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Abstract—Landslide inventory is significant for landslide disas-
ter reduction. To construct the landslide inventory, deep learning
has received growing attention to detect landslides from satellite im-
ages. Among various deep learning algorithms, you-only-look-once
(YOLO) has a strong ability to detect objects efficiently and has
been widely used in landslide extraction. Despite its efficiency, there
is no general rule to select the backbone and attention mechanism
for YOLO. The selection of these two modules depends on specific
application needs. Meanwhile, YOLO output is a series of anchor
boxes, not accurate landslide boundaries. A single bounding box
may contain many landslides and cannot extract individual land-
slides, limiting the YOLO applications in constructing landslide
inventory. To address these issues, this article presents a lightweight
attention-guided YOLO with level set layer (LA-YOLO-LLL) for
landslide detection from optical satellite images. First, we intro-
duced the MobileNetv3 to replace the original backbone of YOLO
to simultaneously reduce the parameter complexity and improve
the model transferability. Then, we presented a light pyramid
features reuse fusion attention mechanism to improve landslide
detection performance. Finally, we integrated the level set layer
into YOLO head to produce accurate landslide boundaries. This
article validated the accuracy and transferability of the presented
method in two study areas (Bijie and Taiwan) with similar geo-
environmental conditions. Experimental results show that the pre-
sented LA-YOLO-LLL model outperformed traditional YOLO in
landslide detection. Findings in this article are valuable for land-
slide inventory construction, land use planning and risk control.

Index Terms—Attention mechanism, landslide boundary,
landslide inventory, object detection, the level set layer, you-only-
look-once (YOLO).
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I. INTRODUCTION

LANDSLIDE, mainly triggered by rainfall and earthquake,
is a common natural hazard that seriously threatens human

life and causes significant social and economy losses [1]. Recent
studies have shown that climate change and human activities
are causing more landslides in mountain regions, such as high
mountain Asia [2], [3], [4]. To investigate the type and spatial
distribution of landslides, to map the landslide susceptibility and
risk, and to study the landscape evolution caused by landslides,
it is fundamental to construct a comprehensive landslide inven-
tory. Landslide inventory records key information of landslides,
such as location and size [4], [5], [6]. Timely establishing and
updating the landslide inventory is essential for a wide range
of applications (e.g., risk control and landslide susceptibility
mapping) in landslide-prone areas [7], [8], [9].

There are many methods to establish a landslide inventory,
including field investigation and satellite image analysis [6].
Field investigation can establish a landslide inventory with high
accuracy, but it is a time-consuming and laborious process, and
can even be a potentially dangerous task for surveyors [4],
[6]. With the advent of modern remote sensing technologies,
extracting landslides from satellite images has received growing
attention. There are various remote sensing techniques that can
be employed to detect landslides from satellite imagery. These
techniques include visual interpretation and computational im-
age analysis. Visual interpretation manually extracts landslides
from satellite images. Despite its accuracy, it heavily relies
on the professionalism of experts and is inefficient, limiting
its applications in a large area. Computational image analysis
includes traditional image processing technologies, machine
learning, and deep learning [10]. Traditional image processing
technologies have been developed since the early days of digital
imaging, and rely on a variety of mathematical operations to
manipulate pixel values within an image. These techniques
include change detection, feature extraction, classification, and
object-based image analysis, and have been widely used in land-
slide detection. In recent years, machine learning has emerged as
a powerful tool for image processing, particularly in the area of
object detection and recognition. Machine learning algorithms
use statistical models to learn patterns and relationships within
a set of training data, and then apply these models to new data to
make predictions or classifications. Common machine learning
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algorithms used in landslide detection include support vector
machines (SVMs), random forests (RFs), and artificial neural
networks (ANNs). For instance, Hu et al. [10] used spectrum,
geomorphology and normalized vegetation index to train SVM
to extract seismic landslides. Hu et al. [11] compared multiple
machine learning algorithms for landslide detection. They found
that the RF achieved better performance than SVM and ANN.
Li et al. [12] proposed a change detection-based Markov ran-
dom field method for landslide detection. Piralilou et al. [13]
combined the object-based image analysis (OBIA) with three
kinds of machine learning algorithm to detect landslide, and
they found that the OBIA reduced the image noise influence
and improved the landslide detection accuracy. Meghanadh et
al. [14] used the RF to detect landslide, and result showed
that the RF achieved a satisfactory performance in terms of
landslide detection. Machine learning typically requires feature
engineering, which is the process of selecting and extracting
relevant features from raw data for use as input to the machine
learning algorithm. Feature engineering can be time-consuming
and requires domain knowledge. In addition, machine learning
models may struggle with complex and highly variable datasets,
as they require a large number of representative features to be
manually extracted from the data. These may limit the ability of
machine learning to generalize to new problems.

Deep learning, a subset of machine learning, has experienced
rapid development in the era of big data. It consists of multi-
ple layers of interconnected artificial neurons that are trained
using large amounts of data to automatically learn increasingly
complex representations of the input data. Convolutional neural
networks (CNNs) are a popular type of deep learning model
used in image processing, and have been applied successfully to
a wide range of tasks including object detection, segmentation,
and image classification. Besides, the attention mechanism,
originated from human visual system, has the ability to boost
the performance of deep learning algorithms. The development
of deep learning has led to significant advances in detecting
landslides from satellite images [15]. Deep learning algorithms
are widely used for object detection in computer vision. There
are three commonly used deep learning algorithms for object
detection, including classification, semantic segmentation, and
object detection.

1) Classification algorithms are used to classify images into
different categories to detect objects. For instance, Ji et al.
[16] designed an attention-enhanced CNN to detect land-
slides in Bijie, China, and experimental results showed
that the integration of the designed attention block and
ResNet50 achieved a satisfactory landslide recognition
performance Bui et al. [17] presented an classification
model of combining CNN and image transform to de-
tect landslide in satellite images, the classification results
showed that the accuracy can reach 96%. Liu et al. [18]
used depth, residual and dense neural networks for training
classification models to detect landslides, the experiments
showed that three algorithms have higher accuracy. Cai
et al. [19] used DenseNet network to detect landslide and
validated DenseNet has better detection performance than
traditional neural networks and machine learning .Despite

its accuracy, it has limited use in object detection as it can
only identify the presence or absence of an object in an
image, but cannot locate its position or shape.

2) Semantic segmentation algorithms identify the presence,
location, and shape of objects in an image. The advantages
of semantic segmentation include its high accuracy, its
ability to differentiate between different objects that are
close together, and its ability to detect objects of different
shapes and sizes. Many scholars have presented semantic
segmentation algorithms for landslide detection. For in-
stance, Braagnolod et al. [20] compiled Nepal landslides
from Landsat-8 images to train the U-net to detect land-
slides at the pixel level. Fang et al. [21] proposed an atten-
tion boosted U-Net to automatically delineate historical
landslides from LiDAR dataset, and they validated the
joint use effectiveness of LiDAR and deep learning in
landslide detection. Zhou et al. [22] proposed a weakly
supervised approach which combined CAM and cycle-
GAN to reduce the workload of making segmentation
labels and realize higher accuracy detection of landslide.
Amankwah et al. [23] proposed attention boost SNU-Net
segmentation algorithm to detect landslide from optical
satellite images and achieve better performances than orig-
inal U-Net. However, it can be computationally expensive
and requires a large dataset for training. Lu et al. [24]
proposed a dual U-Net segmentation model to extract
landslides using Sentinel-2 and DEM data. Chen et al. [25]
combined spectral and context information of landslide,
boosting the performance of original U-Net. Liu et al. [26]
proposed a feature-fusion based segmentation network to
construct landslide inventory from high resolution satellite
imagery and DEM data.

3) Object detection algorithms can identify the presence,
location, and shape of objects in an image. This algorithm
is more complex than classification as it requires identi-
fying the bounding box around each object in an image.
There are many object detection algorithms in the field of
landslide detection. For example, Ju et al. [27] established
6111 landslide samples in Gansu, China by the visual
interpretation of Google Earth images to train RetinaNet,
YOLOv3 and Fast R-CNN. They found that fast R-CNN
achieved the highest performance. Liu et al. [28] proposed
an attention-boosted mask-R CNN to detect landslide from
InSAR deformation images. Tanatipuknon et al. [29] com-
bined the faster-R-CNN and classification decision tree for
training landslide detection model, the evaluation results
showed that the combination method achieved a superior
performance. Yang et al. [30] proposed a background-
enhancement mask R-CNN method to detect landslide,
the result showed that the background-enhancement sig-
nificantly improved model performance. The advantages
of object detection include its ability to detect multiple
objects in an image, its accuracy, and its ability to iden-
tify objects of different shapes and sizes. Liu et al. [31]
integrated YOLOv7 and SENet attention block to detect
landslide while using varifocal loss function, experimental
results showed that the improved YOLOv7 has strong
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performance for landslide detection. Particularly, among
various object detection algorithms, YOLO is a popular
choice for object detection in a wide range of applications,
due to its speed, accuracy, simplicity, and flexibility. By
contrast to classification and semantic segmentation based
object detection algorithms, YOLO is very fast, capable
of processing images in real-time, which makes it ideal
for real-time applications. Meanwhile, YOLO can detect
objects of different shapes and sizes, and it can also handle
multiple objects in an image. Despite its achievements in
detection speed and accuracy, there is no general rule to
select the backbone and attention mechanism for YOLO.
The selection of these modules depends on specific appli-
cation needs, such as landslide detection in this article.
Meanwhile, the output of YOLO is a series of anchor
boxes, not accurate landslide boundaries, which are not
suitable for constructing landslide inventory.

Based on the aforementioned analysis, this article aims to
propose a lightweight attention-guided YOLO with level set
layer (LA-YOLO-LLL) for landslide detection. We first conduct
a comparative study to find a suitable backbone for YOLO for the
landslide detection task. After that, we designed a light-pyramid
feature reuse fusion (LPFRF) attention mechanism to further
improve landslide detection accuracy. Finally, we integrated the
level set layer into YOLO head to extract accurate landslide
boundaries.

The rest of this article is organized as follows. In Section II, the
dataset used in this article is presented. Section III introduces the
proposed method, LA-YOLO-LLL, and provides details of its
design. The experimental results are presented and discussed in
Section IV. Finally, Section V concludes this article and suggest
future research directions.

II. DATASET USED IN THIS ARTICLE

Two typical landslide prone regions (i.e., Bijie and Taiwan)
were selected as study areas, see Fig. 1. This article trained
and tested the performance of the presented method on Bijie
case, and the transferability of the presented method was tested
on Taiwan case. Bijie is located in the northwest of Guizhou
Province, China. The terrain of this area is mainly plateau
and mountain with an average elevation of 1400 m. Red soil
is the main soil type in Bijie that is susceptible to landslide
during heavy rain, particularly in subtropical monsoon. Ji et
al. [16] published the landslide dataset of Bijie that can be
downloaded.

The sample image size varies from 128× 128 to 1024× 1024,
and each image has 3 spectral channels (i.e., R, G, and B channel)
with a spatial resolution of 0.8 m. The dataset contains 770
landslide images and 2100 nonlandslide images. To balance the
sample sizes of landslide and nonlandslide images, we used the
data augmentation to increase the landslide sample size. In the
experiment, we divide the dataset into 80% for training and 20%
for testing. Within the training set, only 10% was allocated for
validation purposes.

Taiwan locates in the southeast of China, and is an island
with an area of 36 000 km2. The region is one of the most

Fig. 1. Locations of the study areas.

Fig. 2. Upper panel and bottom panel show the original Sentinel-2 image and
the image after cloud removal over the study area, respectively.

landslide-prone areas in the world due to many factors, such
as heavy rains, steep topography, weak geological formations,
strong earthquakes, loose soils, human activities [32], [33]. We
used Google Earth Engine to download Sentinel-2 images of Tai-
wan from January 2022 to January 2023. The data were prepro-
cessed by radiometric calibration and atmospheric correction.
We produced a cloud-free Sentinel-2 image mosaic followed the
rules presented by [34], see Fig. 2. After that, we produced 630
landslides across Taiwan (see Fig. 3) by the visual interpretation
from the Sentinel-2 mosaic image. These landslides were taken
as the ground truth to validate the transferability of the presented
method.

The landslide characteristics in Bijie and Taiwan are similar
since they are both triggered by intensive rain in vegetated areas.
In optical satellite images, the landslides in these two areas
exhibit similar signatures.
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Fig. 3. Ground truth dataset of landslides in Taiwan obtained by the visual
interpretation of Sentinel-2 satellite images.

III. METHODOLOGY

The presented method mainly consists of three steps. We
firstly conduct a comparative study to select an optimal feature
extraction backbone from multiple CNNs. Then, we present a
new attention mechanism and include it to the end of backbone
of YOLO. Lastly, we combine the YOLO and level set to extract
precise landslide boundary. Fig. 4 shows the framework of the
presented LA-YOLO-LLL-YOLO model.

A. Overview of Original YOLOv4

YOLO is a typical one-stage object detection algorithm that
significantly focuses on accelerating the computation speed to
realize real time object detection [35], [36], [37], [38]. Up to
now, YOLO has updated eight versions [35], [36], [39], [40],
[41], [42]. Among these versions, YOLOv4 has high detection
accuracy and efficiency [36], [38], [43]. Many object detection
algorithms (i.e., YOLOv3 and RetinaNet) need to fix the feature
map size that leads to expensive computation and inflexibility.
By contrast, the feature map size of YOLOv4 is flexible. When
objects of interest appear in the grid, YOLOv4 segments the
image into regular grids and generates multiple anchor boxes
around objects [36], [43], [44]. Each anchor box has four param-
eters: the center coordinate; height and width; confidence; and
prediction category of the anchor box. YOLOv4 may produce
many similar and spatially overlapped anchor boxes surrounding
the same object (i.e., landslide in this article). The best bounding
box can be selected by the non-maximum suppression algorithm
[45]. The structure of YOLOv4 consists of three main parts:
backbone, neck and head, see Fig. 5. The backbone (i.e., gen-
erating a feature pyramid) aims to learn features on each input
image. The original backbone of YOLOv4 is CSPDarkNet53.
The neck includes the spatial pyramid pooling (SPP) [46] and the

path aggregation network [47] that will boost receptive field and
realize information fusion of multiscale feature maps. The head
consists of two convolution layers to reduce the information loss
and output the prediction results.

B. Structure of the Presented Method

Despite the efficiency of YOLOv4, it suffers from the fol-
lowing drawbacks to hinder the model performance in landslide
detection.

1) Original backbone of YOLOv4 (i.e., CSPDarkNet53) has
heavy structure that leads to expensive computation cost
when the number of anchor boxes and categories is in-
creasing.

2) Although the SPP module can compress feature and boost
the receptive field, the pooling function will lose feature
information to some extent.

3) YOLOv4 is primarily designed for object detection using a
series of bounding boxes. However, the landslide bound-
ary is irregular, which cannot be precisely described by
bounding boxes.

To tackle these issues, this article designs a new method called
LA-YOLO-LLL (see Fig. 6) to improve the YOLOv4 perfor-
mance in landslide detection. We, first, conduct a comparative
study to find an optimal backbone employed to improve the
accuracy as well as the transferability. After that, this article
designs a new attention mechanism to enhance the feature ex-
traction ability of YOLOv4 while mitigates information loss due
to SPP. Finally, we integrate the YOLOv4 and level set to extract
accurate landslide boundary, other than bounding box generated
by YOLOv4.

C. Backbone of the Presented Method

The backbone network is an essential component of LA-
YOLO-LLL. It is responsible for extracting high-level features
from input images, which are then used by subsequent layers of
the model for object detection. The choice of backbone has a
significant impact on the landslide detection accuracy of the
presented method. However, there is no single, general rule
for selecting a backbone that will work for all applications,
such as the landslide detection in this article. The choice of
backbone depends on several factors, including the specific re-
quirements of the task, the size and complexity of the dataset, and
the compatibility with other components of LA-YOLO-LLL.
Original backbone of YOLOv4 (CSPDarkNet53) is a complex
network [43]. While complex networks have higher represen-
tation power and detection performance, lightweight backbone
networks generally exhibit better transferability compared to
complex ones. Lightweight backbone networks are designed
to maintain low computational and storage requirements while
effectively learning and representing target features in new
tasks [44]. This makes them suitable for scenarios with limited
resources or when deploying on mobile or edge devices. They
strike a balance between performance and efficiency, allowing
for efficient adaptation to new detection tasks. Meanwhile, com-
pared to other object detection scenarios, landslide detection
scenes are relatively simple.
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Fig. 4. Flowchart of the presented LA-YOLO-LLL model.

Fig. 5. Network structure of YOLOv4.
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Fig. 6. Structure of the presented method.

Taking all these factors into consideration, MobileNetv3 is
introduced as the backbone network in this article. MobileNetv3
is a deep neural network architecture that was developed by
Google Research [48]. It is designed to be more efficient than its
predecessors, MobileNetv1 and MobileNetv2, while maintain-
ing similar accuracy. MobileNetv3 employs several techniques
to reduce the computational cost of the network, such as a
streamlined architecture, improved activation functions, and a
more efficient implementation of depthwise convolutions. Mo-
bileNetv3 has achieved state-of-the-art performance in various
image-related tasks and is widely used in mobile and embedded
systems. The detail introduction of MobileNetV3 can refer
to [48].

D. Light Pyramid Features Reuse Fusion Mechanism

Attention mechanism is a typical method to improve the per-
formance of deep learning algorithms [49], [50]. The attention
mechanism learns the weights according to the loss function
and then determines the attention features of the network based
on the feature map weight. Most attention blocks use a fully
connected layer to reduce the output feature map dimension.
Despite its improvement in the training accuracy, it results in
information loss and affects detection performance. Although
the SPP can compress feature map and boost receptive field
to reduce the computation cost, it leads to information loss
to some extent. To tackle these issues, this article designed a
light pyramid features reuse fusion mechanism (LPFRF) that
reuses feature information loss from the dimensions of semantic
and spatial, see Fig. 7. It can be seen that feature maps of
different scales are obtained after processing by the backbone
of the presented LA-YOLO-LLL. To improve the accuracy and
generalization of the landslide detection, the LPFRF constructs
two 1 × 1 global average pooling and a 3 × 3 global max pooling
to enhance multiscale receptive field. In the spatial attention
mechanism, the convolutional window size is 3 × 3 and 7 × 7,
which can extract features from different spatial scales.

The LPFRF module consists of two submodules: the channel
attention submodule and the spatial attention submodule. In
the channel attention sub-module, the input feature map F is
passed through global average pooling and global max pooling
operations with a window size 1 × 1 of all channels. The re-
sulting features are then processed using a 1 × 1 convolutional
layer and ReLU activation function, followed by another 3 × 3
convolutional layer with the LuckReLU activation function.
Finally, the output is passed through a 1 × 1 convolutional layer
with a sigmoid activation function to obtain the feature map
after processing by the LPFRF channel attention sub-module.
The mathematical expression for this process is given as, (1)
shown at the bottom of the next page.

After processing by the channel attention module of LPFRF,
the processed feature map F ′ will be subsequently processed
by the spatial attention module of LPFRF. Specifically, F ′ is
processed by the global max pooling and the global average
pooling to obtain two H ×W × 1 feature maps. These two
feature maps will be spliced through the broadcast mechanism
to generate a new feature map. Specifically, the spliced feature
maps are sequentially input into the 3 × 3 convolutional layers,
the ReLU activation function, the 7 × 7 convolutional layer,
and the sigmoid activation function. This process can be imple-
mented as, (2) shown at the bottom of the next page.

The max pooling and average pooling with different sizes
enhance the receptive field of the feature map. This will extract
more detailed semantic information and spatial location infor-
mation from multichannel and multispatial dimensions. This
will reduce the feature information loss caused by the fully
connected layers and the SPP module.

E. Level Set Layer

The output of YOLO consists of a series of bounding boxes
that represent the detected landslides in a satellite image. These
bounding boxes are not necessarily the exact boundaries of the
landslides, but rather rectangles that enclose the detected areas.
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Fig. 7. Structure of the designed LPFRF attention mechanism.

In addition, a single bounding box produced by YOLO may con-
tain multiple landslides and cannot separate them individually.
Although YOLO may produce inaccurate bounding boxes at
times, it provides valuable information for accurately extracting
the boundaries of landslides. Based on this observation, we
incorporate the level set layer into YOLO to extract precise
landslide boundaries.

For an image I in two-dimensional (2-D) space Ω (i.e., Ω ∈
R2), the boundaryC of an open setω ∈ Ω is defined asC = ∂ω.
In the level set layer, the zero-level set φ is generally applied to
represent the boundary C as follows:

∀ (x) ∈ Ω

⎧⎨
⎩
C : {(x) : φ (x) = 0}
∪CI : {(x) : φ (x) > 0}
∪CO : {(x) : φ (x) < 0}

(3)

whereΩ represents the entire spatial domain of an image,x is the
pixel coordinate, ∪CI and ∪CO denote the pixel coordinate sets
inside and outside the zero level curve, respectively. The size of
the landslide is relatively small compared to the entire satellite
image, and using the full spatial domain to evolve the zero level
set would lead to unnecessary increases in computational cost.
To address this issue, this article employed a spatial domain

that is twice the size of the bounding box used in YOLO. The
function φ divides the spatial domain into two parts: region
inside ω (landslide) and region outside ω (non-landslide). The
level set usually begins with an initial level set φ0. Since we use
the bounding box of YOLO as the initial level set, φ0 can be
expressed as

φ0 =

{−1, x ∈ ∪CI

+1, x ∈ ∪CO
. (4)

The level set is updated through gradient descent by mini-
mizing an energy function. This function is defined based on the
difference in image features between the foreground (landslide)
and background (non-landslide), such as color and texture. The
use of shape and regions in level set segmentation can improve
performance. However, when dealing with complex images,
level set segmentation is limited since it only uses low-level
features. In contrast, YOLO has the ability to learn and encode
useful high-level features. Therefore, integrating the level set
layer into YOLO can improve landslide boundary detection
performance by combining the strengths of both methods. The
insertion of the level set layer into YOLO allows for more

Mc(F ) = Sigmoid(f c
1×1(LuckReLU(f c

3×3)ReLU(f c
1×1(AvgPoolc1×1)))))

+ f c
1×1(Luck ReLU(f c

3×3)ReLU(f c
1×1(MaxPoolc3×3)))))

+ f c
1×1(Luck ReLU(f c

3×3)ReLU(f c
1×1(AvgPoolc1×1))))))

= σ(W2(W1)(W0(F
c
avg))) +W2(W1)(W0(F

c
max))) +W2(W1)(W0(F

c
avg)))). (1)

Ms(F ) = σ
(
f7×7

(
f3×3(AvgPool(F ))

)
; (MaxPool)

)
) = σ

(
f7×7

(
f3×3(F s

avg;F
s
max)

))
. (2)
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Fig. 8. Level set layer of the presented method for precise landslide boundary detection. (a) Zero level curves derived from the bounding boxes. (b) Evolution of
the zero level curve. (c) Final landslide boundaries produced by the presented method with the level set layer.

accurate detection of landslides, leveraging both low-level and
high-level features for optimal results.

In the level set, the energy functional typically includes a
regularization term that penalizes high curvature of the level set
function, a term that enforces the signed distance property of
the level set function, and a term that drives the motion of the
level set function towards the boundary of the object of interest.
Considering these three terms, a level set formula φt [48] can
be defined as follows:

φt=δε (φ)

[
μdiv

( ∇φ

|∇φ|
)
−ν−λ1(I−cin)

2+λ2(I−cout)
2

]

(5)
where δε(•) is the Dirac delta function, μ, ν, λ1, andλ2 are free
parameters, div(∇φ/|∇φ|) denotes the mean curvature of zero
level curve, div(•) represents the divergence operator, cin and
cout represent the mean intensities inside and outside the zero
level curve, respectively. In image analysis, the Kronecker delta
function is commonly used as a discrete approximation of the
Dirac delta function, which is a continuous function. However,
the Kronecker delta function can be computationally expensive
to evaluate, especially for large images or high-dimensional data.
Instead of using the exact Kronecker delta function, it is possible
to use approximation techniques that have a similar effect on the
image but are easier to compute. Thus, (5) can be rewritten as

φt=

[
μdiv

( ∇φ

|∇φ|
)
− ν − λ1(I − cin)

2 + λ2(I − cout)
2

]
|∇φ|.

(6)
Previous studies have demonstrated that μdiv(∇φ/|∇φ|) and

ν only marginally affect the level set evolution, but they do
increase the computational cost significantly. To improve the
computational efficiency, the first two terms in (6) can be elim-
inated [52], and we rewrite (6) as

φt =
[
−λ1(I − cin)

2 + λ2(I − cout)
2
]
|∇φ| . (7)

Suppose that the inside and outside region have the same
weights (i.e., λ1 = λ2 = 1) in the level set evolution, we can
simplify (7) to

φt =
[
−(I − cin)

2 + λ2(I − cout)
2
]
|∇φ| = Tf |∇φ| (8)

where Tf = (2I − cin − cout)(cin − cout). When Tf has a wide
range of values or where the level set function is sensitive to
small changes in Tf , (8) may become numerically instable.
To maintain numerical stability of (8), we applied the data
normalization to Tf . Data normalization can also improve the
convergence rate and accuracy of the level set by reducing the
influence of outliers or extreme pixel values. Fig. 8 illustrated
the process of integrating the level set layer into the presented
method for detecting precise landslide boundaries.

IV. EXPERIMENT AND DISCUSSION

This article uses a Windows PC with a NVIDIA GeForce
RTX3090 and an Intel Xeon (R) Gold 6230R CPU to execute
all the experiments. All models share the same training settings,
and are pretrained on the VOC dataset for 300 epochs using the
Adam optimizer with a batch size of 64. The initial learning rate
started from 10−4 with a decreasing rate of 10 after 30 epochs.
We set time-step and Gaussian scale of level set to 15 and 3,
respectively. In the experiment, we divide the dataset into 80%
for training and 20% for testing. Within the training set, 10%
was allocated for validation purposes.

This article assesses model performance from two aspects:
training accuracy and generalization ability. While training ac-
curacy measures how well a model has learned the patterns in
the training data, generalization ability measures how well a
model can generalize these patterns to new, unseen data. Both
metrics are important to evaluate the performance and reliability
of a landslide detection model. Four metrics (precision, recall,
F1-score, and mAP) are used to evaluate training accuracy

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− score =
2× Precision × Recall

Precision + Recall
(11)

mAP =
n∑

i=0

1

n

∫ 1

0

Precision(Recall)d(Recall) (12)
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TABLE I
MODEL PERFORMANCE OF LANDSLIDE EXTRACTION USING YOLOV4 DIFFERENT BACKBONES IN BIJIE

TABLE II
MODEL PERFORMANCE OF LANDSLIDE EXTRACTION USING YOLOV4 DIFFERENT BACKBONES IN TAIWAN

where TP, FP, and FN denote true positive, false positive, and
false negative, respectively.

Generalization ability is evaluated based on user’s accuracy
(UA), producer’s accuracy (PA), overall accuracy (OA), and
Kappa coefficient (κ), which can be computed based on the
confusion matrix

UA =
TP

TP + FP
(13)

PA =
TP

TP + FN
(14)

OA =
TP+ TN

TP + TN+ FP + FN
(15)

κ =
OA − pe
1− pe

(16)

where TN is true negative, and pe =
(TP+FN)×(TP+FP)+(FN+TN)×(TN+FP)

N2 , and N is the element
number of the confusion matrix.

A. Comparison Different Backbones of YOLOv4 for Landslide
Detection

The original backbone network of YOLOv4 is CSPDark-
net53. To select a suitable backbone network for landslide
detection task, this article conducted a comparative study.
We compared CSPDarkNet53, Resnet50 [53], GhostNet [54],
DenseNet121 [55], MobileNetv3 and VGG16 [56] to replace the
original backbone network of YOLOv4. Specially, we compared
the training accuracy and generalization ability of YOLOv4 with
different backbone networks to select the best one. Tables I
and II report the comparison results of YOLOv4 with differ-
ent backbone networks in Bijie and Taiwan. It can be seen

that YOLOv4 with CSPDarkNet53 achieves the lowest train-
ing accuracy on Bijie case while YOLOv4 with VGG16 the
highest training accuracy. The performance of VGG16, Mo-
bileNetV3 and GhostNet are better than the original back-
bone CSPDrakNet53, and the performance of DenseNet121
and ReseNet50 are relatively lower than CSPDrakNet53. From
the viewpoint of the transferability, MobileNetv3, GhostNet,
and VGG16 have the better performance than CSPDrakNet53.
ResNet50 and DenseNet121 have lower performance than CSP-
DrakNet53.

Figs. 9 and 10 illustrate examples of landslide detection using
YOLOv4 with different backbones in the cases of Bijie (used
for model training) and Taiwan (used for model transferability
validation), respectively. It can be seen that YOLOv4 with dif-
ferent backbones on Bijie achieved similar results. Both models
can successfully detect landslides on eight samples, suggesting
that the influence of backbone selection on YOLOv4 training
accuracy is small. However, when applied to detect landslides in
Taiwan, there was a significant difference in performance among
the six backbones. Specifically, YOLOv4 with MobileNetv3
successfully detected seven landslides out of eight examples,
while DenseNet121, ResNet50, and VGG16 detected three land-
slides, and CSPDarkNet53 and GhostNet detected only two
landslides. These findings are consistent with the results given in
Tables I and II, indicating that YOLOv4 with MobileNetv3 has
the highest generalization ability among the six backbones. Be-
sides, comprehensively considering model model size presented
in Table III, MobileNetv3 demonstrates lower complexity.

B. Comparison of Multiple Attention Mechanisms for
Landslide Detection

Table IV gives the performance of landslide detection by
YOLOv4 using different attention mechanisms in Bijie. It
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Fig. 9. Landslide extraction results of Bijie dataset by YOLOv4 using different backbones.

Fig. 10. Landslide extraction results of Taiwan by YOLOv4 using different backbones.
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TABLE III
SIZE OF YOLOV4 WITH SIX BACKBONES

Fig. 11. Overall extraction of Taiwan by YOLOv4 MobileNetv3 under different attention mechanisms.

TABLE IV
MODEL PERFORMANCE OF LANDSLIDE EXTRACTION USING DIFFERENT ATTENTION MECHANISMS IN BIJIE

can be seen that YOLOv4 with LPFRF attention mechanism
achieved the highest performance across all evaluation metrics.
It had the highest precision (95.54%), recall (94.29%), F1-score
(94.91%), and mAP (96.02%). YOLOv4 without any attention
mechanism had the lowest mAP (94.20%) compared to the other
models. This suggests that attention mechanisms can improve
the overall performance of landslide detection by YOLOv4.
YOLOv4 with ECA and CBAM attention mechanisms had sim-
ilar performance, but slightly lower than YOLOv4 with LPFRF
attention. Overall, using attention mechanisms can improve the
YOLOv4 performance for landslide extraction. The LPFRF at-
tention mechanism appears to be the most effective in improving
both precision and recall, resulting in the highest F1-score and
mAP. To test the model transferability, we tested YOLOv4 with
different attention mechanisms in Taiwan. Table V gives the
performance of landslide extraction using different attention
mechanisms in Taiwan. It can be seen that the model using
LPFRF attention mechanism achieved the highest performance

in terms of OA (84.58%). It also had the highest Kappa score
(63.24%), which is a statistical measure of interrater agreement
that takes into account chance agreement. The models using
ECA and CBAM attention mechanisms had similar OA scores
(77.89% and 72.21%, respectively), but the ECA model had a
higher Kappa score (53.83% compared to 44.26%). The model
without any attention mechanism had an OA of 76.74% and a
Kappa score of 50.00%. Thus, using attention mechanisms can
improve the OA of the model for landslide detection. These
results are corresponding to Fig. 11, demonstrating that the
designed LPFRF attention mechanism appears to be the most
effective in improving both OA and interrater agreement.

Table VI gives the parameter size of YOLOv4 with different
backbones. It can be seen that YOLOv4 with no attention mech-
anism has the smallest size of 44.74 MB. The models with ECA
and CBAM attention mechanisms have a slightly larger size
of 48.24 MB and 44.74 MB, respectively. The YOLOv4 model
with LPFRF attention mechanism has a size of 45.64 MB, which
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TABLE V
MODEL PERFORMANCE OF LANDSLIDE EXTRACTION USING DIFFERENT ATTENTION MECHANISMS IN TAIWAN

TABLE VI
SIZE OF YOLOV4 WITH FOUR ATTENTION MECHANISMS

Fig. 12. Visualization of network feature extraction under different attention mechanisms of heat map.

is slightly larger than the model with no attention mechanism.
Overall, the differences in model size between the different
attention mechanisms are relatively small, with the largest model
being only 3.5 MB larger than the smallest model. Thus, the
designed LPFRF significantly increase the YOLOv4 detection
accuracy and the generalization ability with a slight cost of
parameter size increment.

In this article, a heatmap visualization tool [57] was used to
visualize the landslide features extracted by different models
with and without attention mechanisms. This tool allows us
to observe the specific locations where the model is focused.

Results are presented in Fig. 12, which shows that the atten-
tion mechanisms from the control group (e.g., none, ECA, and
CBAM) occasionally focused on nonlandslide areas, rather than
the landslide body itself. On the other hand, the designed LPFRF
attention mechanism focused on the landslide body in all five
scenarios, suggesting its robustness to various background dis-
turbances. Through the joint consideration of training accuracy,
generalization ability, parameter complexity and heatmap visu-
alization, the designed LPFRF attention mechanism effectively
improved the landslide detection performance and demonstrated
strong generalization ability.
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Fig. 13. Landslide detection results of LA-YOLO-LLL without the level set
layer in 12 subareas of Taiwan.

C. Evaluation of the Presented Method

To assess the effectiveness of LA-YOLO-LLL with the level
set layer, this article conducted a comparison between YOLO
with and without the level set layer in detecting landslides in
12 sub-areas of Taiwan, covering a total area of 372.19km2.
Figs. 13 and 14 illustrate the landslide detection results using
YOLO without and with the level set layer, respectively. The
primary difference between the two is that Fig. 13 represents
landslides using bounding boxes, while Fig. 14 represents land-
slides using accurate boundaries. The use of accurate bound-
aries would facilitate the calculation of several critical landslide
parameters, including width, length, and size. In addition, in
Fig. 13, the bounding box may contain multiple landslides [e.g.,
Fig. 13(c)–(i)], while each boundary in Fig. 14 represents only
one landslide. In rare cases, YOLO without the level set layer
may underestimate the landslide area, see Figs. 13(i) and 14(i).

The quantitative comparison results are given in Table VII,
which shows that YOLO with the level set layer detected a sig-
nificantly larger number of landslides (40) compared to YOLO
without the level set layer (16). Moreover, the total area of
detected landslides was much smaller for YOLO with the level
set layer (22.50 km2) than for YOLO without the level set layer
(68.51km2). This indicates that YOLO without the level set

Fig. 14. Landslide detection results of LA-YOLO-LLL with the level set layer
in 12 subareas of Taiwan.

layer detected both landslide and nonlandslide areas, leading to
overestimation of landslide areas. In contrast, the level set layer
integrated into YOLO improved the accuracy of individual land-
slide boundary detection, resulting in an improved performance
in detecting both the number and area of landslides. Thus, our
analysis indicate that the level set layer is an effective approach
to enhance the performance of YOLO in landslide detection.

D. Comparison With Benchmark Landslide Detection
Algorithms

To validate the performance of the presented method, we
compared with two benchmark deep learning based landslide
detection algorithms (U-Net [58], and PSPNet [59]). Fig. 15
shows the landslide detection results of three models in Nantou,
Taiwan. To provide a clearer illustration of the details, only the
extraction results in Nantou are presented, rather than the entire
region of Taiwan. The results demonstrate that the presented
method can extract more landslides accurately compared to U-
Net and PSPNet. Moreover, the false negative and false positive
rates of the presented method are lower than those of U-Net
and PSPNet. However, the presented method also falsely detects
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TABLE VII
COMPARISON OF YOLOV4 WITH AND WITHOUT THE LEVEL SET LAYER

Fig. 15. Landslide detection results of three models in Nantou, Taiwan. (a)–(c) landslide detection results by U-Net, PSPNet, and LA-YOLO-LLL, respectively.
(d) Study area.

terraced fields and estuarine shoal as landslides. This suggests
that we can add negative samples in these soil types to further
improve the performance of the presented method.

Table VIII gives the comparison results of three different
models for landslide detection in Bijie. The proposed method
achieved the highest scores for all four metrics, with a precision
of 95.54%, recall of 94.29%, F1-score of 94.91%, and mAP
of 96.02%. U-Net and PSPNet also performed well, but the
proposed method outperformed both models with a significant
margin. U-Net achieved a precision of 90.42%, recall of 87.58%,
F1-score of 88.98%, and mAP of 93.64%. PSPNet achieved a

precision of 89.52%, recall of 87.33%, F1-score of 88.41%, and
mAP of 93.50%.

To compare the transferability performance, we applied three
models to detect landslides in Taiwan. Table IX and Fig. 13
provide a comparison of three different models for landslide
detection in Taiwan, including U-Net, PSPNet, and the proposed
method. The results demonstrate that the proposed method
achieved the highest OA and Kappa scores of 84.58% and
63.24%, respectively. The U-Net and PSPNet models also
achieved reasonable accuracy, but their performance was lower
than that of the proposed method. Specifically, the U-Net model
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TABLE VIII
COMPARISON WITH TWO EXISTING METHODS OF LANDSLIDE DETECTION IN BIJIE

TABLE IX
COMPARISON WITH TWO EXISTING METHODS OF LANDSLIDE DETECTION IN TAIWAN

TABLE X
COMPARISON OF THE PARAMETER SIZE OF THREE MODELS

achieved an OA of 65.78% and a Kappa score of 35.03%, while
the PSPNet model achieved an OA of 62.59% and a Kappa score
of 26.80%. This suggests that the presented method archives the
best generalization ability among three models. The findings in
Table IX are consistent with Fig. 15.

Table X gives a comparison of the parameter size of three
models (U-Net, PSPNet, and the proposed method) for landslide
detection. The results demonstrate that the proposed method has
a significantly smaller parameter size of 44.74 MB, compared
to U-Net and PSPNet, which have parameter sizes of 167.59
and 178.17 MB, respectively. This suggests that the proposed
method may be more efficient and faster to run, making it a
promising solution for real-time landslide detection applica-
tions. Thus, the proposed method demonstrated superior per-
formance compared to U-Net and PSPNet in terms of detection
accuracy, transferability, and parameter size.

V. DISCUSSION AND CONCLUSION

Within the domain of deep learning-oriented landslide detec-
tion, the performance of the suggested model is subject to var-
ious determinants, such as experimental situations and dataset
disparities. Evaluating model performance under diverse condi-
tions is essential for ensuring adaptability and robustness. Our
experimental findings indicate that, although different scenarios
and datasets can cause performance variations, the suggested
model exhibits considerable resilience. Future research could
benefit from employing a wider range of diverse landslide
image patches from various study areas and multisensor data
sources, as well as considering additional spectral features and
terrain factors for model training to enhance landslide detection
performance [24], [60].

Optimal model performance necessitates careful parameter
selection. Our experiments reveal that the temporal step and
Gaussian kernel scale within the Level Set Layer significantly
affect performance. Configuring these parameters to 15 and 3,
respectively, corresponds to optimal settings for feature extrac-
tion from satellite imagery [12], [52], [61], [62], [63], [64].
With respect to the optimizer and learning rate, the Adam
optimizer with a learning rate ranging from 0.001 to 0.0001
is considered effective [67], [68]. Our research introduces a
dynamic learning rate strategy that enables autonomous adjust-
ment during training within this range, adapting the learning rate
according to model performance and accommodating dataset
variations.

In this article, we proposed a LA-YOLO-LLL for accurate
individual landslide boundary detection from optical satellite
images. Our study revealed that the choice of backbone greatly
influences the accuracy and generalization ability of the land-
slide detection models, and we introduced MobileNetv3 as the
backbone of LA-YOLO-LLL due to its high transferability and
low complexity. In addition, the designed attention mechanism
outperformed benchmark attention mechanisms by focusing on
the landslide body, and thus improved the landslide detection
accuracy. Integration of level set layer into the head of the
presented method proved effective in accurately delineating
the landslide boundary, making it a suitable method for ex-
tracting landslides from optical satellite images. While this
article focused on landslide detection from Sentinel-2 optical
satellite images, small landslides remain a challenge to de-
tect at this spatial resolution. Therefore, joint use of crowd-
sourcing data, including satellite SAR images, aerial pho-
tographs, and social media, would be an interesting research
direction.
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