Some representative recent works
have been conducted [18], [19]. Inspired by their models, we
intend to make further progress to confront more challenging
task with fewer samples per target class and larger number of
category.

The model proposed in [18] uses semantic maps of SAR
images as input of the generator, which are difficult to acquire in
practice. Thus, we suggest to replace the semantic maps by the
much more easily accessible optical images. This makes it possi-
ble to introduce various methods of image-to-image translation
(I2I) [26], which focuses on converting images from one domain
to another. In our case, we intend to transfer an optical image to
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Fig. 1. Simple illustration of the PD loss used in this article. yT represents the
similarity matrix of a batch of generated SAR images, while yS is the similarity
matrix of corresponding simulated SAR images.

the corresponding SAR image while maintaining its content. We
apply the popular I2I model pix2pix [27] as the basic network.
Following [18] and [19], physics information like target category
and angle characterizing the SAR imaging are also utilized as
input. To ease the learning of rotation representation for the DL
model, we applied the rotated cropping proposed in [18].

In this article, the module tries to mitigate the influence of
insufficient training samples is proposed after we revisit previous
researches on FSIG [20], [21], [22], [23], [24], [25]. A major
problem caused by the small number of training samples is
lack of diversity of generated images. Since the quantity of real
images used to train distinguish ability of the discriminator is
quite limited, the discriminator can simply memorize the few
real samples and force the generator to replicate them. One
possible way to ameliorate the networks is proposed in [25],
which attempts to transfer the diversity information from the
large source domain to the small target domain. In their method,
the generator will first be well trained with the plenty of samples
in the source dataset and their parameters will be recorded asGS .
During the finetuning of the pretrained model on the small target
domain, the generator will be forced to preserve the relative
similarities and differences of features of GS for the same input.
For the real SAR dataset with hard accessibility, there exists a
suitable large dataset that could be used as source domain, the
simulated SAR images. Based on their similarity perseverance
loss [25], we propose our light-weighted pairwise distance (PD)
loss by utilizing simulated data. Instead of calculating the dif-
ferences of features of all the layers in generator, we compute
only the similarity of generated images (i.e., the output of last
layer) and regularize it with the similarity matrix obtained by
the corresponding simulated SAR images. Thus, it is possible
for the model to inherit the diversity in the source domain. A
simple illustration of the proposed PD loss is given in Fig. 1.

Our experiments are performed on the moving and stationary
target acquisition and recognition (MSTAR) public dataset [28],
[29]. Compared with the former work considering orientation
angle interval of 25° [18], we concentrate on a more difficult task
with only five samples for each equipment class, which results

in an angle interval of 72°. Meanwhile, the number of categories
under our consideration is twice that of [19], making it a six-way
five-shot task. The optical images utilized as the input of network
are rendered by Open Graphics Library (OpenGL) [30] and the
simulated SAR images are obtained by shooting and bouncing
rays (SBR) method based on geometric models. We conduct
the experiments on data of both 15° and 17° depression angles
in MSTAR. The generated images are used to augment the
training of an all-convolution classification network [31]. The
classification accuracy of the augmented network on the test set
is used as the criterion of the performance of our model. It is
shown that the accuracy is improved by 4.81% and 2.27% by
the results of basic optical-to-SAR (O2S) translation network for
15° and 17° depression angle, respectively. And the introduction
of PD loss will bring another 2.23% and 1.78% elevation of
accuracy, which indicates the effectiveness of our approach.
The curves of similarity of generated images with respect to
orientation angles also show that their similarity behavior can
be adjusted closer to that of real SAR by the PD loss. Our
contributions can be summarized as the following three aspects.

1) We introduce the O2S translation framework to the FSIG
task of SAR. The semantic maps with limited availability
are replaced by the more easily accessible rendered optical
images and can be substituted with real photos in further
works.

2) A loss function term based on mutual similarity is pro-
posed in the FSIG task of SAR to enhance the diversity
of generated images. This also gives an alternative way
of using the simulated SAR images appropriately. The
domain gap between the simulated and real SAR has
limited the direct use of data given by simulation [13].

3) A more challenging six-way five-shot task compared with
previous works is taken into consideration. The basic
model of the O2S translation framework has proven its
effectiveness by experiments on MSTAR, and the PD loss
is able to bring additional improvement.

The rest of this article is organized as follows. Section II
reviews important related works of GAN, FSIG, and I2I trans-
lation. In Section III, we give detailed descriptions of basic O2S
translation network and how to calculate the PD loss. Section IV
states how we construct the rendered optical image dataset
and simulated SAR image dataset at first, and then gives the
augmentation effect, the similarity curves of generated images,
and a discussion of characteristics of generation with different
settings. We also compare the performance of our approach with
current state-of-the-art methods in Section IV. An analysis of
ablation study is provided to clarify the effect of the components
in our model in Section V. Finally, Section VI concludes this
article.

II. RELATED WORKS

A. Generative Adversarial Network (GAN)

Due to their capacity of generating realistic and high-quality
images, GANs [14] have gained significant attention. GAN
models usually consist of two modules, the generator and the
discriminator. The former tries to generate synthetic samples that
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resemble real data and the later distinguishes real and generated
samples. The two parts are trained simultaneously, and they
continuously learn from each other. As training progresses, the
generator becomes better at generating realistic samples, while
the discriminator distinguishing real from fake data. The itera-
tive process eventually leads to the generation of high-fidelity
synthetic data.

However, training GANs can be challenging and unstable. A
common issue is mode collapse, which refers to the limited vari-
ations of samples produced by the generator. A widely used way
to mitigate this problem is to replace the Kullback–Leibler (KL)
or Jensen–Shannon (JS) divergence in the loss function with the
Wasserstein distance, which leads to the popular Wasserstein
GAN (WGAN) [32]. Based on this work, an improved strategy to
enforcing Lipschitz constraint on the discriminator by gradient
penalty (WGAN-GP) is proposed [33], which enables a more
stable training process compared with classical GAN models.

In SAR generation task, GAN-based methods have also been
widely applied. The conventional GAN and WGAN-GP are
utilized in [15] and [16], respectively. To achieve results with
higher quality, different kinds of auxiliary information are taken
as input of the conditional GAN-based (CGAN) [34] neural net-
works. For example, Cao et al. [17] make use of label information
and Sun et al. [19] need category indexes and aspect angles. In
addition, semantic maps of SAR images are recently introduced
in [18] to guide the generation.

B. Few-Shot Image Generation (FSIG)

Few-shot learning (FSL) is a subarea of machine learning,
which has access to only a few samples with supervised infor-
mation during the training process [9]. The FSIG tasks mainly
concentrate on generating new images under this circumstance.
In contrast with the regular image generation tasks with plenty
of training samples, the results of FSIG with GAN-based model
suffer severely from the lack of diversity. Since the discriminator
can simply memorize the extremely limited training samples
(e.g., ten images per class) rather than learning the true charac-
teristics of the provided images, the discriminator loses largely
the capacity of guiding the generator network [25].

Some works have already been done to tackle this problem.
These methods can be broadly divided into two categories:
the finetuning-based methods, which try to transfer a source
model trained on a large related dataset by finetuning, and the
regularization-based methods, which regularize the optimization
of model parameters based on the prior knowledge of the dataset.
To reduce the overfitting in the few-shot scene, the finetuning-
based strategies often attempt to decrease the number of weights
to update. Noguchi and Harada [20] optimize only the scale
and shift parameters of batch statistics in the generator. Zhao
et al. [21] reuse low-level filters of the pretrained model and
replace the high-level layers with a smaller network. In [22],
the importance of kernels in the pretrained model is measured
by Fisher information [23], and the knowledge of important
kernels will be preserved while the unimportant ones will be
updated. As for the regularization-based methods, additional
term is commonly appended to the loss function. In [24], elastic
weight consolidation loss term is used to limit the change

of important weights when transferring the model. And Ojha
et al. [25] introduce a pairwise similarity preservation loss to
confront the overfitting.

C. Image-to-Image Translation (I2I)

The I2I refers to the task of converting an image from one do-
main to another while preserving its content representations [26].
Neural style transfer [35] is a typical example of I2I, which
aims to render a content image in different styles. Some of
the extensively used I2I models are based on GAN, such as
pix2pix [27] and CycleGAN [36]. I2I is also a topic drawing
increasing attention in SAR. Recent works include translation
between simulated and real SAR images [13] and SAR images
with different resolution [37]. The most investigated topic is
the translation between optical and SAR images [38], [39],
[40], [41], [42]. However, most of these models focus on the
remote sensing optical images and airborne or spaceborne SAR,
which provide a large amount of training samples. Thus, their
methods could not be applied directly to the few-shot SAR image
generation. Appropriate modification is needed to introduce I2I
translation methods to FSIG task.

III. PROPOSED METHOD

In this section, we will give brief explanation of our moti-
vation, detailed descriptions of the proposed model, and the
additional loss term to enhance the diversity of generated images.

A. Basic Network

Compared with vanilla GAN, more prior information can be
utilized in CGAN [34]. The pix2pix [27] model is a CGAN
with an image input as condition. In SAR generation task, Song
et al. [18] make use of the semantic maps to get more realistic
SAR images. However, their semantic maps are acquired by
manual annotation of the bright and dark area of the images,
making the method not very convenient in practical scene.
To improve the feasibility, we propose to use the more easily
obtainable optical image as input of the neural network, which
involves an O2S image translation problem. Access to the optical
images will be presented thoroughly in Section IV-A. Due to the
lack of training samples in FSIG, we choose the popular pix2pix
model [27] in I2I as basis, rather than cycleGAN [36], which
contains much more parameters by training two translation
networks at the same time.

The architecture of the proposed method is given in Fig. 2. As
a GAN-based model, it consists of two parts, a generator G and
a discriminator D. With the adversarial training progressing, the
capacity of distinguishing of the discriminator is strengthened
and it will guide the generator to output images with more
resemblance to the real ones. In the end, generated results will
become indistinguishable for the discriminator. Details of the
two subnetwork are given in the following.

As the pix2pix model, the generator G in our method adopts
an U-Net structure [43]. In the conventional encoder-decoder
networks, the input is passed through a sequence of layers
progressively. However, U-Net adds skip connections between
each layer i and its mirrored layer n− i, where n denotes the
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Fig. 2. Architecture of the proposed model. (a) Illustration of the U-Net generator. ⊕ stands for the concatenation on the channel. The black arrows represent
the downsampling blocks, which consist of LeakyReLU, convolutional layer, and instance normalization. The purple arrows are the upsampling blocks containing
ReLU, transposed convolutional layer, and instance normalization. The orange arrows denote the skip connections. xo, c, a, and z are the input optical image,
category label, orientation angle, and noise vector, respectively. x̃ is the generated image. (b) Structure of the discriminator. Conv+SN means convolutional layers
with SN. FC represents the fully connected layer. t′, c′, and a′ are the output of the discriminator on the real/fake prediction, classification, and angle prediction
tasks, respectively. (c) Training process of the proposed model. It contains two parts, pretraining and adversarial training. During pretraining, the simulated SAR
images xs are used to update the generator G. In adversarial training, besides the GAN loss, the L1 reconstruction loss and PD loss given by the similarity matrices
yT and yS are also applied to optimize both the generator G and spectral normalized discriminator DSN.

total number of layers. The connections give it an U-shaped ar-
chitecture, which forms its name. They also allow the network to
preserve both low-level and high-level features, making it more
capable than autoencoders without skips. The network blocks in
downsampling part of U-Net are composed of LeakyReLU [44],
convolutional layers, and instance normalization [45]. In the
upsampling part, we use ReLU as activation and transposed
convolutional layers. The optical images xo will be first con-
verted to one-channel grayscale ones, i.e., xo ∈ R1×M×M . M
indicates the size of input images. Besides optical images, cat-
egory labels c and azimuth angles φ are also utilized following
the former generation works [18], [19] in our work. The label
indexes c are embedded into vectors c ∈ Rk, where k is the
embedding dimension. We expand the vectors c into the same
width and height as xo with k as the channel number, which
results in c ∈ Rk×M×M . The orientation angle φ is represented
by a = (cosφ, sinφ), and then, expanded like c, leading to
a ∈ R2×M×M . xo, c, and a will be concatenated on channel
dimension before input into U-Net generator. With proper choice
of layer numbern in U-Net and size of xo, the innermost layer of
U-Net will give a 1 × 1 feature map. The noise vector z ∈ Rm

drawn from a standard normal distribution will be concatenated
with the feature, and then, enter the expansive part of U-Net.
The reason why not expanding and concatenating z as what we

have done to c and a is that the relatively large value of m may
introduce too numerous channels in input. For enhancing the
generation results, an L1 reconstruction loss is also added.

The first part of the discriminator D consists of convolutional
neural networks (CNNs). Following [18] and [19], the output
feature will be presented to three different fully connected
layers, which correspond to three tasks: identification of real
and generated images, classification, and orientation angle pre-
diction. To stabilize the training process of the discriminator, a
regularization method called spectral normalization (SN) [46]
is introduced to all the convolutional layers. The main idea is
to enforce Lipschitz continuity of the discriminator’s weights
by normalizing its spectral norm. Lipschitz continuity ensures
that small changes in the input space result in small changes in
the output space, which helps improve the overall stability and
convergence of GAN training. The weight matrix of a layer is
denoted by W , and the corresponding normalized weight WSN

is as follows:

WSN =
W

σ(W )
(1)

where σ(W ) indicates the spectral norm obtained by power
iteration [47], [48], instead of computation-consuming singular
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value decomposition. It is also suggested in [46] that, apply-
ing SN and gradient penalty (GP) [33] simultaneously would
achieve more improvement since these two methods regularize
the discriminator in different ways. So, GP is present during
training. In the rest text, we denote the discriminator with SN by
DSN. The subscripts t, c, and a are used to represent the real/fake
prediction, classification, and azimuth angle prediction given by
DSN. To sum up, the loss function of the generator G is

LG = LGAN,G + λcLc,G + λaLa,G + λ1Lrec (2)

LGAN,G = − Ex̃∼Pg
[DSN,t(x̃)] (3)

Lc,G = CEL[DSN,c(x̃), c] (4)

La,G = MSE[DSN,a(x̃), a] (5)

Lrec = L1(x̃, xr) (6)

where x̃ indicates a generated image, Pg is the generator
distribution, and xr denotes the corresponding real image.
Ex∼P (x)(f(x)) represents expectation of f(x) over distribution
P (x). λc, λa, and λ1 are the coefficients of classification, angle
prediction, and reconstruction tasks, respectively. CEL repre-
sents the cross entropy loss and MSE stands for mean square
error. c and a signify the real category label and angle.

The loss function of DSN is LD and consists of three parts
that relate to the three aforementioned tasks. The detailed ex-
pressions are

LD = LGAN,D + λcLc,D + λaLa,D (7)

LGAN,D = Ex̃∼Pg
[DSN,t(x̃)]− Exr∼Pr

[DSN,t(xr)]

+ λgpEx̂∼Px̂
[(||∇x̂DSN,t(x̂)||2 − 1)2] (8)

Lc,D = CEL[DSN,c(x), c], x ∈ {x̃, xr} (9)

La,D = MSE[DSN,a(x), a], x ∈ {x̃, xr} (10)

where Pr expresses the real data distribution, λgp denotes the
coefficient of GP, and x̂ is given by εxr + (1− ε)x̃ with ε
a random number drawn from uniform distribution U [0, 1]. x
stands for both x̃ and xr since the discriminator is expected to
be able of recognize the category and orientation for both real
and generated SAR images.

The aforementioned structures form the basic network of our
method. The strategy especially designed for FSIG is presented
in the next subsection.

B. Increasing Diversity

As it is stated in [25], when the number of training samples
becomes extremely few, the discriminator would simply remem-
ber the few examples and force the generator to output images
with high similarity to them, which leads to low diversity of the
results. A commonly used means is to introduce a related source
dataset with plenty of images, and then, attempt to transfer the
knowledge from the source dataset to few-shot target dataset.
Several works of this category habe been listed in Section II-B,
and the cross-domain distance consistency (CDDC) proposed
in [25] inspires us the most. Given a large source datasetDS and
corresponding well-trained generator GS , we aim to reach an

adapted generatorGT initialized withGS on small target dataset
DT . Besides basic adversarial learning loss, CDDC proposes
to enforce preservation of relative distance before and after
adaptation. In their method, a batch of N + 1 noise vectors
is input to both GS and GT , then the similarity of features
between the networks is used to construct an N -way probability
distribution. For the ith noise vector, the probability distribution
of GS and GT is as follows:

yS,li = Softmax({sim(Gl
S(zi), G

l
S(zj))}∀i�=j) (11)

yT,l
i = Softmax({sim(Gl

T (zi), G
l
T (zj))}∀i�=j) (12)

where l denotes the lth layer of the generator. Softmax is an
activation function given by

Softmax(x)i =
exp(xi)∑
j exp(xj)

(13)

where xi is the ith element of input vector x. sim is the cosine
similarity that is defined by

sim(A,B) =
A ·B
||A||||B|| =

∑
i AiBi√∑

i A
2
i

√∑
i B

2
i

(14)

where A and B denote the features under consideration. Ai and
Bi are the ith components of A and B, respectively.

The distributions of feature similarity of two generators are
encouraged to be close, thus the distance loss is given by

Ldist(GS , GT ) = Ezi∼pz(z)

∑
l,i

DKL

(
yT,l
i ||yS,li

)
(15)

where DKL indicates the KL-divergence.
Inspired by their work, we propose our own light-weight ver-

sion PD loss with the simulated SAR images as source dataset.
Details of electromagnetic simulation are given in Section IV-A.
There exist clear domain gap between the real and simulated
SAR images [13], for which the simulated data are hard be
directly used to train the network. However, the similarity be-
tween simulated images of different orientation and categories
probably shares comparable behavior with the real ones.

Taking ZSU234 with depression angle 15° as an example,
we show the variations of cosine similarity of different angles
with respect to 0° for the optical, simulated, and real SAR
images in Fig. 3. Although the variation of simulated SAR is
clearly different from that of real SAR regarding the value of
similarity, the general tendency remains alike. The similarity
drops quite fast for both real and simulated SAR images when
the orientation angle begins to change. And for both of them, the
most different image appears at about 180°. However, the curve
of optical images increases drastically around 180°, which may
be caused by the alignment of the bright target area and shadow
area around both 0° and 180°. Moreover, the texture of rendering
image changes less when the orientation is different. So, the
similarity of optical images does not drop as fast as the real
and simulated SAR images and its curve is much smoother. For
the other five target categories, the characteristics of similarity
variations are similar to this situation. Due to the analogous
behavior of similarity for real and simulated SAR, we decide to
utilize the simulation set to regularize the diversity of generation.
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Fig. 3. Cosine similarity variations of ZSU234 of different kinds of images.
The orange line stands for the real SAR images, the blue line represents the
simulated SAR images, and the green line indicates the optical images given by
rendering. The horizontal and vertical axes are the azimuth angle and similarity,
respectively.

In the original CDDC, features of every layers in GS are
used to regularize GT . Since the output images are the final
purpose and also for reduction of computation, we propose
to constrain only the output of GT by simulated data and not
bother to regularize all the layers of GT . Given a batch of input
{zi, ci, ai, xo,i}0≤i≤N , we use GT (i) and GT (j) to denote the
generated images of ith and jth input. The ij-element of the
similarity matrix is then given by

yTi,j = sim(GT (i), GT (j)) ∀i �= j (16)

where sim refers to the cosine similarity function. With xs,i

and xs,j representing the simulated SAR corresponding to the
input xo,i and xo,j , element of the similarity matrix of simulated
images is

ySi,j = sim(xs,i, xs,j) ∀i �= j. (17)

The objective of our strategy is to reduce the difference of two
similarity matrices

Ldist = λdistMSE(yT , yS). (18)

It should be emphasized that Ldist is applied only to the ori-
entations without real SAR training samples. And λdist is the
hyperparameter to adjust the importance of this part in loss
function. To summarize, the detailed process of the proposed
algorithm is presented in the Algorithm 1.

IV. EXPERIMENTS

A. Datasets

The widely used moving and stationary target acquisition and
recognition (MSTAR) dataset [28], [29] is adapted to our model.
This dataset contains SAR images of several targets obtained by
the X-band sensor with 0.3 m × 0.3 m resolution. Six types of
targets at 15° and 17° depression and all azimuth angles are
used in our experiments. The categories under consideration
and corresponding numbers of images are given in Table I.
Following [18], rotated cropping is conducted for all the real and

Algorithm 1: Few-Shot SAR Generation With PD Loss.
Require: Optical image dataset DO, source dataset given
by simulation DS , small real SAR dataset DT , normalized
discriminator DSN with parameters θd, generator G with
parameters θg, pretraining epoch np, total adversarial
training steps ns, discriminator training steps nd,
generator training steps ng , learning rate l.

1: for np epochs do
2: sample batches of simulated images xs ∈ DS ,

corresponding optical images xo ∈ DO, category
labels c, angles a

3: x̃← G(xo, c, a),
4: Lp ← MSE(x̃, xs)
5: θg ← RMSprop(Lp)
6: end for
7: for ns steps do
8: for nd steps do

9: sample a batch of real images xr ∈ DT ,
corresponding optical images xo ∈ DO, category
labels c, angles a, ε ∼ U [0, 1]

10: x̃← G(xo, c, a), x̂← εxr + (1− ε)x̃
11: LD ← LGAN,D + λcLc,D + λaLa,D

12: θd ← RMSprop(LD)
13: end for
14: for ng steps do
15: sample a batch of real images xr ∈ DT ,

corresponding optical images xo ∈ DO, category
labels c, angles a

16: x̃← G(xo, c, a)
17: LD ← LGAN,G + λcLc,G + λaLa,G + λ1Lrec

18: θg ← RMSprop(LG)
19: end for
20: sample a batch of simulated images xs with angle not

in DT , corresponding optical images xo ∈ DO,
category labels c, angles a

21: x̃← G(xo, c, a)
22: Ldist(GS , GT )← λdistMSE(yT , yS)
23: θg ← RMSprop(Ldist)
24: end for

TABLE I
NUMBERS OF IMAGES OF EACH EQUIPMENT TYPE

simulated SAR and optical images. The first reason is the same
as [18]. It is difficult for the neural network to learn the rotation
operation that is not linearly accumulative. Second, if the target
region in the images rotates along with the azimuth angle,
the PD will be mainly contributed by the different locations of
the bright area, which makes the similarity unable to represent
the critical variation of reflection feature of target with different
orientations. A center cropping of 64 × 64 is also performed
since the rest part is largely background. In this article, no
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Fig. 4. Example images of six military equipment from different datasets. (a) Real photos. (b) Real SAR images. (c) Optical images given by rendering.
(d) Simulated SAR images. Photos in (a) are provided in MSTAR dataset website [29]. For images in (b), (c), and (d), the azimuth angle is 144° and depression
angle is 15°.

adjustment of pixel value has been performed on the SAR
images.

The optical images are rendered by using OpenGL [30], a
widely used application programming interface for rendering
2-D and 3-D vector graphics. Given the geometric models of
the military equipment, the major purpose of rendering is to get
the shadow under parallel light characterized by the depression
and azimuth angle. We apply the shadow mapping method [49]
to address this problem. The depth map is first created to store
distances between points on the surface of target and the light
source. Then, during the rendering of scene from the viewer’s
perspective, each pixel is checked against the depth map to
determine if it is shadow or not. The shadow rendered in the
condition of optical light shares some common features as that
in SAR images. That is why we attempt to generate SAR images
by translation from optical ones. An inconvenience of computer
rendering is that it needs geometric models in advance. However,
this is not the only way to get optical images, real photos,
and remote sensing images with proper cropping are potential
alternatives [50], which will be investigated in future works.

The simulation of SAR images is based on the SBR
method [51], which uses the ray-tracing (RT) [52] approach to
compute the equivalent currents. The rays are first shot on surface
of target, then with application of physical or geometrical optics,
the electromagnetic (EM) fields of each ray are tracked. The
summation of EM contributions given by each ray will lead to the
total scattered field of the target. The computation of SAR can be
time consuming, a fast algorithm based on ray-tube integration
formulas is thus introduced [53], [54], and then, expanded to the
3-D SAR simulation [55]. To improve the result of simulation,
we also introduce beam-tracing (BT) method [56] to replace the
RT used in SBR. The BT approach involves bundles or beams
of rays rather than individual rays in RT, and thus, captures the
properties of EM wave propagation more accurately.

It should be noted that the real SAR, simulated SAR, and
optical images are not strictly coregistered. Thus, the same point
on the geometric models is likely to exist at different pixel
positions in corresponding images from these three sets. Our

model is expected to be capable of overcoming the mismatches.
Example images drawn from the three datasets of the military
equipment considered in this work are shown in Fig. 4.

B. Experimental Settings

We choose the same setting of extremely few training samples
as [19]. Only five real SAR images with 72° angle interval are
given for each category, making a six-way five-shot task. The
training set drawn from MSTAR contains 30 images, and the
test set has 1534 images for depression of 15° and 1720 images
for 17°. The source dataset DS consists of simulated SAR with
orientation interval of 5◦, which gives us 432 images for each de-
pression angle. The optical images are rendered for every integer
azimuth angle. As to the hyperparameters in the loss function,
we set λ1 = λc = λa = 1, λgp = 10. As to the U-Net generator,
the total number of layers is 12, which gives 1×1 1 feature maps
in the bottleneck layer for the 64 × 64 input images. To update
the model weights, we choose RMSprop optimizer [57] and the
learning rate is 2 × 10−5. The pretraining process is performed
onDS with a reconstruction loss by 20 epochs, i.e., np = 20. In
each training step, DSN will be optimized once and parameters
of G will be updated three times, i.e., nd = 1, ng = 3. The total
number of steps ns is set to be 4000. Our method is constructed
on the Pytorch platform and run on a graphics processing unit
(GPU) (Nvidia RTX A5000).

C. Augmentation Effect

The major purpose of FSIG of SAR is to generate more
training data for target classification task. So, the classification
accuracy after augmented by the generated images is regarded
as an important criterion of our method. The A-ConvNets [31],
which contains only convolutional networks without fully con-
nected layers, is trained on different training sets and give the
corresponding test accuracy. Compared with its original version,
appropriate adjustment of the kernel size is applied to fit the
image size in our experiments. We use cross entropy loss with
Adam optimizer [58] to train the classification network. The
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TABLE II
MODULES OF DIFFERENT SETTINGS

TABLE III
TEST CLASSIFICATION OF DIFFERENT AUGMENTATION SETTINGS

They indicate that our method outperforms other 

approaches on these metrics.

learning rate and number of training epochs are set to be 10−4

and 800, respectively. It should also be noticed that, the images
in training and test sets of classification experiments are all
rotated with respect to their orientation angles. The generation
results possess a certain degree of randomness, since we have the
random noise as input and the model parameters are randomly
initialized. And the test accuracy also fluctuates in different
experiments even though the training set remains the same. Thus,
to eliminate the influence of randomness as much as possible,
we generate five outcomes for each generation setting and train
the A-ConvNets model on each generated results for five times.
The average accuracy of 25 classification experiments is used
for evaluation. The results of 15° and 17° depression angles
are listed in Table III. We use baseline to denote the accuracy
when training only on the five real SAR images per category.
AC denotes the scenario where only the azimuth angles and
the category labels serve as input of U-Net. O2S stands for the
result augmented by the data generated by the O2S translation
method, and O2S+PD means the additional PD loss is applied in
the augmentation data generation. In the parentheses after PD,
S means the simulated SAR images are used to guide the PD
and O means that the optical images are used instead. For both
O2S+PD situations, λdist is set to be 2. The modules included by
each generation configuration are listed in Table II.

It can be seen from Table III that the classification accuracy
on the test set is improved by data augmentation with images
generated by both O2S and O2S+PD(S). Augmentation by O2S

elevate the accuracy by 0.0481 and 0.0227 for data of 15° and
17° depression angles, respectively. And PD(S) leads to another
0.0223 and 0.0178 improvement. The improvement obtained by
O2S is consistent with [18], which involves image translation
from semantic maps to SAR images. After being converted
to grayscale images, the optical images given by rendering
contains certain degree of semantic information. The further
improvement achieved by O2S+PD(S) suggests the effective-
ness of proposed PD loss. However, if we change the source
domain from simulation images to optical images, the accuracy
declines significantly and is even smaller than results without
any augmentation.

We also attempt to compare our method with the adversarial
autoencoder (AAE) approach in [18] and attribute-guided gen-
erative adversarial network (AGGAN) in [19]. Since the code
of both these two methods is not publicly available, we have
done our best to carry out the implementation by ourselves
according to the description of the algorithms in the articles.
The semantic maps used as input of AAE in [18] are also not
accessible for us. Thus, we utilize the rendered optical images
in our approach instead. In the original article of the AGGAN
approach [19], real SAR images of 7 types of targets in MSTAR
are used as source domain to assist the 3-way 5-shot generation
task. Since the number of categories under consideration is
doubled in our scenario, there are not enough real SAR images
in MSTAR that can be applied as source domain. Therefore, we
use the same simulated SAR images in our method to aid the
AGGAN model. The results of augmentation experiments show
that our model outperforms the AAE and AGGAN approaches,
at least when using our rendered optical images and simulation
data.

D. Enhanced Diversity

To prove that the PD regularized by simulation images indeed
enhance the diversity of generated results, we list the similarity
variations of distinct image sets for all six target categories of
both 15° and 17° depression angles in Fig. 5. It should be noticed
that the curves of generated images are given by average of
five experiments as the accuracy shown in Table III. In general,
the range of variation of simulated SAR is larger than that
of real SAR images. And the mutual difference between the
optical images is relatively smaller. For the variation of images
generated by the O2S method (dark blue line in Fig. 5), it can be
seen that, the general tendency is close to the variation of real
SAR, even though only five real samples are used to train the
model. However, there still exists nonnegligible difference. The
major one is that the similarity does not drop as fast as the real
SAR. This problem is mitigated by the introduction of PD loss.
Notice the result of images obtained by O2S+PD(S) (red line in
Fig. 5), for most of the concerned categories, the variation drops
faster with the help of simulated SAR. For the images generated
PD(O) (violet line in Fig. 5), their variation is clearly closer to
the variation of optical images, and thus, largely deviates from
the real SAR. This may explain the degradation of classification
accuracy augmented by results of O2S+PD(O). On all the orien-
tation angles where there exists real SAR images, the absolute
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Fig. 5. Illustration of similarity variations of different image sets with respect to orientation angle. The upper part is for images with depression angle equaling
15° and the lower part is for 17°. AC indicates the situation that only azimuth angles and category labels are used as input of U-Net. O2S means the images generated
by the O2S translation method. O2S+PD stands for the samples generated by O2S enhanced by pairwise distance loss. S and O in the parentheses indicates that
the distance is calculated with help of simulation SAR and optical images, respectively.

difference between the similarity curves of distinct generated
image sets and the line of real SAR is calculated. And the mean
absolute differences are listed in the third column of Table IV,
where “Curve Diff” represents the differences of curves. It can
be seen that, the diversity variation tendency of O2S+PD(S) is
the closest one to the real SAR and the O2S+PD(O) is the most
unlike one. This corresponds to the augmentation results shown
in Table III, which means that the image set with most similar
diversity variation improves the classification accuracy the most.
Compare with the O2S method, the O2S+PD(S) reduces the
mean difference from 0.0571 to 0.0563 for the depression angle
of 15° and it lowers the difference from 0.0452 to 0.0402 for
17°, indicating that the PD loss improves the diversity behavior
once appropriate source domain is selected. The difference of

similarity curves for AAE and AGGAN in Table IV also shows
that our method is better than them.

E. Generated Samples

To better illustrate the effectiveness of our method, we present
several samples of different generation settings for all the equip-
ment categories. Since the average image of different exper-
iments may have some unexpected dissimilarity compare with
the real SAR image, the results of O2S+PD(S) with best average
augmentation effect of depression angle 15° and 17° are shown
in Figs. 6 and 7, respectively. In each subfigure, the upper row
is the real SAR and the lower row is the generated ones. From
left to right, the azimuth angle change from 72° to 144° with
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Fig. 6. Samples of real SAR and images generated by O2S+PD(S) with depression angle 15° of (a) 2S1, (b) BRDM2, (c) BTR60, (d) T62, (e) T72A07, and
(f) ZSU234. In each panel, the upper row is real SAR and lower row is generated images. Those with red frame are training samples.
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Fig. 7. Samples of real SAR and images generated by O2S+PD(S) with depression angle 17° of (a) 2S1, (b) BRDM2, (c) BTR60, (d) T62, (e) T72A07, and
(f) ZSU234. In each panel, the upper row is real SAR and lower row is generated images. Those with red frames are training samples.
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TABLE IV
MEAN ABSOLUTE DIFFERENCES OF SIMILARITY CURVES AND SIMILARITY BETWEEN GENERATED AND REAL IMAGES

They indicate that our method outperforms other approaches on these metrics.

12° as step. The real SAR images in red boxes are the training
samples. By comparing with the real ones, it can be seen that the
bright target area and dark shadow region of generated images
have high similarity with the real ones. The rotation of shadow
and illuminated area with respect to the azimuth angle is clearly
displayed in the generated images. This indicates that our model
is able to interpolate the few training images along the azimuth
angle.

We also introduce gradient-based structural similarity
(GSSIM) [59] and multiscale structural similarity (MS-
SSIM) [60] as indexes to quantitatively evaluate the generated
images. These two indexes are both improved version of widely
used structural similarity (SSIM) [61]. Using a and b to denote
two images, the traditional SSIM index of a and b consists of
three parts: luminance comparison l(a, b), contrast comparison
c(a, b), and structure comparison s(a, b). SSIM is defined as

SSIM(a, b) = [l(a, b)]α [c(a, b)]β [s(a, b)]γ (19)

where α, β, and γ are parameters to adjust the relative impor-
tance of each comparison and are all set to be 1 here. To improve
SSIM, GSSIM proposed to calculate contrast and structure
comparisons based on the gradient maps of images a and b
given by the Sobel operator. MS-SSIM first obtains sequences of
images with iteratively application of a low-pass filter and down-
sampling of the filtered images. It provides more flexibility by
using a combination of SSIM indexes of corresponding images
in the sequences as the final criterion. We calculate the indexes
of the generated images with the orientation angles not included
in the training set. The output of five different experiments
used to augment the classification network and to compute
the similarity curves are all taken into consideration and the
results listed in Table IV are average values of five experiments.
GSSIM_1 and MS-SSIM_1 are performed for the whole image
with size of 64× 64. GSSIM_2 and MS-SSIM_2 are calculated
with only the center target region taken into consideration to
relatively reduce the influence of the background region. For
getting the pixel range of the target zone, we first select the
strong scattering points by the pixel value, and then, regard the
minimum bounding rectangle of these points as the target zone.
Several examples of the target zone are shown in Fig. 8.

Fig. 8. Several examples of the target zone selected in the real SAR images.
The target zone are boxed with green frames.

The mean similarity indexes performed on the generated
images of different settings shows that the results enhanced with
PD of simulated SAR images are the most similar to the real
ones. It also indicates that our model is able to generate more
similar images than AAE and AGGAN. This corresponds to
the aforementioned results of augmentation experiments. The
improvement of similarity indexes is on the general degree,
and therefore, hard to discover for human vision. However, we
would like to list several examples of generated images in Fig. 9
and try to give some possible aspects that are enhanced by the
introduction of rendered optical images and the PD loss with
simulated data. Generally speaking, the target area of images
given by O2S+PD(O) is more blurred than others, which may
cause the too flat similarity curve of optical images. Since the
target zone facing the radar are crucial for training classification
networks [62], the unclear details of turrets probably results
in the negative results of augmentation experiments. Compare
results of AC in columns (a) and (c) with the other configurations,
we can observe that the orientation and range of shadow area of
AC is more dissimilar to the real ones. One potential explanation
for this discrepancy is that the neural network finds it more
challenging to learn the shape of shadow area solely from
azimuth angle and category label, which lack the details provided
by optical images. As to the images generated by O2S+PD(S),
we can observe relatively darker shadow zone than the output
of O2S in columns (a), (b), (d), and (e). The stronger contrast of
shadow area may contributes to the faster decrease of similarity
curves like the real SAR images. The target zone of the result
by O2S+PD(S) in column (c) fades gradually into the shadow
area, however the boundaries between target and shadow in the
other two images are too sharp. The strong points of O2S in (f)
is also slightly too strong compared with O2S+PD(S), which
makes the latter the more similar one.
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Fig. 9. Several generated samples to explain which part is possibly improved by the introduction of rendered optical images and PD loss on simulated data. A
different color map is chosen to make the pixels of the shadow area more visible.

V. DISCUSSION

We would like to give an analysis of the ablation study
in this section to elucidate which component is able to bring
improvement in the proposed model. As mentioned in Section I,
the primary components that play a pivotal role in our proposed
model are the rendered optical images and the PD loss with
simulated data. By comparing the performances between the AC
and O2S configurations, we can illustrate the effect of utilizing
rendered images as input for the U-Net. The data augmentation
experiments in Table III and the similarity indexes in Table IV
both reveal the improvement of O2S compared with AC. This
is quite intuitive since optical images introduce much more
information such as the geometric size of the military targets
and the shape of shadow region. In a sense, the optical image
serves as a semantic map akin to the approach in [18]. Similarly,
the efficiency of PD loss can be illustrated by the comparison
between O2S and O2S+PD(S). The improvement in diversity is
evident when observing Fig. 5, since the curve of O2S+PD(S)
(red line) exhibits closer behavior to the real SAR (orange line)
than O2S (dark blue line). This indicates that direct constraint
on the mutual relationship of the output images with simulated
SAR images is capable of enhancing the diversity of genera-
tion. Notably, O2S+PD(O) performs worse than the baseline,
indicating that the domain used to guide the mutual similarity
of generation has to possess alike characteristics to the real
SAR images. It also should be noticed that, the improvement
on similarity indexes exhibits a nonlinear relationship with the

increase in classification accuracy. A minor improvement of the
former can result in a relatively large rise of the latter.

VI. CONCLUSION

In this article, we proposed an DL model for FSIG of SAR.
The basic part of our approach is a pix2pix network, a model
intensively used in I2I tasks that attempt to convert an optical
image given by rendering to an SAR image. The application of
optical images avoids the difficult availability of semantic maps
used in previous works and introduces more physics information
than the simple target category labels and angle value of orien-
tation. To mitigate the lack of diversity that frequently occurs in
FSIG tasks, we propose a PD loss to regularize the similarity be-
havior of generated SAR images with corresponding simulated
SAR images. Experiments on MSTAR dataset indicates that the
images generated by our model is capable of augmenting the
classification accuracy of an all-convolution network. The basic
O2S part induce 4.81% and 2.27% for the tasks of 15° and 17°
depression angles, respectively. The introduction of PD loss will
bring another 2.23% and 1.78% improvement. As it is shown
in the similarity curves of different image sets, the similarity
behavior can also be adjust closer to the real SAR images with
the help of PD loss. Under certain condition, the optical images
given by rendering is also not easily obtainable since it is in need
of geometric models. We intend to replace them with real photo
or appropriately cropped remote sensing images in the future
works.
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