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Monthly NDVI Prediction Using Spatial
Autocorrelation and Nonlocal Attention Networks

Lei Xu , Ruinan Cai , Hongchu Yu , Wenying Du , Zeqiang Chen , and Nengcheng Chen

Abstract—Accurate prediction of vegetation indices is useful for
helping maintain vegetation stability, sustaining food production,
and reducing socioeconomic losses. The traditional convolutional
long short-term memory (ConvLSTM) model for vegetation predic-
tion ignores the spatial aggregation characteristics of the normal-
ized difference vegetation index (NDVI) itself and the global depen-
dence information in space. In this study, we propose a new NDVI
prediction method, namely, the ConvLSTM with spatial autocor-
relation and nonlocal attention module (ConvLSTM-SAC-NL), by
combining the nonlocal attention module to capture long-range
dependence and the spatial autocorrelation modeling based on the
local Moran index to learn spatial dependence. The experimental
results indicate that the ConvLSTM-SAC-NL model outperforms
seven baseline forecasting models, with an R2 of 0.881 in monthly
NDVI prediction in the Huangpi district of Wuhan city, relative
to the R2 values of 0.758, 0.777, 0.741, 0.776, 0.804, 0.829, and
0.815 for random forest, support vector machine regression, long
short-term memory, bidirectional long short-term memory, graph
convolutional network, predictive recurrent neural network, and
ConvLSTM models, respectively. Spatially, the prediction results of
the ConvLSTM-SAC-NL model demonstrate improved accuracy
over 91.49% of the study area when compared with ConvLTSM.
Therefore, the proposed ConvLSTM-SAC-NL model could serve
as an effective approach for short-term prediction of vegetation
conditions at regional scales.

Index Terms—Convolutional long short-term memory (Conv-
LSTM), nonlocal attention module, normalized difference
vegetation index (NDVI), spatial autocorrelation, spatiotemporal
prediction.

I. INTRODUCTION

V EGETATION is an important part of terrestrial ecosystems
and plays an important role in regulating terrestrial energy
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exchange, water, carbon cycles, and ecological balance [1],
[2]. Accurate monthly forecasting of vegetation dynamics is
beneficial for early warning of ecosystem instability, preparation
of timely crop management, and potential reduction of tree
mortality from extreme weather events.

Satellite remote sensing technology is a scientific and efficient
tool for large-scale vegetation condition monitoring, which is
widely used in the fields of ecological conservation and envi-
ronmental change [3], [4]. Satellite remote sensing provides
a rich data source for extracting and monitoring spatial and
temporal dynamics of terrestrial ecosystems [5]. It is convenient,
scientific, and feasible to monitor and predict vegetation changes
based on satellite-based vegetation indices. Satellite-based vege-
tation indices are usually calculated by the combinations of spec-
tral bands from remote sensing images and are representations of
vegetation growth and health. Normalized difference vegetation
index (NDVI) is one of the most commonly used vegetation
indices and is derived from the ratio of the difference between
red and near-infrared reflectance to its sum. NDVI has been
widely used in agricultural production prediction [6], drought
monitoring [7], [8], land cover classification [9], [10], and so on.
Therefore, accurate NDVI forecasting is useful for agricultural
and ecological applications.

Previously, NDVI predictions were mainly based on statistical
methods, such as the autoregressive integrated moving average
combined with climate data [11] and the triple exponential
smoothing method based on the Holt–Winters additive model
[12]. However, because of the impact of soil moisture [13],
temperature, human activities, and other factors, the underly-
ing mechanisms of vegetation changes are complex. Statistical
methods usually assume that the NDVI time series is linear and
smooth, while the nonlinear and unsmooth information hidden
in the NDVI time series cannot be captured well during the
prediction [14].

With the rapid development of artificial intelligence tech-
nology, machine learning (ML) methods have been gradually
applied in the field of remote sensing. For example, Tong
et al. [15] proposed a pixel space gap-filling method for soil
moisture estimation in the Qinghai–Tibet Plateau using ML
and geostatistics. Compared with traditional statistical predic-
tion methods, ML methods can deal with complex forecasting
problems with noisy data by learning the nonlinear relationships
between dependent and independent variables through sufficient
training [16]. Roy et al. [17] used four ML methods [support
vector machine regression (SVR), random forest (RF), linear
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and polynomial regression] to predict monthly NDVI data, and
found that RF and linear regression methods can obtain high
forecasting accuracy, with some effects for the abrupt changes.

Deep learning models have been widely used in remote
sensing applications in recent years. The convolutional neural
network-long short-term memory (CNN-LSTM) model, which
combines the spatial modeling of the convolutional neural net-
work (CNN) and the temporal memory of long short-term
memory (LSTM), has been applied to some prediction tasks
[18]. Artificial neural networks and cycle-consistent adversar-
ial networks are used for soil moisture time series analysis
and estimation, respectively, [19], [20]. In recent years, some
scholars proposed new neural network methods to improve
NDVI prediction accuracy. Gao et al. [21] combined time series
decomposition (TSD), CNN, and LSTM to build a new monthly
NDVI prediction model termed TSD-CNN-LSTM, which has
the best predictive performance with a root-mean-square error
(RMSE), MSE, and mean absolute error (MAE) of 0.0573,
0.9617, and 0.0447, respectively. Cui et al. [22] proposed a new
NDVI prediction model called SF-CNN by combining CNN
and statistical features of historical data, indicating improved
accuracy for the subsequent three months in multiple complex
regions.

In spatiotemporal NDVI prediction, most of the existing stud-
ies used NDVI time series characteristics and ML to improve
the prediction accuracy, while ignoring the spatial dependence
and aggregation of vegetation status. Attention may be an ef-
fective concept to model the global dependence of vegetation
distribution in NDVI prediction. The attention mechanism is
based on the characteristics of human vision: when humans
find that a scene often has something they want to observe
in a certain part, they will focus on that part and concentrate
more on the useful part when a similar scene occurs again. The
attention mechanism makes the model focus more on a certain
part of the data during training and improves the accuracy of
perceptual information processing [23]. Attention mechanisms
have become an increasingly common component of neural
architectures and have been applied to a variety of tasks, such
as text classification [24], machine translation [25], motion
recognition [26], and voice recognition [27]. Attention mech-
anisms are also widely applied in remote sensing applications.
For instance, Cai et al. [28] employed graph convolution and
cross-attention to perform change detection in remote sensing
images. Shi et al. [29] proposed DSAMNet based on deep
supervised attention measurement, for identifying changes in
aerial imagery. Liu et al. [30] created a new deep learning model
called RAANet by incorporating attention modules and residual
structures into ASPP and improved the classification accuracy
of land use and land cover (LULC). In addition, the topographic
conditions and climatic factors that influence vegetation growth
are generally spatially continuous, and thus the surrounding
vegetation condition may be closely correlated with the target
vegetation condition. Therefore, the spatial dependence infor-
mation of neighboring NDVI pixels may be utilized to enhance
the NDVI prediction skill. Spatial autocorrelation is a general
statistical property of events or phenomena observed across geo-
graphic space. Spatial autocorrelation analysis has been used in

economic, social, ecological, and other fields. Many geophysical
data usually have spatial autocorrelation, such as precipitation,
temperature, and vegetation [31], [32], [33]. The existing NDVI
prediction simply uses a convolution kernel to consider the
spatial autocorrelation of surrounding pixels, which could not
identify the geographic variations of local spatial dependence
well.

In this article, we propose a refined NDVI forecasting ap-
proach, namely ConvLSTM with spatial autocorrelation and
nonlocal attention module (ConvLSTM-SAC-NL), by combin-
ing the convolutional long short-term memory (ConvLSTM)
model, the nonlocal attention module and spatial autocorrelation
modeling. The SAC module is added to focus on the local
spatial dependence modeling of the whole study area and the
NL module is added to capture the long-range dependence of
NDVI images. The developed ConvLSTM-SAC-NL model is
compared with seven baseline forecasting models to demon-
strate its effectiveness and superiority. The key contributions of
this study are summarized as follows.

1) The local Moran index is used as a spatial autocorrelation
factor to learn the spatial correlations between each pixel
and neighboring pixels for NDVI forecasting.

2) The nonlocal attention module is added to the ConvLSTM
model to learn global relevance information and capture
long-range dependence.

3) A new data-driven spatiotemporal deep learning method
ConvLSTM-SAC-NL is proposed for predicting NDVI at
a monthly scale and 1 km spatial resolution.

We innovatively introduce the local Moran index to model
the spatial autocorrelation phenomenon of vegetation conditions
and incorporate it into a deep learning model, which significantly
improves the effectiveness of dynamic vegetation prediction and
addresses the issue of ignoring spatial correlation relationships
in previous studies. By incorporating the nonlocal attention mod-
ule, the proposed ConvLSTM-SAC-NL model captures long-
range dependence in image data. The predictive performance
of the ConvLSTM-SAC-NL model surpasses the traditional
ConvLSTM model and some popular deep learning models in
the NDVI forecasting experiment, which may provide promising
insights into data-driven vegetation prediction science.

The rest of this article is organized as follows. Section II
describes the study area and data sources. Section III presents
the proposed forecasting model. Section IV presents the ex-
perimental results. Section V discusses the experiment. Finally,
Section VI concludes this article.

II. STUDY AREA AND DATA SOURCES

A. Study Area

Huangpi district is an area with many vegetation types and
famous scenic areas, which is the agglomeration area of natural
landscapes in Wuhan city. It is of great significance to effectively
predict the vegetation conditions in Huangpi district for the
ecological civilization construction of Wuhan city.

Fig. 1 shows the geographical location and topographic view
of Huangpi district. Huangpi district is located in the north
of Wuhan city and the eastern part of Hubei province. The
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Fig. 1. Location and DEM map of the studying area.

geographical coordinates are between 114◦09′–114◦37′ east
longitude and 30◦40′–31◦22′ north latitude, with an area of
2261 km2. The northern part of Huangpi district belongs to the
western section of the southern foothills of Dabie mountain. The
southern part of Huangpi district is located at the eastern section
of the north bank of the Yangtze river in the Jianghan plain. The
topography is high in the north and low in the south, forming
a four-tier ladder of low mountainous areas in the northwest,
hilly areas in the northeast, post-like plains in the middle, and
lakeside plains in the south.

Huangpi district features a subtropical monsoon climate, with
abundant rainfall, four distinct seasons, and an average annual
frost-free period of 255 days. The multiyear averaged sunshine
hours are 1917.4 h, and the multiyear averaged precipitation is
1202 mm. In general, the climatic conditions in Huangpi district
are ideal for vegetation growth.

B. Data and Preprocessing

The moderate resolution imaging spectroradiometer
(MODIS) is a key component of NASA’s Earth Observing
System. It is designed to enable long-term global monitoring
of the Earth’s land, ocean, and atmospheric properties. MODIS
data are free worldwide, with a wide spectral range, simple data
reception, and high update frequency. MODIS contains a variety
of data products related to the ocean, land, and atmosphere
sciences, which are widely used in geophysical applications.
The NDVI data, LULC data were derived from MODIS and

downloaded through Google Earth Engine in the study. Table I
shows the used data introduction.

The NDVI data were collected from MOD13A2, with a
temporal resolution of 16-day (23 scenes/year) and a spatial
resolution of 1 km. We synthesized 16-day NDVI data into
monthly data using the maximum synthesis method, which si-
multaneously eliminates the interference of clouds, atmosphere,
and solar height. A total of 192 monthly NDVI images were
eventually obtained for 16 years from 2003 to 2018, with an
image size of 81 rows and 57 columns.

The LULC data were collected from MCD12Q1, with a
temporal resolution of 1-year and a spatial resolution of 500
m. We used the nearest neighbor sampling method in ArcGIS
software to resample the 500 m LULC images to match the
1 km spatial resolution of NDVI. We finally obtained a total
of 16 LULC images for 16 years from 2003 to 2018. In the
ConvLSTM-SAC-NL model, one LULC image was shared for
each year (12 months) and was used as a feature along with
the local Moran index to construct the predictors for NDVI
prediction.

III. METHODS

A. Spatial Autocorrelation

The spatial autocorrelation statistic is used to measure the
degree of interdependence between data at one location and data
at other geographic locations. Due to the influence of spatial
interactions and spatial diffusion, most geographic data may not
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TABLE I
DATA INTRODUCTION

be independent of each other. According to previous studies,
NDVI is spatially autocorrelated. Therefore, here the global
Moran index is used to determine whether the study area has
spatial aggregation and the local Moran index is used to indicate
where the aggregation phenomena and outliers are. Finally, we
input the local Moran index as a feature into the model to improve
the prediction accuracy.

The global Moran index explains the first law of geography
in a mathematical sense: all things are related, but nearby things
are more related than distant things. Spatial autocorrelation
measures the degree of aggregation of unit attribute values in
geographically contiguous units with similar attributes, it is an
important method for exploring the spatial differentiation of
geographic attributes. The main formulas of the global Moran
index are

I =
n

S0

∑n
i=1

∑n
j=1 wi,j(xi − X̄)(xj −X)∑n

i=1(xi − X̄)2
(1)

S0 =
n∑

i=1

n∑
j=1

wi,j (2)

ZI =
I − E[I]√

V [I]
(3)

E[I] = −1/n− 1 (4)

V [I] = E[I2]− E[I]2 (5)

where xi is the attribute value of the pixel, X̄ is the mean value
of the attribute, n is the total number of pixels. wi,j is the
spatial weight between elements i and j, S0 is the aggregation
of all spatial weights, and ZI is the Z score. The calculation
starts by defining a spatial weight matrix to measure the matrix
of spatial relationships between different locations. The com-
monly used spatial weight matrices include the neighborhood
matrix, distance matrix, radius matrix, etc. For each location,
the correlation between the target’s pixel value and the pixel
values at neighboring other locations is calculated. Finally, the
spatial autocorrelation indices of all locations are summed and
normalized to obtain the global Moran index.

The global Moran index ranges between−1.0 and +1.0. When
the global Moran index is above 0, the data show a positive
spatial correlation, and the larger value indicates a more obvious
spatial correlation. On the contrary, when the global Moran index
is below 0, the data show a negative spatial correlation, with
smaller values showing greater spatial differences. When the
global Moran index is 0, it indicates that the data are randomly
distributed in space. The confidence level of the spatial auto-
correlation analysis is determined by combining the P value
and Z score. The P value indicates the probability of spatial
autocorrelation, P value is used to judge the significance of

TABLE II
GLOBAL MORAN INDEX CONFIDENCE PARTITION METHOD

the spatial pattern. When the P value is small, the observed
spatial pattern is unlikely to arise from a random process (small
probability event), then the null hypothesis can be rejected. The
Z score refers to the standard deviation multiplier, it reflects the
degree of data dispersion. Table II shows the confidence levels
of the global Moran index corresponding to the Z score and P
value.

Local spatial autocorrelation is used to calculate the degree
of spatial correlation between each pixel value and their neigh-
boring pixels, reflecting the spatial heterogeneity and instability
in the local region. The main equations of the local Moran index
are listed as follows:

Ii =
xi − X̄

S2
i

n∑
j=1,j �=i

wi,j

(
xj − X̄

)
(6)

S2
i =

∑n
j=1,j �=i

(
xj − X̄

)2
n− 1

(7)

ZIi =
Ii − E [Ii]√

V [Ii]
(8)

E [Ii] = −
∑n

j=1,j �=i wi,j

n− 1
(9)

V [Ii] = E
[
I2i
]− E [Ii]

2 . (10)

The meaning of each parameter is the same as the global
Moran index, except that each parameter here refers to the value
of a specific pixel. Unlike the global Moran index, the Moran
index value, Z score, and P value of each NDVI image element
are obtained after the local Moran index is calculated. Based on
the Z score, Moran index value and different spatial weights,
each NDVI image can be classified into five types of clusters:
High–high, high–low, low–high, low–low, and not significant.
The specific division method is shown in Table III.

In this study, the local Moran index of each NDVI image was
taken as an input feature into the model to enhance the accuracy
of the model. In addition, the study area contains a variety of land
use types, so the LULC data were added as an input feature at
the same time since vegetation cover changes are not consistent
across land use types.
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Fig. 2. Cell structure of ConvLSTM-NL.

TABLE III
SPATIAL CLUSTERING TYPE CLASSIFICATION METHOD

B. ConvLSTM With Nonlocal Attention Module
(ConvLSTM-NL)

Nonlocal attention module is a neural network module for
image or video processing in computer vision. The main role
of the nonlocal attention module is to improve the model’s
ability to capture long-range dependence in images or videos
by considering global contextual information. The nonlocal
operations are added into the ConvLSTM model as a generic
building block to capture long-range dependence and take the
global information into account. The addition of the nonlocal
attention module not only preserves the ability of ConvLSTM
to extract local information but also learns global information
appropriately, thus providing better performance in handling
long-range dependence. In this study, the nonlocal attention
module is placed after the ConvLSTM structure to effectively
handle the hidden states.

The structure of ConvLSTM-NL is shown in Fig. 2. Each
structural cell has three inputs: the current input feature Xt,
the hidden output Ht−1, and the cell state Ct−1 of the previous
time step. Each structural unit consists of two parts: the original
ConvLSTM structure and the nonlocal attention module.

The core role of ConvLSTM is to replace the fully connected
layer in LSTM with a convolutional layer so that the memory
unit and gate structure of LSTM can be combined with the con-
volutional and pooling layers in CNN to model spatiotemporal
information. The spatiotemporal features of the multichannel
image sequence are extracted by convolution operations. Then,
the information in the sequence is modeled and passed through

LSTM units. The main calculation equations included in the
structure of the first part are

it = σ (Wxi �Xt +Whi �Ht−1 + bi) (11)

ft = σ (Wxf �Xt +Whf �Ht−1 + bf ) (12)

Ct = ftCt−1 + it tanh(Wxc �Xt +Whc �Ht−1 + bc)
(13)

Zt = tanh (Ct)σ (Wxo �Xt +Who �Ht−1 + bo) (14)

where � indicates the convolution operation, σ indicates the
sigmoid function.Xt is the input to the neuron at moment t.Ht−1

is the output of ConvLSTM-NL at moment t− 1. Wxi, Wxf ,
Wxc, and Wxo are the weights of Xt in different convolution
operations, respectively, Whi, Whf , Whc, and Who are the
weights of Ht−1. bi, bf , bc, and bo are the bias values of the
convolution operation. it controls the input gate. The input gate
uses the sigmoid function to select the new input data and the
output of the previous neuron to decide the input information of
that neuron. ft controls the forgotten gate. ft determines how
much information from the previous neuron is retained in this
neuron. Ct is the cell state of the neuron at moment t. Ct will
be output by combining the cell state of the previous neuron and
the new data input at moment t of the neuron. Finally, there is
an output gate, which is set by gating to output the current cell
state proportionally to Zt.

The second part is the nonlocal attention module. In this study,
a1× 1 convolution is used to linearly map the outputZt from the
ConvLSTM part and compress the number of channels to obtain
the features θ, ϕ, and g. After combining the dimensions of the
above-mentioned three features except the channel dimension
by reshape operation, matrix dot product operations are needed
to obtain the autocorrelation in class features. Then, the attention
coefficients are multiplied correspondingly back into the feature
matrix g. Finally, the 1× 1 convolution is used again to expand
the channel number and the residual operation with the original
Zt is performed to obtain the final outputHt of ConvLSTM-NL.
To reduce the amount of computation, the number of channels
in θ, ϕ, and g is set to half the number of channels in Zt. The
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Fig. 3. Proposed ConvLSTM-SAC-NL flowchart.

main calculation formulas used are as follows:

yi =
1

C(z)
∑
∀j

f (zi, zj) ∗ g (zj) (15)

f (zi, zj) = softmax
(
θ (zi)

T ∗ φ (zj)
)

(16)

Ht = Wi � yi + Zt (17)

where ∗ indicates matrix multiplication. i indicates the index of
the output location, such as space, time, or spacetime, whose
response should be enumerated for j and then computed. f
functional equation calculates the similarity of the pixel values
at position i and j, then obtains the value of the weight with
the value range [0, 1] by the softmax function, which is the
desired attention factor. C(z) = N , N is the number of pixels,
which is used for normalization. Wi is a 1× 1 convolution of
yi to expand the channel number, so that the channel number is
consistent with the input data. Ht is the final output.

C. Model Training and Evaluation

In this study, seven models, i.e., RF, SVR, LSTM, bidi-
rectional long short-term memory (BiLSTM), graph convo-
lutional network (GCN), predictive recurrent neural network
(PredRNN), and ConvLSTM were used as the baseline models
for our experiments. The baseline experiments used NDVI as
the input data directly.

The flow of ConvLSTM-SAC-NL is shown in Fig. 3. We used
NDVI, local Moran index, and LULC data as input features. The
192 NDVI data were divided into the training set, validation
set, and test set according to the ratio of 6:1:1. The min–max
normalization operation was conducted on the LULC and local
Moran index before data input to eliminate the prediction error
caused by the gauge inconsistency problem. The normalized
formula is

X ′
i =

Xi −Xmin

Xmax −Xmin
(18)

where Xi indicates the NDVI value of pixel i, Xmin and Xmax

indicate the minimum and the maximum value of the NDVI
images in the training set, respectively.

Both the ConvLSTM-SAC-NL model and the ConvLSTM
model had a four-layer model structure and used the same
hyperparameters, where the batch size, learning rate, epoch, and
the number of convolution kernels were set to 3, 0.0005, 100, and
16, respectively. Through experiments, the loss curve converged
after 100 iterations and the rest of the hyperparameter settings
were optimal for both single- and multiple-feature prediction.

To evaluate model accuracy, four metrics are chosen to judge
the prediction results of each model, including MAE, RMSE,
coefficient of determination (R2), and Pearson correlation coef-
ficient to test the prediction results of each model. MAE can be
used to measure the average degree of difference between the
predicted pixel values and the true pixel values. RMSE is used to
measure the variance between the predicted pixel values and the
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true pixel values. R2 and correlation coefficient can measure
the squared and the linear correlation between the predicted
pixel values and the true pixel values, respectively. The relevant
formulas for the calculation of evaluation indicators are

R2 = 1−
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

(19)

RMSE =

√
1

n

∑n

i=1
(ŷi − yi)

2 (20)

MAE =
1

n

n∑
i=1

|yi − ŷi| (21)

Correlation =

∑n
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)
√∑n

i=1 (yi − ȳ)2
√∑n

i=1

(
ŷi − ¯̂y

)2 (22)

where n is the number of the predicted pixels, yi and ŷi indicate
the true value and the predicted value, respectively, and ȳ and
¯̂y indicate the mean of the true values and the predicted value,
respectively.

In addition, this study used the floating-point operations per
second (FLOPS) and parameter count (Params) to measure the
computational complexity of each deep learning model. The
FLOPS is a commonly used unit for measuring computational
complexity, which can represent the number of floating-point
operations a computer can perform in one second. A higher
FLOPS value indicates that the system or algorithm can execute
computational tasks faster, thereby improving computational
efficiency and speed. The Params represents the number of
learnable parameters in the model. The size of the Params
directly affects the complexity and storage requirements of the
neural network. A smaller Params indicates lower computational
demands and storage costs for the model.

IV. EXPERIMENTAL RESULT

A. Spatial Autocorrelation Analysis

After calculation, the global Moran index of all the NDVI
images is above 0.9, and the Z scores are all greater than 2.58
with P values less than 0.01, which indicates the significance of
the Moran index. These results are sufficient to demonstrate that
the NDVI data have obvious spatial aggregation characteristics
in Huangpi district.

Fig. 4 illustrates the spatial clustering types of the mean NDVI
images in Huangpi district in 2018, with five clustering types,
mainly high–high cluster and low–low cluster. The high–high
cluster is mainly concentrated in the northern part of Huangpi
district, while the low–low cluster is mainly distributed in the
southern part. The not significant, high–low cluster, and low–
high cluster types are scattered and account for a small fraction
of the area.

The spatial distributions of NDVI clustering types are closely
related to the elevation and land use in the Huangpi district. The
northern part of Huangpi district has lower population density,
higher elevation, and more lush vegetation compared to the
southern part. Therefore, the high-value clustering prevailed in

Fig. 4. Spatial aggregation of monthly mean NDVI in year 2018 for the
Huangpi district.

TABLE IV
COMPARISON OF THE OVERALL ACCURACY OF EACH MODEL

the northern part due to dense, while the southern part has more
low-value clustering.

B. Overall Accuracy Evaluation

The overall NDVI forecasting accuracy is shown in Table IV.
The SVR model outperforms the RF model in one-month lead
NDVI forecasting in terms of four evaluation metrics. The LSTM
model has lower predictive accuracy relative to RF and SVR,
which is possibly related to insufficient data as the training of
LSTM requires a sufficient number of time series (144 images
used in this study). In addition, LSTM suffers from gradient dis-
appearance and explosion problems, and thus the unsatisfactory
results are expected versus RF and SVR methods. The BiL-
STM model learns information flow from both past and future
directions and generates relatively good results. The PredRNN
model is capable of effectively capturing long-term dependence
in spatiotemporal sequence data, demonstrating better forecast-
ing accuracy. The GCN model could utilize the connections
between nodes for information propagation and feature learning.
However, relying solely on local node information transmission
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TABLE V
COMPARISON OF THE ACCURACY OF ABLATION EXPERIMENTS

may overlook the capture of global graph information, leading
to limited predictive performance. The ConvLSTM model could
capture both temporal and spatial information by LSTM and
convolutional kernel window, respectively. However, the spatial
dependence is uniformly considered in ConvLSTM by convo-
lutional kernels, ignoring the spatial variations of dependence
structure for different locations and variables.

The R2 of ConvLSTM-SAC-NL is 0.881, higher than that of
ConvLSTM (0.815), indicating the superiority of the proposed
model by adding nonlocal attention and spatial autocorrelation
modules. A two-part ablation experiment is conducted to verify
the effect of each part on the prediction accuracy in ConvLSTM-
SAC-NL. Table V shows the inclusion of the nonlocal attention
module and the effect of considering spatial autocorrelation on
the prediction results. After adding the nonlocal attention mod-
ule, the ConvLSTM-NL model with NDVI as input demonstrates
improved accuracy relative to ConvLSTM, with an increase of
R2 by 0.058 and a decrease of RMSE by more than 17%. More-
over, the R2 metric improves by 0.021 for ConvLSTM-SAC-NL
versus ConvLSTM-SAC when the inputs are NDVI, LULC, and
local Moran index. After adding LULC and the local Moran
index as input data, the R2 value for the ConvLSTM-SAC model
improves by 0.045 relative to the ConvLSTM model with NDVI
as input.has a great impact on the results because it not only
considers the convolutional kernel window size pixel values but
also extracts the global information. Even if the input data are
only NDVI, the R2 is still improved by 0.058, and both RMSE
and MAE are reduced by more than 17%. Moreover, R2 is also
improved by 0.021 when the input data are NDVI, LULC, and the
local Moran index, which may be a limited increase in accuracy
because the model has already learned the spatial aggregation
characteristics of NDVI to some extent after increasing the input
variables. After adding LULC and the local Moran index as input
data, the prediction with the ConvLSTM model also improved
R2 by 0.045. Therefore, both the spatial autocorrelation and
the nonlocal attention module play positive roles in enhancing
prediction accuracy, and the combination of them demonstrates
further added values than either one.

Fig. 5 shows the scatter plots of NDVI prediction results for
each model. The SVR model exhibits some dispersions between
predictions and observations for low-value NDVI samples, and
the RF model indicates better prediction results over high-value
NDVI samples than SVR. The LSTM model predicts poorly
for some NDVI pixels with a range of 0.4–0.9, as the scatter
plots exhibit obvious dispersion in that range. Overall, the
ConvLSTM-SAC-NL model demonstrates better consistency
between observations and predictions for both high and low
NDVI samples. Fig. 6 shows the spatial comparison of prediction

results between ConvLSTM-SAC-NL and ConvLSTM. It can
be seen that 91.49% of the pixels improved prediction accu-
racy for ConvLSTM-SAC-NL versus ConvLSTM in the study
area. The unenhanced regions are sparsely distributed over the
study area, indicating little improvement in predictive accuracy
for ConvLSTM-SAC-NL versus ConvLSTM for these pixels.
These unenhanced regions are probably related to a variety of
factors, such as strong spatial heterogeneity and active human
activities. To compare the single-point accuracy of each model
more specifically, Fig. 7 shows the box plot of the prediction
accuracy for all pixels using eight models. It can be seen that
ConvLSTM-SAC-NL shows great superiority in NDVI predic-
tions in terms of the mean, median, and maximum–minimum
values of the evaluation metrics.

C. Spatial Prediction Accuracy Evaluation

Fig. 8 shows the observations and spatial prediction results of
all models in each season (average value of three months). The
RF and SVR models only perform sequential prediction for each
point without considering the relationship between surrounding
pixels. Thus, the predictions of the RF and SVR models for each
season have an obvious blurring phenomenon compared to the
observations. The prediction performance of the LSTM model in
summer and autumn is significantly better than that in spring and
winter, which indicates that the prediction of the LSTM model
for high-value NDVI samples is better than that for low-value
NDVI samples. Overall, the BiLSTM model performs better in
NDVI prediction across all seasons versus LSTM because of the
consideration of the bidirectional information. The PredRNN
model shows poor prediction performance during spring and
summer, especially in high-value areas in the northern region.
The GCN model exhibits unsatisfactory predictive performance
during summer. Since the ConvLSTM model focuses on spatial
features, it ignores the transmission of temporal information.
Although the training is sufficient, the ConvLSTM model still
cannot guarantee the prediction performance in different time
series data of NDVI.

The ConvLSTM-SAC-NL model effectively takes into ac-
count the long-range dependence of NDVI data and considers the
spatial autocorrelation through the local Moran index and LULC
data. The spatial prediction results of the ConvLSTM-SAC-NL
model for all seasons are closer to the observations than other
models, which is better than other models. The ConvLSTM-
SAC-NL method has a better prediction performance for the
regions that the rest of the models cannot accurately predict.
However, there are still very small areas where the predictions
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Fig. 5. Scatter plots of each models’ predictive accuracy. (a)–(h) show the NDVI prediction accuracy for eight models, where the horizontal and vertical axes
denote the observed and predicted values, respectively. (a) SVR. (b) RF. (c) LSTM. (d) BiLSTM. (e) GCN. (f) PredRNN. (g) ConvLSTM. (h) ConvLSTM-SAC-NL.

are not close to the observations, and the reasons for this can be
further studied in the future.

D. Temporal Prediction Accuracy Evaluation

Fig. 9 shows the mean value time series line chart of each
prediction image for 21 months of each model. The worst per-
formance of temporal prediction is the LSTM model, although
the LSTM model focuses on learning temporal features. The
predicted mean value of LSTM is much larger than that of
observations, especially for the period from November 2017 to
March 2018. The temporal prediction line of the BiLSTM model
is much better compared to LSTM, without any abrupt changes
or anomalies. The PredRNN model performs slightly better,
but it also exhibits anomalies in some months, such as May
2017. The GCN model has an overall lower mean prediction.
The ConvLSTM model processes the surrounding pixels with
convolutional kernels, its temporal change trend of the prediction
results is better than that of the RF and SVR models. However,

the ConvLSTM model frequently has low-value NDVI predic-
tion results. Because of the addition of the nonlocal attention
module and the spatial autocorrelation, the predicted mean value
of the ConvLSTM-SAC-NL model in each month is the closest
to observations. For example, from July 2018 to October 2018,
the mean change line of the ConvLSTM-SAC-NL model is
closest to the observation line among all the models.

E. Computational Complexity Analysis

The FLOPS and Params are calculated for six deep learning
models to measure the computational complexity of each pre-
diction model. Table VI shows that the ConvLSTM model has
relatively high FLOPS. Compared to the ConvLSTM model, the
ConvLSTM-SAC-NL model only increases FLOPS by 0.15G
and Params by 0.01M. This indicates that ConvLSTM-SAC-NL
does not add excessive computational complexity, so the pro-
posed model is highly feasible. Furthermore, it can be observed
that GCN has the highest Params among six deep learning
models due to the involvement of numerous matrix operations.
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Fig. 6. Spatial maps of the differenced accuracy between ConvLSTM-SAC-
NL and ConvLSTM. The difference is obtained by subtracting the evaluation
metric for ConvLSTM-SAC-NL from that of ConvLSTM. (a)–(d) are the dif-
ferenced results for RMSE, MAE, R2, and correlation coefficient, respectively.
(a) RMSE. (b) MAE. (c) R2. (d) Correlation coefficient.

Fig. 7. Box plots of all pixel prediction accuracies of each model. The whiskers
of the box plots show the single-point precision values with confidence intervals
from 10% to 90%, the upper and lower quartiles of the boxes indicate the upper
and lower quartiles, the horizontal line in the center of the box indicates the
median of the single-point precision, and the triangle indicates the mean of the
single-point precision. (a)–(d) are the box plots of the evaluation metrics RMSE,
MAE, R2, and correlation coefficient for each pixel of each model, respectively.
(a) RMSE. (b) MAE. (c) R2. (d) Correlation coefficient.

TABLE VI
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

The PredRNN model reduces the input and output dimensions
through downsampling and upsampling strategies for handling
time series data, resulting in a reduction in Params. Since the
LSTM and the BiLSTM models perform pointwise predictions,
each point requires individual training, so their runtimes are
significantly higher compared to the other models.

V. DISCUSSION

This study evaluated the predictive capabilities of different
models for NDVI. The data used in this study were the NDVI
and LULC data of Huangpi district from MODIS, spanning from
2003 to 2018. We improved the traditional ConvLSTM model by
adding the nonlocal attention module to capture the long-range
dependence of NDVI. Considering the spatial autocorrelation
of vegetation, the local Moran index, and LULC data were
incorporated as input variables into the ConvLSTM-SAC-NL
model for NDVI prediction. The study designed and trained
seven contrast models that were previously applied to vegetation
prediction, including LSTM, BiLSTM, PredRNN, GCN, and
ConvLSTM.

Among these models, the ConvLSTM-SAC-NL model
achieves the highest prediction accuracy using four metrics
(MAE, RMSE, R2, and correlation coefficient). Compared to
the prediction results of the traditional ConvLSTM model, the
ConvLSTM-SAC-NL model shows an improvement of 8.10% in
R2, and a reduction of 19.74% and 22.41% in MAE and RMSE,
respectively. The ablation experiments confirm that the addition
of both the nonlocal attention module and the local Moran index
enhances the predictive capability of the ConvLSTM-SAC-NL
model.

In this study, the LSTM model performs the worst in NDVI
prediction because of the relatively limited training data, which
can result in good performance of the training data but poor
generalization on the testing data. The BiLSTM model is capable
of learning feature representations from both directions in a
sequence. The forward LSTM learns the historical information
of the sequence, while the backward LSTM learns the future
information. By combining the features from two directions,
the BiLSTM model can provide a richer and comprehensive
feature representation, reducing information loss and enabling
more accurate NDVI predictions. The PredRNN model adopts
a stacked recurrent layer structure, which effectively captures
long-term dependence in time series. By introducing recursive
hidden states to retain and update past information, along with
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Fig. 8. Comparison between the predictions and the observations in each season, the red rectangle box is the area where the prediction effect has obvious
difference.

Fig. 9. Time series lines of the mean values of predictions of 21 months for each model.

the stacking of multiple recurrent layers, PredRNN layers can
extract features at different time scales of NDVI.

The GCN, ConvLSTM, and ConvLSTM-SAC-NL models
all consider spatial information. The GCN model utilizes the
neighboring information of nodes for convolutional operations
and updates node representations by aggregating features from
nodes and their neighbors. This neighbor aggregation gives GCN
a better understanding of semantics and context at a global level
by obtaining information from surrounding nodes. However, the

GCN model may struggle to fully capture global information
for NDVI data with long-range dependency relationships. The
ConvLSTM model combines the structures of the CNN and
the LSTM models, which makes the model capture dynamic
changes and spatial correlations of input data in the spatiotem-
poral sequence data more effectively.

Compared with other existing models, the proposed
ConvLSTM-SAC-NL model has two components contributing
to improving NDVI prediction accuracy. First, the nonlocal
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attention module considers the global information of the study
area. The idea of nonlocal processing allows the model to use
several different regions to integrate spectral and spatial infor-
mation. The max-pooling operation in the nonlocal attention
module reduces the computational effort of the model and im-
proves the training efficiency. Second, the ConvLSTM-SAC-NL
model learns the spatial aggregation characteristics of NDVI by
adding the local Moran index and LULC data as features. This
will provide a new direction for future monthly scale NDVI
prediction research.

However, the ConvLSTM-SAC-NL model also has certain
limitations. For example, the ConvLSTM-SAC-NL model could
not improve the prediction accuracy of each pixel versus the tra-
ditional ConvLSTM model. The reason may be the inadequacy
of the training data and the poor generalization ability of the
model. In the future, it is important to consider how to learn the
temporal trends of NDVI better.

VI. CONCLUSION

This study proposed a new NDVI prediction method called
ConvLSTM-SAC-NL that combines the ConvLSTM model, the
nonlocal attention module, and the spatial autocorrelation of
NDVI. We used controlled experiment and ablation experiment
to verify the advantages of the ConvLSTM-SAC-NL prediction
method, by overall accuracy, single-point accuracy, temporal
accuracy, spatial accuracy, and computational complexity. The
main conclusions obtained are as follows. 1) The proposed
ConvLSTM-SAC-NL model availably handles the problem of
ignoring spatial autocorrelation in NDVI prediction research by
incorporating the local Moran index into the ConvLSTM model.
2) The ConvLSTM-SAC-NL model extracts the long-range
dependence to overcome the limitation of convolutional kernels
with the nonlocal attention module.

Compared with the seven classical models, the NDVI pre-
diction accuracy of the ConvLSTM-SAC-NL model is the best.
The proposed ConvLSTM-SAC-NL model can be widely used
in monthly NDVI spatiotemporal prediction. At the same time,
the spatial autocorrelation and the nonlocal attention module
provide a new idea for the spatiotemporal prediction of vegeta-
tion conditions.
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