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BisDeNet: A New Lightweight Deep Learning-Based
Framework for Efficient Landslide Detection
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Abstract—Landslides are catastrophic geological events that can
cause significant damage to properties and result in the loss of
human lives. Deep-learning technology applied to optical remote
sensing images can enable effective landslide-prone area detec-
tion. However, conventional landslide detection (LD) models often
employ complex structural designs to ensure detection accuracy.
The complexity often hampers the detection speed, rendering these
models inadequate for the swift emergency monitoring of land-
slides. To address these problems, we propose a new lightweight
deep-learning-based framework, BisDeNet, for efficient LD. To
improve the efficiency of the proposed BisDeNet, we replaced the
context path in the original BiSeNet with DenseNet due to its
strong feature extraction ability, few required parameters, and
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low model complexity. Two sites with different and representa-
tive landslide developments were selected as the study areas to
verify the performance of our proposed BisDeNet. Additionally,
we introduced landslide causative factors to enhance the sampling
dataset. To evaluate the effectiveness of our approach, we compared
the performance of our BisDeNet with the performances of three
other BiSeNet-based methods and an advanced transformer-based
model data-efficient image transformer (DeiT). Our experimental
results indicate that the F1-scores of BisDeNet in the two study
areas are 0.9006 and 0.8850, which are 26.22% and 1.86% higher
than the scores of BiSeNet, respectively, but slightly lower than that
of the DeiT model. Furthermore, our proposed BisDeNet requires
the fewest number of parameters and the least memory out of the
five models.

Index Terms—Bilateral segmentation network (BiSeNet),
DenseNet, landslide detection (LD), lightweight model, remote
sensing (RS).

I. INTRODUCTION

LANDSLIDES are disasters caused by the sliding of rock
masses or soil along one or more rupture slip surfaces under

gravity. Landslides occur suddenly, are large in quantity, and are
greatly harmful [1]. Landslide detection (LD) is very important
for recording the occurrence range, size, and distribution of land-
slides in disaster areas, studying and investigating the recurrence
and statistics of landslides, determining vulnerability to land-
slides and the danger and risk of landslides occurring, and also
for studying the evolution of topography and geomorphology
[2].

With the development of Earth observation technology and
digital image processing technology, disaster emergency mon-
itoring has been swiftly combined with remote sensing (RS)
technology [3]. RS enables comprehensive surface information
to be rapidly acquired, greatly enhancing the convenience and
efficiency of information gathering. Furthermore, through so-
phisticated processing of remote sensing images (RSIs), vari-
ous environmental parameters, such as vegetation index, water
body index, land use, elevation, slope, aspect, and curvature,
can be accurately derived, providing valuable insights into the
overall ecological landscapes. The availability of abundant RSIs
with high temporal, spatial, and spectral resolutions has revolu-
tionized the field of RS applications [4]. Consequently, image
classification algorithms are being increasingly harnessed for
LD. These algorithms leverage the unique reflectivity variations
and spectrum information found among different objects within
RSIs, enabling areas susceptible to landslides to be accurately
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identified and effectively distinguished from nonlandslide ar-
eas. Combining advanced algorithms with high-quality RSIs
enables enhanced precision and efficacy in landslide monitoring
and assessment. This empowers stakeholders to make informed
decisions, implement targeted mitigation measures, and develop
comprehensive disaster management strategies [5], [6], [7]. In
general, landslide areas exhibit high reflectivity in RSIs, which
allows to distinguish these areas from features with low reflec-
tivity. However, this characteristic can also lead to landslide
areas being confused with bare land, as bare land can also
exhibit high reflectivity. Moreover, the traditional pixel-oriented
methods primarily focus on individual pixel characteristics and
do not account for the spatial structures and relationships with
other attribute features, such as shape and texture. These lim-
itations often cause classification results that suffer from “salt
and pepper” noise, compromising their accuracy and reliability.
These challenges have been commonly addressed by traditional
methods, such as maximum likelihood, support vector machines,
decision trees, and random forest algorithms. These approaches
aim to improve classification by considering additional con-
textual information and multiple attributes, thereby enhancing
the robustness and precision of LD in RSIs [8], [9], [10]. In
recent years, high-resolution sensors have been increasingly
deployed on Earth observation satellites, significantly enriching
the available research data. Consequently, a new approach to
image analysis based on landslide objects has emerged [11].
This method leverages various information from RSIs, including
spectrum, shape, texture, context semantics, and topography, to
extract comprehensive ground object information for analysis
and judgment, ultimately facilitating LD [12]. However, object-
oriented recognition methods typically rely on image segmenta-
tion algorithms, and the segmentation scale has a critical impact
on the recognition results. Often, the segmentation scale is
chosen based on the texture features of the image. Unfortunately,
some existing image segmentation algorithms struggle to handle
complex large-scale RS data, resulting in inefficient LD and
posing challenges for improving performance [13].

In recent years, the rapid advancement of deep-learning (DL)
algorithms has propelled convolutional neural networks (CNNs)
to the forefront as mainstream methods. Compared with tradi-
tional approaches, CNNs exhibit remarkable feature learning
capabilities through convolution operations, surpassing empiri-
cal feature design methods in various image-based tasks, such as
image classification [14], semantic segmentation [15], and target
detection, and yielding significant achievements. However, the
application of CNNs for RS-based LD is still nascent [16], [17],
[18].

In some studies, CNNs have been utilized for RS image
analysis in LD. For instance, in [19], CNNs were employed
to extract features from pre- and postlandslide RSIs, and land-
slide occurrences were determined by calculating the Euclidean
distance between the two feature vectors. In [20], a simple
convolutional network was trained to retrieve landslides from
test images, and a region growth algorithm was applied to extract
discriminant regions, boundaries, and centers of the landslides.
In [21], the impact of the number of convolution layers, size
of convolution kernels, and number of input data channels

on LD were investigated. In these studies, relatively simple
and basic neural network (NN) architectures were primarily
employed. These architectures comprise multiple convolutional
and pooling layers for extracting landslide features, followed
by fully connected layers for LD. However, there is a growing
research trend toward replacing fully connected layers with
1 × 1 convolutional layers and constructing target detection
networks for end-to-end image classification and recognition of
LD. For example, in [22], FCN-PP was proposed by integrating
the pyramid pooling (PP) module with a fully convolutional
network (FCN). This approach effectively incorporated the char-
acteristics of multiple convolutional layers and explored the
contextual information of the images, balancing the broader
acceptance domain and context utilization, thereby improving
the landslide surveying and mapping effectiveness. In [23], a
susceptibility-guided LD model based on FCN was proposed,
incorporating landslide susceptibility as a priori knowledge.
In [24], residual modules were introduced to the U-Net se-
mantic segmentation network, enabling landslides to be rapidly
identified after the Jiuzhaigou earthquake and facilitating swift
responses and decision making. In [25], a lightweight attention
U-Net based on the light detection and ranging data was pro-
posed for automatic detection of historical landslides. In [26],
an attention module was added to UNet++, which used RegNet
instead of convolutional blocks in the encoder to improve the LD
accuracy. In [27] and [28], feature fusion modules (FFMs) were
proposed to realize the fusion of different features to improve the
accuracy of semantic segmentation models, respectively. In [29],
the LandsNet semantic segmentation network was enhanced to
intelligently detect and delineate earthquake-induced landslides
from single-phase RapidEye RSIs. This method exhibited high
accuracy and significant potential for emergency response to nat-
ural disasters. In [30], generative adversarial networks (GANs)
were employed in a twin NN framework, and the GAN-based
Siamese framework was proposed. This framework directly
generated landslide inventory maps without any preprocessing
or postprocessing steps, yielding promising results. In [31], ex-
periments were conducted using RapidEye images and machine
learning models in the Himalayan region of Nepal, with the
U-Net model performing optimally when appropriately sized
patches were selected. Additionally, including digital elevation
model (DEM) data improved the LD performance.

Most of the aforementioned semantic segmentation networks
are U-shaped structures composed of encoders and decoders.
Considering that this network structure greatly reduces the
model training speed, the information lost in the pooling process
cannot always be passed through simple upsampling and fusion
layers for restoration. In [32], a bilateral segmentation network
(BiSeNet) was proposed in 2018. A spatial path (SP) with a
step size of 2 was designed to preserve the spatial position
information, and a semantic path with fast downsampling was
designed to obtain objective receptive fields. A special FFM
was introduced between these two modules to effectively fuse
the feature maps of the two paths, balancing model efficiency
and segmentation accuracy.

With the continuous improvement of computing power, DL
has achieved great success in the computer vision field, and
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Fig. 1. Location of the study areas. (a) Site 1: Zigui county. (b) Site 2: Jiuzhaigou county.

image semantic segmentation methods based on CNNs have
achieved significant development. However, further improving
segmentation algorithm efficiency while maintaining accuracy
is still a major problem in this field. LD typically necessitates
the consideration of both surface details and broader contextual
information. BiSeNet employs a multiscale information fusion
strategy, contributing to a more comprehensive understanding
of surface conditions and enhancing its capability to discern
landslide-prone areas. Given that landslides often present com-
plex shapes and textures, the bilateral convolutional structure of
BiSeNet proves instrumental in capturing these intricate surface
features, thereby improving accuracy in LD. Moreover, due to
its lightweight design, BiSeNet is well suited for operation in
resource-constrained environments, such as embedded systems
and mobile devices, making it more feasible for practical appli-
cations in LD.

To address the above issues, in this article, we develop a
new lightweight-based DL framework, BisDeNet, for efficient
LD. The main contributions of our work can be summarized
as follows: First, we introduce a new lightweight-based DL
framework for efficient LD, BisDeNet, with strong feature
extraction ability, few parameters, and low model complexity;
second, the proposed BisDeNet is applied to LD in two different
landslide-prone areas, improving the LD accuracy and efficiency
of the framework.

The rest of this article is organized as follows. Section II
comprehensively introduces the study areas and overviews the
datasets employed in the experiments. Section III outlines the
experimental steps undertaken to develop the new framework.
Section IV analyzes the experimental results in detail, presenting
both qualitative and quantitative findings. Section V discusses
the model’s complexity, the significance of influencing fac-
tors, the limitations inherent to this study, and future research
prospects. Finally, Section VI concludes this article.

II. STUDY AREA AND DATA

A. Study Area

To verify the performance of the proposed method, two typical
regions with severe landslide disasters were selected for ex-
perimentation: Zigui County in Hubei Province and Jiuzhaigou
County in Sichuan Province, China (see Fig. 1). These two areas
are characterized by diverse environmental backgrounds, com-
plex geological conditions, and active tectonic activity. However,
the causes and development characteristics of landslides differ,
making these areas representative and typical. They are, thus,
sufficient for demonstrating the generalizability of the proposed
method.

1) Site 1—Zigui County: Site 1 is located in Zigui County,
Hubei Province. This site has a latitude range of 30°57’–31°02’
N and a longitude range of 110°33’–110°42’ E, covering a total
area of 135 km2 [see Fig. 1(a)]. This site is in a subtropical
monsoon climate region. Due to the influence of monsoons,
the rainy season in this site occurs from May to September
each year. The majority of annual rainfall, 70% of the total
annual precipitation, is concentrated within these five months.
The climate characteristics of abundant rainfall, high humidity,
and frequent heavy rain make the research area prone to landslide
disasters. The elevation in the area ranges from 80 to 1220 m.
Furthermore, the topography and geomorphological structure of
the research area are quite complex, consisting mainly of moun-
tainous regions with a variety of rock types and highly unstable
geological structures. These unstable geological structures often
lead to various geological hazards, particularly landslide disas-
ters. In addition, the rapid economic development in the research
area in recent years has been accompanied by large-scale human
engineering activities. Activities, such as population migration,
the construction of the Three Gorges Reservoir, deforestation,
and mineral exploitation, have greatly increased the risks of
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slope instability and subsequent landslide disasters. In summary,
due to its unique geographical environment, Site 1 is inevitably
at risk of various geological hazards, especially landslides [11],
[33]. The image size of Site 1 is 616 × 976 pixels with a spatial
resolution of 15 m.

2) Site 2—Jiuzhaigou County: The study area of Site 2 is
located in Jiuzhaigou County, Aba Tibetan, and Qiang Au-
tonomous Prefecture, Sichuan Province, China. As shown in
Fig. 1(b), this site lies in the transitional zone between the west-
ern edge of the Sichuan Basin and the Qinghai–Tibet Plateau,
with an approximate longitude range of 103°43′ E to 103°49′ E
and an approximate latitude range of 33°12′ N to 33°18′ N, en-
compassing a total area of 96 km2. The elevation within this area
varies from 2268 to 4121 m. The elevation gradually increases
from south to north, and the terrain features deep-cut valleys and
significant altitude differences. Site 2 has a complex geological
background, with a widespread distribution of carbonate rocks,
extensive folding and faulting, intense tectonic activity, and sub-
stantial crustal uplift, resulting in various landforms. On August
8, 2017, a magnitude 7.0 earthquake occurred in this region, with
the epicenter near Zhangzha Town in Jiuzhaigou County. The
earthquake was situated near the Minjiang Fault, Tazang Fault,
and Huya Fault at coordinates 33.20° N latitude and 103.82° E
longitude, with a focal depth of 20 km. The earthquake caused
significant life and property losses for the local population and
tourists. Statistics indicated that the earthquake resulted in a
total of 31 deaths or disappearances and 525 injuries. It also
affected nearly 20 000 people, damaged over 70 000 houses,
and triggered over 4800 landslides [34], [35]. The image size of
Site 2 is 733 × 585 pixels with the same spatial resolution as
the Site 1 image.

B. Landslide Inventory

The landslide inventory maps for Site 1 and Site 2 were created
after conducting field surveys and interpreting images using
Google Earth. After the field surveys, 74 landslides covering an
area of 6.82 km2 in Site 1 were mapped, accounting for 5.05% of
the Site 1 area, and 124 landslides covering an area of 6.08 km2

were mapped in Site 2, accounting for 6.33% of the total Site 2
area. The landslides in these two study sites were then digitized
and rasterized using Environmental Systems Research Institute
ArcGIS software (version 10.3.0). The spatial resolution used
for this process was 15 m.

C. Landslide Causative Factors (LCFs)

Predicting the correlation between landslide occurrence and
various LCFs has proven to be challenging due to the complex
nature and evolution of landslides [16], [17], [18], [36], [37],
[38], [39], [40], [41], [42], [43], [44]. In this study, the causes
and distributions of landslides across different study areas,
along with their local topographical features, were accounted
for. Various LCFs were selected to improve landslide feature
learning and enhance the LD accuracy. Based on the previous
studies [45], the following nine LCFs were chosen as input
data: elevation, slope, aspect, curvature, normalized difference
vegetation index (NDVI), modified normalized difference water

TABLE I
DETAILED VALUES OF LCFS IN TWO SITES

index (MNDWI), distance to river (DTR), distance to fault
(DTF), and lithology of the two sites. Four topographic factors,
including elevation, aspect, slope, and curvature, for both sides
were generated from a DEM. The lithology and DTF factors
were derived from the lithology map at a 1:50000 scale for Site
1 and a 1:200000 scale for Site 2. The NDVI and MNDWI maps
were prepared based on Landsat 8 OLI data, with acquisition
dates of 2013/09/15 for Site 1 and 2018/04/09 for Site 2. The
DTR maps for both sites were derived from the topographical
map by buffering the river lines. Table I presents the detailed
information about the LCFs of the two sites.

III. METHODOLOGY

The proposed BisDeNet framework consists of three main
parts, as illustrated in Fig. 2. The first part focuses on data prepro-
cessing and creating the training dataset specifically designed for
BisDeNet. This stage involves optical image processing, sample
annotation, and LCF extraction, generating sample sets through
standardization and cropping operations. The second part of the
framework utilizes the BisDeNet algorithm. This is the first time
that a lightweight BiSeNet has been used to effectively detect
and identify landslides. Finally, model evaluation is conducted
in the third part of the framework. Several evaluation metrics
(EMs) are employed to compare the performance of our pro-
posed BisDeNet framework to the performances of three other
BiSeNet-based methods, including the original BiSeNet [32].

A. Data Preprocessing

The data preprocessing in this study encompassed several
key steps: resampling, image standardization, pixel patch gen-
eration, and data augmentation. The Landsat 8 OLI data and
LCF data of the two study sites were initially cropped based
on selected vector ranges. Given the varying resolutions of
different data types, resampling was performed based on the
bilinear interpolation method to ensure consistent row and col-
umn numbers [46]. Next, all the input data were normalized
based on the Z-score method to facilitate DL network training.
Each channel of the input data was normalized to achieve a
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Fig. 2. Framework of BisDeNet-based LD method.

uniform data distribution with a mean of 0 and a variance of 1.
This normalization can align data distributions across different
dimensions and accelerate model convergence [47]. Finally, the
processed layers were organized into blocks of size m × n × c
and fed into the DL network for training, where m and n denote
the number of rows and columns, respectively, and c represents
the number of channels.

Although DL exhibits significant advantages for landslide-
related research [32], [48], it typically requires many training
samples. However, even representative high-quality training
samples have inherent deficiencies. Furthermore, in natural set-
tings, the ratio of landslide to nonlandslide instances is severely
imbalanced. This issue is particularly pronounced in RS-based
LD [49], [50]. Drawing inspiration from pioneering research in
the field, a data augmentation strategy is employed to generate
additional training samples in this work [51], [52]. To enhance
the proportion of positive samples, such as landslides, landslide
points were randomly selected as seed pixels within the training
area.

B. LCFs Selection

The factor selection process has a crucial impact on the overall
model performance. On the one hand, a significant amount of

noise (such as factors with very low or zero contribution rates
in the dataset) impacts the model’s prediction results, leading
the true landslide characteristics to be inadequately learned.
On the other hand, strong correlations among the factors can
result in data redundancy, reducing the model’s efficiency and
influencing the allocation of feature weights during the learn-
ing process [53]. Therefore, in this study, correlation analysis,
collinearity testing, and importance evaluation were conducted
on the landslide factors before constructing the landslide sample
datasets.

1) Correlation Analysis: The Pearson correlation coefficient
(PCC) was used to characterize the correlations between pair-
wise selected LFCs [54]. The PCC value ranges between −1
and 1. A positive PCC indicates a positive correlation, whereas
a negative PCC indicates a negative correlation. A PCC value
close to 1 or −1 indicates a strong linear relationship, while a
PCC value of 0 implies that no linear relationship exists between
the variables. The PCC is calculated as follows:

PCC =
cov (X,Y )

σXσY

=

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (1)
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Fig. 3. Network structure of the BiSeNet. (a) BiSeNet architecture. (b) FFM.
(c) Attention refinement module (ARM).

where n represents the total number of samples andσX and
↼

X are
the sample standard deviation and sample mean of the samples

Xi, respectively. Similarly, σY and
↼

Y are the sample standard
deviation and sample mean of the samples Yi, respectively.
cov(X,Y ) represents the covariance between the samples Xi

and Yi.
2) Multicollinearity Test: A multicollinearity analysis was

conducted to further evaluate the correlations between LCFs.
Multicollinearity refers to the condition in linear regression
models where explanatory variables are highly or precisely
correlation, leading to distorted or unreliable model estimates
[55]. In this study, SPSS Statistics software was used to compute
the variance inflation factor (VIF) and tolerance (TOL) for each
factor.

The VIF is calculated by

VIF =
1

1−R2
i

. (2)

We defined X = {X,X2, . . . , XN} as an independent vari-
able dataset.R2

i represents the coefficient of determination when
the ith independent variableXi is regressed on all other predictor
variables in the model. TOL, on the other hand, is the reciprocal
of the VIF. Generally, a factor should be removed when its VIF
exceeds 10 or 5.

3) Importance Evaluation: To verify the impact of each LCF
on the model’s performance, we conducted an importance eval-
uation of the nine LCFs in the two study areas before modeling.
In this study, we used the Gini index in the random forest model
to rank the importance of the LCFs [56]. Ultimately, each study
area generated a 1× 9 array, in which each element had a positive
value and the sum of these values was equal to 1. The higher
the value of an element is, the greater the corresponding LCFs
contribution to the model.

C. BiSeNet

BiSeNet has been proven to efficiently extract features, in-
cluding the SP and the contextual path (CP) [32]. The network
structure of BiSeNet is shown in Fig. 3. The SP addresses spatial
information loss in deep networks by capturing more low-level
features. It focuses on low-level information and consists of three

Fig. 4. Network structure of the VGG16.

convolutional layers, each containing a convolutional layer with
a stride of 2. After batch normalization and ReLU nonlinear acti-
vation, the output feature size becomes one-eighth the size of the
input image, and rich spatial detail information is encoded. The
CP module enables the network to obtain a larger receptive field.
In the CP, the attention refinement module (ARM) aggregates
features from different depths and further processes high-level
features. Given features at different levels, the FFM connects the
output features of the SP and CP. The connected features are then
pooled into a feature vector, and a weight vector is calculated
to effectively reweight and combine the features from the SP
and CP. The network used in the CP in BiSeNet is the Xception
model [32].

D. BiSeNet-VGG

The VGG network explores the relationship between the
depth of CNNs and their performance [57]. It exhibits similar
feature extraction capabilities as other networks by reducing the
size of the convolutional kernels and increasing the number of
convolutional layers. The VGG network uses consecutive small
convolutional kernels (3 × 3) and pooling layers to construct a
deep NN. The network depth can reach 16 layers or 19 layers.
It is composed of multiple alternating convolutional layers and
pooling layers, followed by fully connected layers for classi-
fication. In this article, the CP is replaced by VGG16 because
VGG16 is one of the most widely used VGG networks. The
VGG network architecture is shown in Fig. 4.

E. BiSeNet-ResNet

The main feature of ResNet is the introduction of residual
blocks to address vanishing and exploding gradients in deep
CNNs [50]. In a residual block, a shortcut connection allows the
input to be directly connected to the output, enabling the network
to learn residual information and improve feature extraction
and processing. ResNet18 consists of 18 layers with weights,
and it effectively addresses degradation by allowing deep-layer
gradients to flow directly back to shallow layers. Therefore, in
this article, the original semantic path of BiSeNet is replaced
by ResNet18. The ResNet18 network architecture is shown in
Fig. 5.
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Fig. 5. Network structure of the ResNet18.

F. BisDeNet

Fig. 6 illustrates the specific structure of BisDeNet. In Bis-
DeNet, DenseNet constructs a modular network for learning.
The dense block (DB) in DenseNet is primarily used to create
dense connections between the network layers. To maximize the
information flow between all layers, DenseNet connects each
layer with all its preceding layers. The input image first goes
through a standard convolutional layer and then passes through
four DBs with a transition layer (TL) added between each pair
of adjacent DBs.

TL serves two purposes: reducing the output feature di-
mensions of the DB and avoiding excessive feature channel
dimensions caused by concatenation operations. It simultane-
ously downsamples features to feed the next DB for further
feature extraction. Based on this, BisDeNet efficiently extracts
and refines landslide features with fewer parameters and lower
computational costs. First, during backpropagation, each layer
in DenseNet receives gradient signals from all its subsequent
layers, ensuring that effective landslide features are learned as
the network deepens. Second, the dual-branch CP is designed
to obtain deep-level features and focus on the details of effec-
tive samples. By reusing features, DenseNet generates many
landslide features using a small number of filters. In the CP of
the dual-branch network, DenseNet acquires as many effective
features as possible with relatively low computational costs.
This approach reduces the model size while fully aggregating
high-level semantic features.

G. Evaluation Metrics

Six commonly used EMs were selected to quantitatively eval-
uate the performance of the proposed network. These metrics
include the overall accuracy (OA), precision (Pre), recall (Rec),
F1-score (F1), Kappa coefficient (Kappa), and mean intersection
over union (MIoU). These six EMs are defined as follows.

1) OA: Overall accuracy is one of the most common EMs and
is typically defined as the proportion of correctly classified
samples to the total number of samples. The formula for
OA is shown in (3), where true positive (TP) and true nega-
tive (TN) refer to correctly predicted landslide samples and
nonlandslide samples, respectively. False positive (FP)
refers to the cases where the true value is nonlandslide, but
the model incorrectly predicts the sample to be landslide.

False negative (FN) refers to the cases where the true value
is landslide, but the model incorrectly predicts the sample
to be nonlandslide

OA =
TP + TN

TP + FP + FN + TN
. (3)

2) Pre: Precision refers to the proportion of correctly pre-
dicted landslide samples to all samples predicted as land-
slide samples. Pre is calculated as shown in the following
equation:

Pre =
TP

TP + FP
. (4)

3) Rec: Recall refers to the proportion of correctly predicted
landslide samples to all actual landslide samples [see (5)]

Rec =
TP

TP + FN
. (5)

4) F1: The F1-score is the harmonic mean of precision and
recall. A higher F1-score indicates better performance of
the model, and it is calculated as follows:

F1 = 2× Pre × Rec
Pre + Rec

. (6)

5) Kappa: The Kappa coefficient is a comprehensive measure
of classification accuracy that quantitatively evaluates the
consistency between the classification results and the true
labels. When its value is greater than 0.8, it indicates
excellent consistency. The calculation of Kappa is

Kappa =
OA − pe
1− pe

(7)

pe =
(TP+FN) (TP+FP)+(FP+TN) (FN+TN)

n2
.

(8)

6) MIoU: The MIoU is calculated by first computing the
intersection over union for each class in two sets and then
taking their average. In semantic segmentation, these two
sets represent the ground truth and the predicted values.
In this study, the MIoU is calculated as follows:

MIoU =
1

2

(
TP

TP + FN + FP
+

TN
TN + FN + FP

)
. (9)

H. Landslide Dataset Construction and Parameter Setting

In this study, we randomly selected one landslide sample as
the center in each of the two study areas and generated 1500
and 1000 sample patches of size 64 × 64. These patches were
then divided into training data and validation data using a 3:7
ratio, with 30% used for training the DL model to learn landslide
features and 70% used for evaluating the model’s performance.
Finally, the model was tested across the entire region to generate
distribution maps of landslides in both study areas. To ensure
that landslide boundaries were properly identified in the sample
patches, we used a window with a size of 64 × 64 and a step
size of 32. Data blocks of size m × n × c were scanned from
left to right and top to bottom in both study areas. As a result,
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Fig. 6. Structure of the proposed BisDeNet.

TABLE II
COMPUTER HARDWARE INFORMATION

we generated 570 and 390 test sample patches in the two study
areas for LD.

Table II presents the computer hardware utilized for the exper-
iments in this study. The software was based on the Python 3.6
environment and built on the PyCharm 2021 software platform,
and it was run on the Linux-Ubuntu 18.04.05 LTS operating
system. The DL network was constructed using the Keras 2.2.0
artificial intelligence development framework.

The input image size was set to 64 × 64, and the net-
work weights were initialized using random initialization. The
LeakyReLU activation function with α set to 0.01 or 0 was used
after the convolutional layers, and the sigmoid function was
employed by the classifier at the end of the network. Since LD
was treated as a binary classification problem in this study, the
binary cross-entropy function was chosen as the loss function.
To enhance feature extraction, dropout layers were added to
the network, which randomly forgets a certain proportion of
parameters during the training process, simplifying the model
and avoiding vanishing gradients. The Adam optimizer was
chosen for the network, with an initial learning rate usually set

to 0.0001 or 0.001 and the batch size set to 2 for each learning
iteration. The network was trained for 100 epochs, and the loss
value on the validation set was monitored during training. When
the loss value decreased, the ModelCheckpoint function saved
the model. After the model was trained, the test dataset was
input into the saved best-performing model for prediction, and
the model generated the predicted image results.

IV. RESULTS AND ANALYSIS

A. Analysis of LCFs

1) Correlation Analysis of LCFs: Fig. 7(a) presents the vi-
sualization heatmap of the PCC for nine LCFs at Site 1. Darker
colors represent stronger correlations, with positive/negative
PCC values indicating positive/negative correlations. A few
LCFs exhibit weak negative correlations, but most of them
exhibit weak positive correlations. For example, elevation is pos-
itively correlated with slope, NDVI, and DTR, with correlation
coefficients of 0.1225, 0.3929, and 0.5899, respectively. This
suggests that in Site 1, locations closer to the river have lower
elevations, while those farther away have higher elevations, and
higher elevations correspond to steeper slopes and denser vege-
tation. On the other hand, MNDWI is negatively correlated with
elevation and DTR, with correlation coefficients of −0.1801
and −0.183, respectively. This indicates that areas with higher
elevations and greater DTRs have lower soil moisture contents.
Overall, the correlations among these LCFs are not very strong.
All correlation coefficients are below the critical value of 0.7, so
no LCFs are eliminated in Site 1.
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Fig. 7. Spearman correlation coefficients of LCFs. (a) Site 1. (b) Site 2.

TABLE III
MULTICOLLINEARITY TEST RESULTS OF LCFS IN TWO SITES

Fig. 7(b) shows that, at Site 2, the slope is positively corre-
lated with elevation and negatively correlated with NDVI, with
correlation coefficients of 0.4473 and −0.1941, respectively.
This indicates that higher elevations in the region correspond
to steeper slopes and sparser vegetation. Similarly, the DTF is
positively correlated with elevation and negatively correlated
with NDVI, with correlation coefficients of 0.3554 and−0.2322,
respectively. This indicates that areas farther from the fault have
higher elevations and sparser vegetation. Additionally, areas
with higher elevations also have higher soil moisture content.
Since all the correlation coefficients among the LCFs, as shown
in Fig. 5(b), are below the critical value of 0.7, no LCFs are
eliminated in Site 2.

2) Multicollinearity Test of LCFs: Table III presents the VIF
and TOL values of both sites. The TOL values of all LCFs
in both sites are less than 5, so the LCFs have passed the
multicollinearity test and do not need to be removed.

Fig. 8. Importance ranking results of LCFs in two sites.

3) Importance Evaluation of LCFs: The importance ranking
distribution of each LCF in the two sites is shown in Fig. 8. The
DTF factor has the highest importance value at both sites because
it is a triggering factor for landslides, whereas the lithology
and curvature factors have low importance values, possibly due
to their less significant variations. In Site 1, which consists
mainly of rainfall-induced landslides, hydrological factors, such
as DTR and MNDWI, are particularly important. However, the
importance of these hydrological factors is not as pronounced in
Site 2, where earthquake-induced landslides are more common.
Additionally, at Site 1, many landslides are historical and stable,
exhibiting new vegetation growth. As a result, the NDVI factor
plays a minor role in the modeling process. In contrast, Site
2 has limited vegetation restoration activities due to its higher
altitude and sparse vegetation, so the NDVI factor plays a more
significant role in the modeling process. Finally, at both sites,
factors related to terrain, such as elevation, slope, and aspect, are
always crucial in identifying landslides because all landslides
cause surface deformation.
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Fig. 9. Detection results of rainfall-induced landslides using three training datasets. (a) RS. (b) LCFs. (c) RSI-LCFs.

TABLE IV
EMS FOR DIFFERENT TRAINING DATASETS OF BISDENET AT SITE 1

B. Improvement of the LCFs on the Performance of BisDeNet

To explore the impact of LCFs on LD, we employ three
distinct training datasets: RSIs, LCFs, and the combination of
RSIs with LCFs (RSI-LCFs). These datasets are evaluated using
the proposed BisDeNet model.

1) Site 1—Zigui County: Fig. 9(a)–(c) shows the results
of LD at Site 1 using three different training datasets: RSI,
LCFs, and RSI-LCFs. Visual inspection of the results reveals
that the detection performance of Fig. 9(b) and (c) is superior
to Fig. 9(a). Furthermore, the inclusion of LCFs leads to a
more noticeable improvement in LD, particularly for small-scale
landslides. Additionally, the boundary detection of landslides
becomes more accurate and aligns better with the actual extent
of the landslides. Moreover, it is evident that incorporating
LCFs better distinguishes landslides from other similar features,
significantly reducing the occurrence of misclassifying other
features as landslides. Furthermore, comparing the identification
results in Fig. 9(b) and (c), the visual differences are minimal.
This might be attributed to the fact that most rainfall-induced
landslides in the Three Gorges Reservoir area have already
undergone gradual restoration, resulting in fewer discernible
landslide features in the imagery.

Quantitative analysis of the detection results is presented in
Table IV, showing the values of six EMs for LD using three
different training datasets. It is evident that using RSI alone
resulted in the lowest Rec of 73.37%. On the other hand,
when utilizing only the LCFs, the Rec improved to 87.89%.
However, when using the combined RSI-LCF dataset, the Rec
reached an optimal value of 88.72%, indicating the critical
importance of LCFs in LD for Site 1. Additionally, the inclusion
of LCFs reduced the number of misidentified landslide pixels,
demonstrating the utility of LCFs in distinguishing landslides
from similar land cover types. In conclusion, the model trained
with the RSI-LCFs dataset achieved the best results across all

TABLE V
EMS FOR DIFFERENT TRAINING DATASETS OF BISDENET AT SITE 2

metrics. The F1, Kappa, and MIoU values reached their highest
levels at 0.9006, 0.8944, and 0.9034, respectively. Although the
improvement over using factors alone was only 0.64%, 0.67%,
and 0.86%, it surpassed the performance of using imagery alone
by 10.47%, 11.03%, and 8.46%, respectively.

2) Site 2—Jiuzhaigou County: The same comparative exper-
iment was also verified in the earthquake-induced landslide area
of Site 2. The causes and characteristics of landslides in this area
are different from those in Site 1. Fig. 10 shows the detection
results. It can be seen that, in this study area, Fig. 10(c) achieved
the best detection results, while the results of Fig. 10(a) and
(b) were not satisfactory. Both figures had too many landslides
that were not identified and incorrectly identified. Fig. 10(a) had
identification boundaries that did not match the actual landslide
boundaries at all, whereas Fig. 10(b) model performed better in
identifying boundaries for large landslides than Fig. 10(a). On
the other hand, the model based on the RSI and LCFs, as shown in
Fig. 10(c), accurately identified most of the landslides, including
the boundaries and internal features of large landslides, as well as
many small landslides. It also had minimal misidentification of
other features as landslides, achieving satisfactory identification
results. This is likely due to Site 2 being located in a higher
altitude mountainous region with complex terrain and varying
landslide sizes.

Table V presents the quantitative analysis of the detection
results of different training samples for earthquake-induced
landslides.

It can be observed that, similar to Site 1, when using only
RSIs, all six EMs have the lowest values, even though the
OA value reaches 0.9433. This is because the proportion of
nonlandslide areas in the study area is very high, which increases
the overall accuracy. The values of the Rec, F1, Kappa, and
MIoU are all below 0.80 indicating that, when using only the
RSI, many nonlandslide pixels are misclassified as landslides,
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Fig. 10. Detection results of earthquake-induced landslides using three training datasets. (a) RS. (b) LCFs. (c) RSI-LCFs.

Fig. 11. LD results in Site 1. (a) BiSeNet. (b) BiSeNet-VGG. (c) BiSeNet-ResNet. (d) DeiT. (e) BisDeNet.

or some landslides are not correctly identified. However, when
using only LCFs, all six EMs show improvement, suggesting
that the landslide characteristics in Site 2 are more evident on
the LCFs compared with the RSI. On the other hand, the model
trained with RSI-LCFs as training data achieves the optimal
results for all six EMs, indicating that the inclusion of LCFs has
a positive effect on LD.

C. LD Results

In this section, the detection results of four lightweighted
LD models (BiSeNet, BiSeNet-VGG, BiSeNet-ResNet, and

BisDeNet), and advanced transformer-based methods, data-
efficient image transformer (DeiT) [58], are analyzed and dis-
cussed.

1) Site 1—Zigui County: The detection results of the five
lightweighted LD models at Site 1 are shown in Fig. 11. Specif-
ically, Fig. 11(a), (b), (c), (d), and (e) depicts the LD results
based on BiSeNet, BiSeNet-VGG, BiSeNet-ResNet, DeiT, and
BisDeNet, respectively. BiSeNet, BiSeNet-VGG, and BiSeNet-
ResNet perform poorly when identifying large landslides, such
as the Kaziwan landslide, as their results significantly deviate
from the actual landslide boundaries. However, they can bet-
ter recognize medium-sized landslides, such as the Shuping
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TABLE VI
EMS OF DIFFERENT MODELS AT SITE 1

landslide, although many of these landslides were still not iden-
tified accurately. Moreover, these three models exhibit a consid-
erable amount of overdetection, incorrectly classifying nonland-
slide features with similar surface characteristics as landslides.
This is attributed to the incomplete learning of semantic features
by the network. Without parameter adjustments specific to LD,
the performance of the BiSeNet model in particular is not
satisfactory when the original method is directly applied. This
indicates that certain differences exist between natural image
classification tasks and LD tasks. Furthermore, when compared
with BisDeNet, the LD results of the BiSeNet, BiSeNet-VGG,
and BiSeNet-ResNet models exhibit pronounced jaggedness at
the same spatial resolution. This can be attributed to the deeper
network structure of these three models. The semantic paths in
BiSeNet necessitate models with a reduced number of filters and
heightened feature extraction capabilities for effective semantic
feature extraction. The intricacy of the semantic paths in these
three BiSeNet models proves to be too convoluted, resulting
in a suboptimal extraction of landslide semantic features and,
consequently, leading to rougher LD results. Additionally, from
Fig. 11(d), it is evident that DeiT frequently overlooks the edge
information of landslides.

Fig. 11(e) illustrates the LD results of the proposed BisDeNet
model, which visually outperforms the other three models based
on BiSeNet. From Fig. 11(e), it can be seen that most landslides
are correctly identified, and their boundaries coincide with the
actual ranges. The BisDeNet model also reduces misidentified
landslides to a certain extent, which can significantly reduce the
human labor, resource, and financial costs of practical rescue
missions. However, a few landslides were not accurately identi-
fied. These landslides can be roughly categorized into two types:
small-sized landslides and landslides located at the edge of the
study area. This indicates that the model did not adequately learn
the features of these types of landslides, which resulted in their
failure to be identified during testing.

Table VI presents the six EMs of the five LD results at Site
1. Notably, the OA of the BisDeNet model attains the highest
value, reaching 0.9883. Additionally, its Pre and Rec values are
noteworthy, standing at 0.9143 and 0.8872, respectively, ranking
as the second-highest values among the models. Furthermore,
the BisDeNet model achieves the second F1, Kappa, and MIoU
values of the five models, achieving values of 0.9006, 0.8944,
and 0.9034, respectively. The Kappa coefficients are 27.62%,

TABLE VII
EMS OF DIFFERENT MODELS AT SITE 2

18.90%, and 23.22% higher than those of BiSeNet, BiSeNet-
VGG, and BiSeNet-ResNet, respectively. Moreover, except for
the BisDeNet model, the other models do not reach F1, Kappa,
and MIoU values of 0.8. This might be because the semantic
paths of these three BiSeNet models are too complex, failing
to effectively extract landslide semantic features. We also can
see that DeiT achieves slightly better results than BisDeNet.
However, it still encounters challenges associated with model
size and a large number of parameters.

2) Site 2—Jiuzhaigou County: The five lightweight LD mod-
els were also applied for earthquake-induced LD at Site 2,
yielding similar results (see Fig. 12). The three models, BiSeNet,
BiSeNet-VGG, and BiSeNet-ResNet, can recognize only large-
scale landslides in Site 2. Furthermore, their recognition of
landslide boundaries appears grid-like and does not align well
with the actual boundaries, resulting in poor continuity of the
identified landforms. These models hardly detect medium and
small landslides, especially those in lower altitude valley re-
gions. This indicates that choosing inappropriate semantic path
feature extraction frameworks considerably compromises the
performance of BiSeNet.

However, the results of the BisDeNet model, constructed with
only a few layers of DenseNet, appear visually superior to those
of the first three models. BisDeNet can recognize all landslides
within the study area, especially small landslides. Nevertheless,
upon closer examination, the BisDeNet model exhibits some
instances of both missed and false detections. This phenomenon
is not widespread, occurring in only a few specific landslides.
This is likely caused by the model’s failure to learn the relevant
features of such landslides during training due to insufficient
representation of relevant information in the training samples.
In Fig. 12(d), it is evident that the edges of landslides recognized
by DeiT are not smooth and display a jagged appearance. This
observation suggests that DeiT may not be well suited for the
recognition of certain small landslides.

To quantitatively analyze and evaluate the earthquake-
induced LD results in this region, six EMs for the models are
provided (see Table VII). The Rec and Pre values of the BiSeNet
model are 0.7052 and 0.8636, respectively. This model performs
second only to the BisDeNet model, which exhibits Rec and
Pre values of 0.9144 and 0.8574, respectively. On the other
hand, the Rec and Pre of BiSeNet-VGG (0.6071 and 0.9021)
and BiSeNet-ResNet (0.6486 and 0.8824) in this region are
worse. Overall, BisDeNet demonstrates a relatively high level
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Fig. 12. LD results in Site 2. (a) BiSeNet. (b) BiSeNet-VGG. (c) BiSeNet-ResNet. (d) DeiT. (e) BisDeNet.

TABLE VIII
COMPARISON OF MODEL COMPLEXITY AND LEARNING EFFICIENCY

of detection accuracy, with F1, Kappa, and MIoU values of
0.8850, 0.8674, and 0.8795, respectively. While these values
are slightly lower than those of DeiT, BisDeNet achieves the
highest OA and Kappa. This underscores its strong capability
in effectively distinguishing landslides from the background, as
visually demonstrated in the image representations. The corre-
sponding values for the other three BiSeNet-based models are
all below 0.8, indicating that the BisDeNet model’s LD results
are more consistent with the landslide labels than the results of
the other models.

V. DISCUSSIONS

A. Efficiency of Different CPs on the Model Performance

Table VIII presents a comparison of the model parameters and
model memory consumption of the five LD models. Bilateral se-
mantic segmentation, which divides features into two pathways
for extraction, employs distinct learning strategies. Furthermore,
the attention optimization and FFMs do not increase the model’s
complexity, significantly enhancing the training and testing
speeds of the model. Meanwhile, the BiSeNet, BiSeNet-VGG,
and BiSeNet-ResNet models possess many parameters and have
quite substantial sizes. In particular, BiSeNet, which employs
the unmodified framework from the original BiSeNet article, is
used directly for LD in this study. The Xception model used in
BiSeNet extracts multiscale features by continually increasing
the network width and depth, substantially increasing the com-
plexity and decreasing the efficiency of the model. However, the

fixed model architectures VGG and ResNet exhibit considerable
depth, numerous filters, and intricate structures. However, a
model with fewer filters and higher feature extraction capa-
bility is required for semantic feature extraction in BiSeNet’s
CP. Therefore, in this work, the DenseNet feature extraction
component is ingeniously integrating into BiSeNet’s CP, and the
BisDeNet network model for LD is constructed. The BisDeNet
model has the lowest parameter count of the models, just slightly
over 460 000, and requires only 7 MB of memory. The training
speed and testing speed are also comparatively fast, which ef-
fectively meets the requirements of landslide disaster response.
It is worth mentioning that the training and testing speed of
BisDeNet is slightly lower than that of BiSeNet-ResNet, as these
speeds are influenced by various factors. There is not a direct
causal relationship between the actual number of parameters and
the training and testing speed. The number of parameters serves
only as a reference for model training and testing. In comparison
with BiSeNet-ResNet, BisDeNet exhibits lower computational
density and a higher number of visits, resulting in marginally
reduced training and testing speeds. Furthermore, when com-
pared with DeiT, our proposed BisDeNet demonstrates clear
advantages in terms of the number of parameters, model mem-
ory consumption, and speed. Remarkably, recognition accuracy
does not show a substantial decrease, fully highlighting the
excellent performance of BisDeNet.

B. Uncertainties in Lightweighted LD

While the BisDeNet network we introduced performed
strongly in LD experiments across two sites, lightweight net-
works still encounter notable challenges within this field. Due
to their smaller model capacity and reduced parameter count,
lightweight networks exhibit lower model complexities. Con-
sequently, these networks may struggle to capture the intricate
textures and features of landslides present in RSIs, potentially
resulting in diminished LD accuracy, particularly under complex
terrains or varying weather conditions. Furthermore, lightweight
networks may not perform strongly when applied across di-
verse geographical regions due to their sensitivity to parameter
count. Lightweight networks may exhibit lower adaptability than
nonlightweight networks to diverse landscapes and geological
environments. Addressing these issues is imperative for enhanc-
ing the LD performance and reliability of lightweight networks.
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C. Limitations and Future Work

In our work, we primarily focus on the streamline opera-
tion of the backbone network within the model architecture.
This involves modifying feature extraction to attain a more
lightweight network. Current model lightweightization methods
include pruning, quantization, and knowledge distillation. Prun-
ing reduces the model size by eliminating filters and channels,
thereby decreasing the required storage space and computational
resources and accelerating the network inference speed [59],
[60]. Quantization employs fewer bits for representing model
parameters, consequently reducing storage overhead [61], [62].
Knowledge distillation involves distilling knowledge from larger
models to generate smaller submodels, compressing and accel-
erating the model [63], [64], [65].

In the future, conducting lightweightization work for LD us-
ing different model compression methods is plausible. Exploring
combinations of various model compression techniques holds
potential. Hybrid compression methods, which currently exist,
have effectively balanced model accuracy and speed [66], [67].
Additionally, we will delve into the performance of existing
lightweight networks, such as ShuffleNet and ENet. In our future
work, a pivotal focus will be on integrating effective model com-
pression methods for a comprehensive application to geological
disaster issues. This allows LD tasks to be efficiently completed
while accuracy is maintained, thereby facilitating landslide mon-
itoring. Furthermore, it has been demonstrated that multimodal
RS data and universal RS foundation model (SpectralGPT) can
effectively improve the accuracy and generalization ability of
semantic segmentation models, which brings great potential for
further improvement of LD model performance [68], [69], [70].

VI. CONCLUSION

In this article, we introduce a novel lightweight DL framework
named BisDeNet, designed to tackle the challenges of high
model complexity in LD applications. We propose an improve-
ment to the semantic segmentation network architecture by
replacing the CPs in the original BiSeNet with DenseNet. This
modification allows for the complete aggregation of high-level
semantic features at a relatively low computational cost, thereby
mitigating the computational burden associated with LD tasks.
Through comprehensive qualitative and quantitative assess-
ments of LD performance, we evaluate four lightweight seman-
tic segmentation models along with an advanced transformer-
based model across two distinct study areas: the Three Gorges
Reservoir region and the Jiuzhaigou area. This study yields the
following key findings.

1) By introducing simple yet effective modifications to both
the spatial and context pathways of the BiSeNet model,
our newly proposed BisDeNet consistently performs re-
markably in both rainfall-induced landslide-prone regions
within the Three Gorges Reservoir and postearthquake
landslide-affected zones in Jiuzhaigou. This consistent
performance across diverse geographical and geological
conditions underscores the robust generalizability of Bis-
DeNet.

2) The BisDeNet model exhibits a low parameter count
and employs a densely connected architecture for ro-
bust feature extraction. This design choice contributes to
the ability of the model to deliver satisfactory outcomes
in lightweight LD tasks, demonstrating its efficiency in
resource-constrained settings.
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