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Graph Convolutional Network for Remote

Sensing Scene Classification
Chongyang Zhang and Bin Wang , Senior Member, IEEE

Abstract—Remote sensing (RS) scene classification plays an im-
portant role in the intelligent interpretation of RS data. Recently,
convolutional neural network (CNN)-based and attention-based
methods have become the mainstream of RS scene classification
with impressive results. However, existing CNN-based methods do
not utilize long-range information, and existing attention-based
methods do not fully exploit multiscale information, although both
aspects of information are essential for a comprehensive under-
standing of RS scene images. To overcome the above limitations,
we propose a progressive feature fusion (PFF) framework based
on graph convolutional network (GCN), namely PFFGCN for RS
scene classification in this article, which has a strong ability to learn
both multiscale and contextual (local/long-range) information in
RS scene images. It mainly consists of two modules: a multilayer
feature extraction module and a multiscale contextual information
fusion (MCIF) module. The MFE module is utilized to extract
multilevel features and global features, and the MCIF module is
constructed to capture rich contextual information from multilevel
features and fuse them in a progressive manner. In MCIF, GCN
is adopted to explore intrinsic attributes (including the topological
structure and the contextual information) hidden in each feature
map. Through the PFF strategy, the graph features at each level
are fused with the next-level features to reduce the semantic gap
between nonadjacent features and enhance the multiscale repre-
sentation of the model. Besides, grouped GCN based on channel
grouping is further proposed to improve the efficiency of PFFGCN.
The proposed method is extensively evaluated on various RS scene
classification datasets, and the experimental results demonstrate
that the proposed method outperforms current state-of-the-art
methods.

Index Terms—Feature fusion, graph convolutional network
(GCN), graph learning, remote sensing (RS), scene classification.

I. INTRODUCTION

THE advancement of remote sensing (RS) imaging equip-
ment and technologies has made it much easier to obtain
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high-resolution RS scene images, thus providing a solid source
of data support for various applications, such as environmental
monitoring [1], urban planning [2], and natural hazard detection
[3]. All these applications rely on accurate RS scene classifi-
cation, which aims to automatically assign a semantic label to
each RS scene image according to its content and has gradually
become a fundamental task [4]. Since RS scene images have
significant differences from natural images in various aspects
such as shooting angle, spatial complexity, and image resolu-
tion, resulting in greater intra-class differences and inter-class
similarities in features extracted from RS scene images, effective
implementation of feature extraction is essential for accurate
classification of RS scene images [5]. To address this issue,
various methods have been proposed to extract discriminative
features from RS scene images by supervised learning, which
can be roughly divided into two categories: handcrafted feature-
based methods [6], [7], [8], [9] and deep learning-based methods
[4], [10], [11], [12].

Recently, with the development of artificial intelligence, deep
learning-based methods have gradually become the mainstream
of RS scene classification due to their excellent feature extraction
capabilities. Generally, RS scene classification methods based
on deep learning can be divided into two main subcategories:
convolutional neural network (CNN)-based and attention-based
methods.

As the most common model in deep learning, CNNs can learn
rich semantic information hidden in the RS scene images with hi-
erarchical structure [13], thus achieving impressive performance
[5], [14], [15], [16], [17]. Because RS scene images differ from
natural images, especially because they contain complex and
detailed spatial patterns [4], context dependencies must be con-
sidered when distinguishing between different scene categories.
As depicted in Fig. 1(a), in the context of the “Bridge” scene, a
large number of objects related to the scene can be identified, in-
cluding “Building,” “River,” “Car,” “Boat,” and more. Due to the
high inter-class similarity in RS scenes, if the model only focuses
on the local regions, the “Bridge” scene may be misclassified as
other scenes with similar ground objects (e.g., “Park”); if these
local regions can be fully related and considered entirely, the
scene can be correctly classified as “Bridge.” Therefore, the ideal
model is expected to consider local and long-range information
together to make decisions, especially long-range information.
However, due to the locality of convolution operation, current
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Fig. 1. Contextual (local/long-range) information and multiscale information
in RS scene images. (a) Contextual information within “Bridge” category scene.
(b) Different sizes of the same target object “Airplane” in a scene image. (c) A
large area occupied by the target object “Playground.”

CNN-based methods focus on extracting local information, but
ignore the long-range relationship between local regions in RS
scene images [18], [19], [20], [21].

To address the above problem, attention-based methods begin
to be applied to RS scene classification [18], [22], since they
have great potential to extract long-range information from RS
scene images by leveraging the self-attention mechanism to
learn the relationships between elements in a sequence [22].
However, this kind of methods still have some limitations: 1)
They, including various vision transformers [23], [24], usually
use image patches to model contextual dependencies between
patches, which prevents them from extracting local information
of RS scene images with complex spatial patterns and geometric
structures [18]. 2) They mainly extract features at a single scale
and may not have the ability of multiscale learning, which is
crucial to understand RS scene images. As shown in Fig. 1(b)
and (c), the target objects in different RS scene images may
vary significantly in size, and even the size of the same target
object in the same scene may be quite different, such as airplanes
in (b), resulting in the common multiscale phenomena in RS
scene images. Therefore, the ideal model is expected to possess
a strong ability of multiscale information extraction and fusion
to fully understand RS scene images. Besides, attention-based
methods often have a high computational complexity due to the
specific self-attention mechanism.

Recently, some graph-based approaches have attracted much
attention, because graphs have the inherent ability to com-
prehensively represent data topology and geometry [25], [26],
[27], [28], [29]. DFAGCN [25] introduces graph convolutional
network (GCN) to reveal patch-to-patch correlations of convolu-
tional feature maps, thus obtaining more refined features. Vision
GNN (ViG) [30] is proposed as the new backbone of GCN in
computer vision applications, which can be used to directly pro-
cess the image data and extract image features. However, despite
the good results achieved, the above GCN-related methods still
have some drawbacks, such as underutilization of multiscale
information from different levels, which limits performance.

To overcome the limitations of the above methods, this article
proposes a progressive feature fusion (PFF) framework based
on GCN, called PFFGCN, for RS scene classification. The
proposed PFFGCN mainly contains a multilayer feature ex-
traction (MFE) module and a multiscale contextual information
fusion (MCIF) module. First, the MFE module is utilized to
extract global features and multilevel features from RS scene

images. Then, a GCN-based MCIF module with a PFF strategy
is constructed and designed to fully capture the contextual infor-
mation and multiscale information hidden in RS scene images.
Specifically, in MCIF module, GCN is adopted to make full use
of the intrinsic attribute information (including the topological
structure and the contextual information) hidden in each feature
map, and the PFF strategy is designed to effectively fuse the
hierarchical and multiscale features in a progressive manner.
By means of GCN and PFF, we can not only mine and utilize
the multiscale information and contextual (local/long-range)
information in RS scene images, but also significantly reduce
the semantic gap between nonadjacent features, realizing that
the features obtained by the MCIF module contain both rich
multiscale information and contextual information. Finally, a
linear classifier is simply used to achieve high-precision classi-
fication of RS scene images. Moreover, considering the high
computational cost of GCN, grouped GCN block is further
proposed to reduce the complexity of graph-level processing,
thereby improving the overall efficiency of PFFGCN.

The main contributions of our work can be briefly summarized
as follows.

1) A novel feature fusion framework, named PFFGCN, is de-
signed for RS scene classification. This framework mainly
consists of a replaceable MFE module and an MCIF mod-
ule, achieving high-accuracy classification of RS scene
images. Besides, the grouped GCN is further proposed to
improve the efficiency of the proposed PFFGCN.

2) The MCIF module is constructed to fully fuse both multi-
scale information and contextual information in a progres-
sive manner by means of the GCN blocks, significantly
reducing the semantic gap between nonadjacent hierarchi-
cal features and enhancing the multiscale representation
capability of the model.

3) Extensive experimental results conducted on various
benchmark datasets demonstrate that the proposed PF-
FGCN can achieve a new state-of-the-art (SOTA) perfor-
mance for RS scene classification.

The rest of this article is organized as follows: Section II
briefly reviews the related works and recent progresses on RS
scene classification and GCN. In Section III, the PFFGCN
method is presented and described in detail. In Section IV, the ex-
tensive experiments are conducted to evaluate the performance
of the proposed PFFGCN along with the ablation study and
visualization. Finally, the conclusions are given in Section V.

II. RELATED WORKS

A. RS Scene Classification

The purpose of RS scene classification is to classify RS scene
images into different semantic groups according to their con-
tents. Initially, the handcrafted feature-based methods such as
SIFT [7], [31], HOG [8], [32] and bag-of-visual-words (BoVW)
[9], [33] are employed for RS scene classification. However,
with the progress of artificial intelligence, deep learning-based
methods have overtaken handcrafted feature-based methods. Re-
cently, CNN-based and attention-based methods have become
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the norm in computer vision, and RS scene classification has
also embraced these methods.

1) CNN-Based Methods: Since the AlexNet [34] is pro-
posed, CNNs have evolved rapidly in the last ten years. Some
milestone works, including VGGNet [11], ResNet [10], SENet
[10], and Res2Net [35], greatly facilitate the task of image
classification. Based on these baseline models, accuracy of RS
scene classification has been greatly improved as illustrated in
[14], [15], [16], [36], and [37]. To solve the problem that CNNs
pay more attention to local information while ignoring global
information, RLFCNN [16] combines global and rearranged
local features to realize more comprehensive representation.
Different from the traditional CNNs that minimize only the
cross-entropy loss, discriminative CNNs (D-CNNs) [34] apply
a new discriminative objective function to optimize the training
process and explicitly impose a metric learning regularization on
the CNN features. SCCov [14] embeds novel skip connections
and covariance pooling into the traditional CNNs to achieve a
more representative feature learning.

Moreover, since RS scene images usually have information
with various scales, many researchers have studied how to
effectively extract the multiscale information hidden in RS
scene images [5], [17], [38]. SKAL [5] utilizes a global-local
two-stream architecture to produce a multiscale representa-
tion, which involves extracting global and local features from
the whole image and the most significant area, respectively.
MF2CNet [17] designs a multiscale feature fusion covariance
network with octave convolution to get multifrequency and
multiscale features from RS scene images. However, although
CNN-based methods achieve impressive results in RS scene
classification, their ability to capture long-range information
and correlations between objects in RS scene images is limited
by convolution operators, and this constraint may result in a
suboptimal performance in classification tasks.

2) Attention-Based Methods: With the popularity of differ-
ent vision transformers like ViT [23] and Swin transformer [24],
some attention-based methods have been proposed for RS scene
classification to address the aforementioned challenges faced by
CNNs [18], [39], [40], [41].

The existing attention-based methods for RS scene classifi-
cation can be categorized into two major classes. The first class
includes various variants of ViT. ViTRSIC [39] explores the
impact of standard vision transformers architecture in RS scene
classification. SCViT [40] considers both the detailed geometric
information of the RS scene images and the contribution of
the different channels contained in the classification token. The
second class involves methods that integrate attention mecha-
nisms on top of the CNN backbone, such as MBLANet [41]
and EMTCAL [18]. MBLANet [41] combines a convolutional
local attention module with deep residual network (ResNet-50),
which can automatically perceive the key parts of the image,
suppress secondary features, and extract key information in the
feature map. EMTCAL [18] effectively combines the advantages
of CNNs and transformers and develops an efficient multiscale
transformer to explore the intrinsic contextual knowledge in
RS scene images. However, although attention-based methods
can address the limitations of CNNs and effectively capture

Fig. 2. Comparison of different convolutions. (a) CNN convolution. (b) Graph
convolution.

long-range information [8], many of them do not possess strong
multiscale learning capability [18]. Besides, the self-attention
mechanism also results in high computational costs, making
these methods less practical for RS scene classification.

B. GCNs

Recently, GCNs have become one of the most popular models
because of the strong ability of contextual learning. They are
usually used for point cloud classification, scene graph genera-
tion, and action recognition [42] in the field of computer vision
[30]. To overcome the limitations of CNNs and transformers,
GCNs begin to be applied in the RS image processing and
analysis [25], [26], [27], [28], [29]. For the hyperspectral image
(HSI) classification, DAGCN [26] is designed by focusing on
the problems stemming from the increasing resolution of HSIs.
MvRLNet [27] proposes a multiview graph learning module
(MGLM) to integrate topology and spectral graph information
into a unified network, capturing the latent discriminant feature
response in various situations. CGE-AL [28] proposes a new
class-wise graph-embedding-based active learning framework
implemented by a class-wise GCN, achieving outstanding per-
formance on the HSI classification. To improve the feature
representation capability in RS scene classification, CNN-GCN
[29] introduces a novel two-stream architecture that combines
global-based visual features obtained by CNN and object-based
location features obtained by GCN.

As shown in Fig. 2, the traditional convolution networks
usually use a fixed-size kernel around the central pixel to ex-
tract features, while the graph convolution can achieve feature
abstraction function in a more flexible manner by aggregating
features of its neighborhood [26], which means GCNs have
flexible receptive fields and have great potential in computer
vision tasks. In general, graph convolution operation F can be
formulated as aggregation and update operations [43] as follows:

G′ = F (G, W)

= Update(Aggregate(G, Wagg), Wupdate) (1)

where G = (V, E) and G′ = (V′, E′) are the input graph and
output graph, respectively, and Wagg and Wupdate denote the
learnable parameters of the aggregation and update operations,
respectively.

In GCNs, aggregation functions are utilized to extract useful
information from the neighborhood of nodes, while update
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Fig. 3. Overall framework of the proposed PFFGCN, which mainly consists of an MFE module and an MCIF module.

functions perform nonlinear transforms on the aggregated infor-
mation to compute new node representations. More specifically,
for a node xi, its representation x′

i is computed as follows:

x′
i = φ(xi, ρ(xi, N (xi), Wagg), Wupdate) (2)

where ρ is a node feature aggregation function and φ is a node
feature update function, and N (xi) is a set of neighbor nodes of
xi. For the sake of simplicity and efficiency, max-relative graph
convolution is proposed [30], [44]

ρ(.) = x
(agg)
i = max({xi − xj |xj ∈ N (xi)}), (3)

φ(.) = x′
i = x

(agg)
i Wupdate (4)

where the bias term is omitted.

III. PROPOSED METHOD

Since RS scene images contain rich multiscale information
and contextual (local/long-range) information, making full use
of these two aspects of information can effectively improve the
accuracy of RS scene classification. In view of this, we pro-
pose PFFGCN to fully exploit the discriminative information,
which mainly contains an MFE module and an MCIF module,
as illustrated in Fig. 3. First, the input RS scene image with
the size of H ×W × 3 is sent to the MFE module to obtain
multilevel features. Each pixel in feature maps of a scene is
viewed as a node, and an adjacency graph can be constructed
by searching k-nearest neighbors. Then, the MCIF module is
employed to capture the multiscale information and contextual
information. Graph-level processing (conducted by GCN) on the

graphs obtained from each feature map can further exploit long-
range relationship between local regions in RS scene images.
By progressively fusing graph features with next-level features
in the MCIF module, not only can the multiscale information
and contextual information in the RS scene images be fully
utilized, but also the semantic gap between nonadjacent features
can be reduced. Finally, a linear classifier is applied on the
hybrid features obtained by the MCIF module to predict the
results of query scene images. Besides, considering the high
computational cost of GCN, we further propose grouped GCN
to alleviate this issue.

A. MFE Module

The MFE module is employed to extract multilevel features
and global vision features, consisting of multiple stages, each
of which processes the output of the previous stage. Typically,
the output features of each stage have different spatial scales. In
the past, pretrained CNNs are usually deployed as MFE module.
For example, DFAGCN [25] took a pretrained VGGNet-16 as the
MFE module, while EMTCAL [18] used a pretrained ResNet-
34.

As a general framework, various backbone networks can
be deployed as the MFE module in PFFGCN. Considering
the simplicity of method description and the feature extraction
capability of the network, we chose ResNet-50 as an illustrative
example of the MFE module to elaborate on the proposed
PFFGCN in this section. ResNet-50 is a successful CNN model
composed of four stages, with each stage containing multiple
residual blocks. Different residual blocks can capture multilevel
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convolutional features. In the shallow layers, convolutional fea-
tures usually contain low-level details and local information,
such as texture, color, and shape. As the network delves deeper,
semantic information becomes increasingly enriched. Due to the
complex contents in RS scene images, features from different
levels can help construct more comprehensive features accord-
ing to both content and semantic information, so as to facilitate
the classification of RS scene images. For the convenience of
description, we denote the feature obtained from the stage i
as Fi ∈ RHi×Wi×Ci(i = 1, 2, . . . , n). In ResNet-50, n equals
4 and the global vision feature F4 ∈ RH4×W4×C4 is generated
by the last stage of MFE module. For simplicity, we also denote
the global vision feature as G.

B. MCIF Module

The MCIF module is proposed and designed to fully fuse the
multiscale and contextual (local/long-range) information in RS
scene images. In the MCIF module, GCN is utilized to capture
the rich long-range information from the multilevel features, and
the PFF strategy is designed to effectively fuse the multilevel
features with various scales in a progressive manner.

1) Graph-Level Processing of Feature Maps:
a) Construction of graph: Multilevel features encompass

rich local information, yet they lack long-range information
that is crucial for RS scene images. To fully understand RS
scene images, we employ GCN to assist in enhancing con-
textual information in features at different levels. We conduct
graph-level processing on each of the feature maps instead
of the original image because each pixel in the feature maps
represents a local region and has rich local information. Taking
feature map F1 ∈ RH1×W1×C1 as an example, each pixel can be
seen as a feature vector xi ∈ RC1(i = 1, 2, . . . , H1W1). Then,
we get a set of features X = [x1, x2, . . . , xN ] (N = H1W1).
These image features can be viewed as a set of unordered
nodes, which can be denoted as V = {v1, v2, . . . , vN}. A graph
G can be represented by a tuple G = (V, E), where E is the
set of all the edges. It is worth noting that the size of feature
maps determines the number of nodes in each graph. To retain
positional information, the learnable position encodings [23] are
added to these unordered nodes.

b) Graph-level processing by GCN: Most GCNs have a
fixed graph structure and only update the node features at
each iteration. However, the recent work [44] points out that
using dynamic graph convolution to dynamically change graph
structure and neighbor nodes at each layer allows the network to
obtain better graph representations, which effectively alleviates
the oversmoothing problem and generates a larger receptive
field. For these reasons, we recalculate edges between nodes
via a K-NN function in the feature space of each GCN block to
further increase the receptive field. Specifically, for each node
vi, find its k-nearest neighbors Nk(vi) using the K-NN function
and add an edge eji directed from vj to vi for all vj ∈ Nk(vi).
Then the set of edges E and graph G = (V, E) can be updated.

As in (1)–(4), graph convolution utilize aggregation and
update operations to consistently refresh the information
in the graph. This processing can be denoted as X ′ =

Fig. 4. Illustration of the proposed grouped GCN block.

GraphConv(X). To increase the diversity of features, linear
layers are applied before and after the graph convolution, which
can project node features into the same domain. Besides, a
nonlinear activation function is also applied after the graph
convolution to avoid layer collapse. In practical application, the
processing of the graph can be represented as follows:

XG = σ(GraphConv(XWG1))WG2 +X (5)

where σ(.) is the nonlinear activation function, XG represents
the feature after graph-level processing, WG1 and WG2 are the
weights of the first and second linear layers, respectively, and
a residual connection is also utilized here to avoid vanishing
gradients.

To further improve the feature transformation capability and
alleviate the oversmoothing phenomenon commonly seen in
GCNs, a feed forward network (FFN) consisting of a two-layer
multilayer perceptron (MLP) and a residual connection is ap-
plied after graph convolution

FFN(XG) = σ(XGWF1)WF2 +XG (6)

where WF1 and WF2 are the weights of the first and second
linear layers, respectively.

According to the above operations and transformations, we
can acquire graph-based representations of each feature map
that contains rich long-range information. It is worth noting that
batch normalization (BN) is applied after every linear layer or
graph convolution, but it is omitted from (5) and (6) for simplic-
ity. Furthermore, the whole graph-level processing described
above can be simplified as follows:

Y = GCN(X)

= FFN(σ(GraphConv(XWG1))WG2 +X). (7)

Equation (7) is shown as a GCN block in Fig. 3. During
experiments, it can be observed that employing GCN blocks
does not introduce too many parameters, but it will cause extra
computational burden, as described in Subsection IV-E.

c) Grouped GCN: To reduce the computational complex-
ity, we further propose the grouped GCN to improve the model’s
efficiency. As depicted in Fig. 4, after the input feature map
X ∈ RH×W×C is processed by the first linear layer, it is split
into s feature subsets along the channel dimension, denoted as
x1, x2, . . . , xs. The number of channels of each feature subset
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is 1/s of the input feature, but the spatial size is consistent with
the input feature. Each feature subset xi has a corresponding
graph convolution GraphConvi(·). Accordingly, the number of
input channels of each graph convolution also becomes 1/s of
the original. All these subsets are updated in parallel and then
concatenated for subsequent processing

x′
i = GraphConvi(xi), i = 1, 2, . . . , s (8)

XG = σ([x′
1, x

′
2, x

′
3, . . . , x

′
s])WG2 +X (9)

where [.] represents the feature concatenation operation.
After channel division, each graph convolution possesses a

reduced number of parameters and computations, which helps
to diminish the model’s complexity to a certain extent. Moreover,
the grouping update operation allows the model to update infor-
mation in parallel across multiple feature subspaces, thereby
enhancing efficiency. After the grouped GCN, FFN is also
utilized for feature transformation. For simplicity, the above
procedure is expressed as Y = GroupedGCN(X). Notice that
an SE-block [12] is added after the first linear layer of the
grouped GCN block. This operation can yield different weights
to different channels before channel splitting, enabling the model
to pay more attention to useful information. By replacing the
GCN blocks in PFFGCN with the grouped GCN blocks, the
computation cost of graph-level processing can be significantly
reduced, improving efficiency.

2) Multiscale Contextual Information Fusion:
a) PFF strategy: Different levels of features contain infor-

mation of different spatial scales, and effectively fusing these
features can enhance the utilization of multiscale information
in RS scene images. A common strategy for multilevel feature
fusion is direct feature fusion (DFF), in which features of
different scales are directly combined, as employed in [25]. In
DFF, features from different levels are first resized to match
the size of specific features, typically the top or bottom feature.
Subsequently, feature fusion operations such as concatenation
or addition are performed. However, this approach suffers from
the loss or degradation of feature information, which impairs
the fusion effect of nonadjacent levels [45]. The semantic gap
between nonadjacent hierarchical features is larger than the
semantic gap between adjacent hierarchical features, especially
for the bottom and top features. Therefore, directly fusing non
adjacent features from different levels fails to fully leverage the
multiscale information hidden in RS scene images. Moreover,
the sizes vary widely between nonadjacent features, which
means that a considerable number of additional parameters need
to be introduced for the resize operation.

To better utilize the multiscale information in multilevel fea-
tures, we propose the PFF strategy to perform feature fusion on
selected features, and the comparison between DFF and PFF is
shown in Fig. 5. Specifically, low-level features are first fused
with the features of its next level, and the fused features are then
progressively fused with higher level features until the last layer.
The fusion process can be mathematically written as follows:

{
F ′
i = FF(Fi,Downsampling(Fi−1))

F ′
i+1 = FF(Fi+1,Downsampling(F ′

i))
(10)

Fig. 5. Comparison of two different feature fusion strategies. Among them,
Fi represents the feature obtained by the ith stage in the MFE module, “FF”
denotes the feature fusion operation (e.g., concatenation or addition). (a) DFF
strategy. (b) PFF strategy.

where FF(.) denotes the feature fusion operation, and F ′
i rep-

resents the fused feature. Downsampling not only serves the
purpose of resize, but also allows the convolution parameters to
weight the features according to their importance.

By doing so, multilevel features with different scales can be
progressively fused, closing the semantic gap between non-
adjacent features. Moreover, according to the combinational
explosion effect [35], the multiplexing of lower level features
can yield larger receptive fields and comprehensively extract the
connections between the features at different levels, enhancing
the multiscale representation capability of the model.

b) Feature fusion with GCN: The GCN blocks are em-
ployed in the MCIF module to exploit the intrinsic attributes
including topology and contextual information. Specifically,
the MCIF module initially processes low-level features at the
graph level, acquires graph features, and then fuses them with
next-level convolutional features. Thus, a hybrid feature that
contains graph and convolutional characteristics is obtained, as
shown in Fig. 3. This process iterates progressively as described
in PFF strategy. The feature paths of different levels can be
represented as follows:

⎧⎨
⎩
F ′

1 = GCN(F1)
F ′

2 = GCN(F2 + Downsampling(F ′
1))

F ′
3 = GCN(F3 + Downsampling(F ′

2))
(11)

where element-wise addition is used as the feature fusion oper-
ation.

Using the obtained informative graph feature F ′
3, we then

combine it with global vision feature G to fully understand RS
scene images

G′ = G+ Downsampling(F ′
3). (12)

By doing so, the long-range information contained in the
graph features and the local information with various scales
contained in the convolutional features can be fully matched,
and the PFF between adjacent levels will mitigate the impact
of semantic gaps. Consequently, the obtained hybrid feature
G′ contains both rich multiscale information and contextual
(local/long-range) information.

In practical implementation, only 2-times downsampling is
required because only adjacent features are fused. We achieve
this 2-times downsampling using a 2×2 convolution with a stride
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Fig. 6. Samples from UCM dataset with true labels.

of 2. Meanwhile, for each feature path, dropout is employed
during training to enhance generalization.

C. Classification

For the obtained G′, we first use the global average pooling
operation to reduce its spatial size before classification. Next, a
linear layer is used to calculate scores for different categories.
Finally, the softmax function is utilized to classify RS scene
images. In addition, the cross-entropy loss function is adopted
to optimize the network.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the classification performance
of the proposed PFFGCN on three public high-resolution RS
scene datasets. First, a brief introduction to all datasets, im-
plementation details and experimental settings are provided.
Then, extensive experiments are conducted and the experimental
results are reported by comparing the proposed PFFGCN with
other SOTA methods on each dataset. Moreover, the results of
ablation study and visualization are also reported in this section.
Finally, we give an in-depth discussion on the characteristics of
the proposed method.

A. Datasets and Evaluation Metrics

Three public datasets are employed to evaluate the RS scene
classification performance of the proposed PFFGCN, including
UC Merced Land Use dataset (UCM dataset) [9], Aerial Im-
age dataset (AID dataset) [46], and NWPU-RESISC45 dataset
(NWPU dataset) [4].

1) UCM Dataset: This dataset is collected by the Computer
Vision Lab of University of California, Merced. The UCM
dataset contains a total of 2100 RS scene images divided into 21
scene categories on average. Each image in this dataset consists
of 256×256 pixels, and each pixel has a spatial resolution of
0.3 m in the RGB color space. Some examples of this benchmark
dataset are shown in Fig. 6.

2) AID Dataset: This dataset is released by Wuhan Univer-
sity. The AID dataset contains a total of 10 000 RS scene images
with a size of 600×600, and the spatial resolution varies from
0.5 to 8 m. The AID dataset includes 30 scene categories, with

Fig. 7. Samples from AID dataset with true labels.

Fig. 8. Samples from NWPU dataset with true labels.

the number of images in each category varying from 220 to 420.
Some examples of this benchmark dataset are shown in Fig. 7.

3) NWPU Dataset: Constructed by Northwestern Polytech-
nical University, the NWPU dataset contains a total of 31 500
RS scene images divided into 45 scene categories on average.
Each image has a size of 256×256 and spatial resolution ranging
from 0.2 to 30 m per pixel. Some examples of this benchmark
dataset are shown in Fig. 8.

For a fair comparison, the training ratios of the UCM, AID,
and NWPU datasets are set to 50% and 80%, 20% and 50%,
and 10% and 20%, respectively, consistent with the previous
approaches [4], [9], [46], [49], [50], [51], [52], [53], [54]. Overall
accuracy (OA) and confusion matrix (CM) are used to assess
the classification accuracy. OA reflects the overall accuracy of
a classification model, which is defined as the percentage of
correctly classified images in total test images. CM is a table that
accumulates the number of correctly classified and misclassified
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TABLE I
ACCURACY COMPARISON BETWEEN BASELINE AND THE PROPOSED METHOD ON THREE DATASETS

images for each scene class and reflects them as a percentage.
Besides, the total number of parameters and the floating-point
operations (FLOPs) are used to evaluate the efficiency of the
model.

B. Implementation Details and Experimental Setup

In our experiments, two common but different types of visual
backbone networks, CNN-based ResNet-50 [10] and GCN-
based ViG-S [30], are employed as the MFE module of PFFGCN
to verify the generalization capability of the entire framework.
They are initialized by pretrained parameters (using ImageNet
dataset [34]). For RS scene classification, existing works have
demonstrated that using a model pretrained on a large-scale
dataset, such as ImageNet has better performance than training
from scratch [47]. The rest of our model is initialized randomly.

For all GCNs, �2 distance is used to measure the distance
between nodes in the feature space, and GELU [48] is used as a
nonlinear activation function. For the implementation of K-NN,
an MLP with BN and ReLU is adopted to complete the update
function in (4). When using ResNet-50 as the MFE module, we
only add the learnable positional encoding to each node before
the first GCN block, because each level of information, including
positional information, is passed backward progressively and
does not need to be added repeatedly. However, when using
ViG-S as the MFE module, we do not add positional encoding
because ViG-S itself already contains it.

All experiments are implemented using PyTorch framework
and executed on the Ubuntu 18.04 operating system. To speed
up the training process, we utilize a GeForce RTX 3090 with
24G memory. Choose the Adam algorithm as the optimizer to
train our model 50 epochs and set the batch size to 16. The
learning rate is initialized to 0.00003, and a cosine decay learning
rate scheduler with a linear warm-up is adopted. To meet the
size requirements, the images in all three datasets are resized to
224×224. In addition, horizontal flips, vertical flips, and random
rotations are used for data argumentation. For all networks, the
dropout rate is set to 0.3.

To obtain reliable experimental results, we repeat all the
experiments five times by randomly selecting training and test
samples. Finally, the average classification results and standard
deviations of these five runs are reported. In the report, to dis-
tinguish PFFGCN using the GCN block and the grouped GCN
block, we refer to the models using the two different GCN blocks
for graph-level processing as PFFGCN-v1 and PFFGCN-v2,
respectively. In the following analysis of this section, PFFGCN
defaults to PFFGCN-v1.

TABLE II
EFFICIENCY COMPARISON WITH CLASSICAL METHODS

C. Performance of the PFFGCN Method

From Table I, it can be found that the OA of PFFGCN
(ResNet-50) has been improved by 0.91% and 0.34%, 2.14% and
1.27%, and 1.53% and 1.24% compared to the baseline method
(ResNet-50) on UCM, AID, and NWPU datasets, respectively.
Compared with ViG-S, the OA improvement obtained is 0.24%
and 0.28%, 3.05% and 1.37%, and 1.75% and 1.64% on these
three datasets, respectively. The above results show that PF-
FGCN can be effective for various MFE modules. Moreover,
on almost every dataset, the less training data used, the more
significant the improvement, suggesting that our method also
helps to enhance generalization.

Besides the impressive OA results, the corresponding CMs
further confirm the proposed PFFGCN’s superior performance.
Taking PFFGCN based on ResNet-50 as an example, the CMs
on the three datasets are shown in Fig. 9(a)–(c). Fig. 9(a)
shows that our PFFGCN achieves amazing accuracy (≥98%)
in most scene classes in UCM dataset, many of which even
reach 100% such as “Storage Tanks,” “Freeway,” and “River.”
From Fig. 9(b), the proposed PFFGCN yields impressive results
(95%) in most of the scene categories in AID dataset. As shown
in Fig. 9(c), although the NWPU dataset is more challenging,
our PFFGCN still achieves competitive results (≥90%) on most
classes. Besides, the categories of “Church” and “Palace” in
NWPU dataset are easily confused with each other, as they both
have similar monolithic objects, such as magnificent roofs and
greenery, which are similar in texture structure and color char-
acteristics. For both categories, PFFGCN achieves acceptable
results (≥65%) at both training ratios of 10% and 20%.

In terms of the model’s efficiency, taking ResNet-50 based
PFFGCN as an example, the comparison between our PFFGCN
and other classical CNN and transformer methods is shown
in Table II. The total parameters and computation complexity
of PFFGCN are smaller than those of VGG-16, ViT-Base, and
Swin-Base, but larger than those of ResNet-50. Compared with
PFFGCN-v1, PFFGCN-v2 achieves a FLOPs improvement of
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Fig. 9. Confusion matrices of the proposed PFFGCN based on ResNet-50 on three public datasets with different training ratios. (a) UCM dataset, Tr = 50%
(top) and Tr = 80% (bottom). (b) AID dataset, Tr = 20% (top) and Tr = 50% (bottom). (c) NWPU dataset, Tr = 10% (top) and Tr = 20% (bottom).

2.77G. This indicates that PFFGCN has a moderate amount of
storage and computation, posing no significant computational
burden.

D. Comparison With SOTA Methods

To comprehensively evaluate the classification performance
of the proposed PFFGCN in RS Scene classification and verify
the great potential of GCNs in the field of RS, we compare our
method with existing SOTA methods. We divide these meth-
ods into four categories: handcrafted feature-based methods,
CNN-based methods, attention-based methods, and GCN-based
methods, and all results of the compared methods are shown
in Table III. Among them, DFAGCN [25] is a representative
GCN-based method used for comparison, which applies GCN
to further complete feature aggregation and achieve excellent
results. All results for the comparison methods were from the
primary literature, but some methods have not been tested on
certain datasets, so we omit these results in our report.

1) Experiments on UCM dataset: The amount of data in the
UCM dataset is small, and many methods have reached satura-
tion results on this dataset. It is clear from Table III that both the
CNN-based methods and the attention-based methods consis-
tently achieve impressive accuracy, and the proposed PFFGCN
also achieves excellent accuracy on the UCM dataset. When
the training ratio is 50%, compared with the best CNN-based
method (i.e., MF2CNet) and the best attention-based method
(i.e., SCViT), the OA improvement obtained by PFFGCN with

ResNet-50 is 0.28% and 0.14%, respectively. When the training
ratio is 80%, the OA result of PFFGCN (ViG-S) is comparable
to the best outcome (i.e., MGSNet), which is 1.28% higher than
DFAGCN.

2) Experiments on AID dataset: As can be seen from
Table III, PFFGCN achieves the best accuracy among all these
methods. When the training ratio is 20%, PFFGCN using ViG
reaches 96.18% and the OA improvement is 0.62% compared
with the suboptimal method (i.e., SCViT). Compared with the
best attention-based method (i.e., SCViT) and another GCN-
based method (i.e., DFAGCN), the OA improvement obtained
by PFFGCN (ViG-S) is 0.61% and 2.76%, respectively, when
the training ratio equals 50%. And PFFGCN with ResNet-50
is also better than the vast majority of the previous methods.
Experimental results show that our PFFGCN can understand
RS scenes more comprehensively and achieve excellent results.

3) Experiments on NWPU dataset: Compared to the UCM
and AID datasets, the NWPU dataset is more challenging and
has more data. The high inter-class similarity and intra-class
diversity of NWPU dataset easily results in misclassification.
According to Table III, the proposed PFFGCN outperforms
SOTA methods and achieves the best performance. At the train-
ing ratio of 10% and 20%, the OA of PFFGCN (ResNet-50)
reaches 92.91% and 94.89%, respectively. On basis of ViG-S,
PFFGCN achieves higher accuracy of 93.34% and 95.22%,
respectively.

Moreover, both ResNet-50 and ViG-S based PFFGCN-v2 can
also achieve competitive results on all three datasets. These
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TABLE III
COMPARISON OF OA AND STANDARD DEVIATIONS (%) OF STATE-OF-THE-ART METHODS ON THREE PUBLIC DATASETS

positive results show that the proposed method can make full
use of the multiscale and contextual information in RS scene
images.

E. Ablation Study

To analyze the influence of different hyperparameters in GCN
and the contribution of different components in our PFFGCN, we
conduct experiments on AID and NWPU datasets with different
training ratios in this section based on ResNet-50.

1) Analysis of GCN: The number of neighbor nodes k plays
an important role in GCN, which can directly control the aggre-
gation range when constructing graph and updating information.
Too few neighbors will degrade information exchange, while
too many neighbors will result in oversmoothing and extra
computation. To explore the impact of k, we tune k from 3 to 15
for all GCNs in PFFGCN. Moreover, we also study the impact
of channel grouping on the model’s efficiency. The experimental
results are summarized in Tables IV and V, where the total
numbers of parameters and the FLOPs of entire PFFGCN and
a single GCN block (corresponding to F2 ∈ R28×28×512) are
listed.

When use ResNet-50 as the MFE module, the corresponding
PFFGCN has three GCN blocks at different levels. In order to

explore the parameter sensitivity of different levels of GCN,
we set three different parameter strategies for k: uniform (ap-
plying identical parameter setting for different levels of GCN),
increasing (where k gradually becomes larger as the level going
deeper), and decreasing (where k gradually decreases as the
level going deeper). From Table IV, setting identical k for all
GCNs can achieve the best results in most cases on both the
AID and NWPU datasets, and also is convenient to adjust for
the practical applications. Therefore, in our implementation, the
same parameter settings are used for different levels of GCN to
facilitate ease of use.

It can be found from Table IV that the performance of whole
PFFGCN including the accuracy and efficiency varies with the
number of neighbors of GCN. When k increases from 3 to 6,
the overall accuracy of the model improves. However, when
k is greater than 6, the accuracy does not always improve,
but instead causes extra computation, which indicates that a
larger aggregation range is not always better and selecting an
appropriate k value in GCN is important for RS scene classifica-
tion. As can be seen from Table IV, the best trade-off between
overall accuracy and efficiency can be achieved when setting k
to 6 for all GCNs, and therefore, this setting is chosen for all
experiments.

When k = 6, we conduct experiments using three different
numbers of feature subsets, i.e., s = 2, 4, and 8, respectively.
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TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT PARAMETER SETTINGS

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT GCN BLOCKS

From Table V, as s increases, the total number of parameters and
FLOPs of grouped GCN block decrease. When s= 4, the FLOPs
are only half of what they are when s = 1. The classification
accuracy is similar when s = 2 and s = 4. When s = 4, the
model exhibits an overall better performance on the AID dataset.
When s = 2, the model performs better on the NWPU dataset
and even achieves an astonishing 93.02% OA when the training
ratio is 10%. However, when s increases to 8, the performance
starts to significantly decline. This is because the reduction in
parameters results in a decrease in generalization. Due to the
trade-off between the model’s complexity and accuracy, we
choose s = 4 as the default parameter of PFFGCN-v2 and report
results in Subsection IV-D. Moreover, as shown in Tables II and
III, replacing the GCN blocks with the grouped GCN blocks (s
= 4) reduces the FLOPs of the entire model by 25%, and the
classification accuracy is only slightly reduced.

2) Ablation of Each Component: We design ablation exper-
iments to analyze the contributions of different components in
PFFGCN. As mentioned in Section III, our PFFGCN mainly
consists of an MFE module and an MCIF module. The MCIF
module is mainly composed of GCN blocks and PFF strategy.
The ablation experiments are conducted to evaluate the effect
of each component in PFFGCN. Also, to compare the PFF
strategy with the DFF strategy and the corresponding models are
constructed. Totally, the following five models are constructed
for comparison:

1) Model 1 (Fine-tuned ResNet): MFE.
2) Model 2 (Fine-tuned ResNet with DFF): MFE + DFF.

3) Model 3 (Fine-tuned ResNet with PFF): MFE + PFF.
4) Model 4 (PFFGCN with DFF): MFE + DFF + GCN.
5) Model 5 (PFFGCN): MFE + PFF + GCN.
The results of ablation experiments are shown in Table VI.

It can be observed that Model 1 has the lowest average OA,
meaning that DFF, PFF, and GCN should all be valid, but a
more detailed comparison is needed.

a) Evaluation of PFF: By comparing the experimental
results of the Model 1, Model 2, and Model 3, it can be found
that the average OAs of the Model 2 and Model 3 are both higher
than the Model 1, which indicates multilevel feature fusion can
contribute positively to RS scene classification. Meanwhile, the
performance of the Model 3 is significantly superior to that of the
Model 2. This indicates that PFF can better integrate multilevel
features than DFF, effectively alleviating semantic gap between
different levels. Moreover, PFF has fewer parameters and less
computation than DFF. For the AID dataset under training ratio
20% and the NWPU dataset under 10% training ratio, the OA
improvement obtained by PFF is significant, reaching 1.67%
and 1.28%, respectively. The results above demonstrate that
features from different levels are valuable for enhancing the
model’s understanding of RS scene images. It is also proved
that PFF is an effective and efficient multilevel feature fusion
method, which can narrow the semantic gap and facilitate the
construction of comprehensive semantic representation.

b) Evaluation of GCN: Comparisons between Model 2
and Model 4, as well as between Model 3 and Model 5, all
reveal that incorporating GCN can further improve accuracy
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TABLE VI
RESULTS OF ABLATION EXPERIMENTS FOR DFF, PFF, AND GCN

Fig. 10. Visualization using Grad-CAM on NWPU data set. Original scenes with labels are given in the first row. The CAMs generated by fine-tuned ResNet-50
and PFFGCN (ResNet-50) are shown in the second row and the third row, respectively.

for RS scene classification. Taking Model 5 as an example,
for the AID dataset, the OA improvement obtained by GCN
is 0.43% and 0.36% when the training ratios equals 20% and
50%, respectively. For the NWPU dataset, the OA improvement
is 0.32% and 0.27%. By combining PFF strategy and GCNs, the
model can not only learn a more comprehensive multiscale rep-
resentation but also further explore the long-range relationship
between different local regions in RS scene images. Therefore,
GCN is significant for PFFGCN since it can further extract
long-range information from RS scene images. In addition, from
the analysis of GCN, it can also be seen that the number of
neighbor nodes k in GCN can be adjusted to make the model
have different performances, and appropriate s can be selected
according to different task requirements.

Based on the above analysis, we leverage the unique strengths
of PFF strategy and GCN as a whole MCIF module to develop
an integrated solution for RS scene classification, yielding im-
pressive results.

F. Visualization

Regions that the model pays attention to on RS scene images
can be analyzed intuitively by heat maps. To intuitively analyze
the multiscale ability and the understanding of different cate-
gories of proposed PFFGCN, we use Grad-CAM [57] to carry
out class activation mapping (CAM) visualization. Grad-CAM
is a popular visualization method, which utilizes gradients to
compute the importance of spatial locations and makes it easy
for us to understand how a model learns an image. We choose

Fig. 11. Visualization using Grad-CAM on objects of different sizes in the RS
scene images of categories “Tennis Court” and “Basketball Court.”

eight RS scene images with variable objects from the NWPU
dataset to realize CAM and the results are shown in Fig. 10.
Finetuned ResNet-50 and proposed PFFGCN are chosen for
comparison. The regions display in red mean that these regions
are of interest to the model. To further validate the multiscale
ability of PFFGCN, visualization using Grad-CAM on objects
of different sizes within the same category is shown in Fig. 11.

As shown in Fig. 10, although the CAM results based on
baseline (ResNet-50) are correct, the coverage of some objects
is not comprehensive enough, such as “Church,” “Harbor,” and
“Cloud,” which indicates the deficiency in multiscale capability.
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Due to the powerful multiscale ability, the activation maps of
PFFGCN tend to cover the whole object in different scenes like
“Airplane,” “Church,” and “Tennis Court.” Fig. 11 also shows the
PFFGCN based CAM results have more concentrated and com-
prehensive activation maps for small and large objects, which
further demonstrates the multiscale capability of the proposed
method.

In addition, for RS scene images with dispersed objects,
finetuned ResNet-50 can only focus on local regions, such as
“Harbor,” “Parking Lot,” and “Storage Tank.” This indicates that
the baseline (ResNet-50) lacks the ability to represent long-range
information effectively. Benefiting from GCN, PFFGCN can
effectively grasp a broader range of contextual information in
these scenes and distinguish between different categories.

G. Discussions

According to the above experimental results, we can summa-
rize the advantages and disadvantages of the proposed method
as follows.

1) Strong representation capability of multiscale and contextual
information: Benefiting from GCN and the PFF strategy in the
MCIF module, the proposed PFFGCN significantly improves
the classification accuracy of the baseline models and achieves
new SOTA results on all three datasets. In addition to the
excellent accuracy, the CAMs vividly demonstrate that our
PFFGCN can accurately and comprehensively understand
information at various scales and the intrinsic attributes in
RS scene images.

2) Acceptable amount of storage and computation: The total
parameters and FLOPs of PFFGCN are all at moderate and
acceptable levels compared with other classical methods,
suggesting that PFFGCN can serve as a very useful model
in practice.
It should be noted that the introduction of graph-level process-
ing makes the model more complex and affects its operational
efficiency to some extent. Although we have proposed the
grouped GCN to alleviate this problem, the efficiency im-
provement is still limited. The high computational cost of
GCN itself may still pose challenges for applications that re-
quire real-time processing or computing resource-constrained
devices (such as user terminals). In the future work, we may
use knowledge distillation and implement lightweight GCNs
to make the model more efficient.

3) Easy adjustment of the hyperparameters: In our PFFGCN,
only a few hyperparameters need to be tuned. Among them,
tuning k can control the aggregation range of GCN to adapt
the characteristics of different datasets, while adjusting s can
reduce the model’s computational complexity, thus enhancing
the model’s efficiency. Our PFFGCN used the same hyper-
parameter setting on all three datasets, and achieved good
experimental results, which also shows that our method is
not sensitive to the setting of these hyperparameters within a
certain range.

4) End-to-end training and replaceable MFE module: It is easy
to see that the training process of the proposed PFFGCN
is end-to-end, and the MFE module can be replaced with

different general visual backbone networks, which will be
convenient and beneficial for the practical and widespread
application of our method.

Besides, cross-dataset training plays a crucial role in enhanc-
ing the model’s adaptability to new data and tasks, thereby im-
proving its generalization capabilities and overall performance.
However, in our current work, our primary focus is on achieving
high classification accuracy for RS scene classification tasks.
In the future work, we plan to conduct a more comprehensive
study on the interaction between various backbone networks and
the proposed PFFGCN and investigate the domain adaptability
performance of the model on different datasets, so as to fur-
ther improve the cross-domain ability and generalization of the
proposed model.

V. CONCLUSION

This article has presented a novel GCN-based framework
(named PFFGCN) for RS scene classification, which mainly
consists of the MFE module and the MCIF module. The MFE
module is employed to extract multilevel and local/global fea-
tures. Using both PFF and GCN in the MCIF module, the
proposed PFFGCN exhibits a strong representation capability of
multiscale and contextual (local/long-range) information in RS
scene images. More importantly, the proposed framework can
be applied to different backbone networks and exhibits excellent
generalization. The experimental results on three widely used
datasets have shown that the proposed PFFGCN can achieve an
excellent performance for the task of RS scene classification.

Despite promising results achieved by the proposed method,
there is still room for further improvement. In the future, our goal
is to further improve the efficiency and cross-domain capabilities
of the model, as well as the generalization performance, so as to
make it more practical and applicable.
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