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Abstract—The increased development of quantum computing
hardware in recent years has led to increased interest in its applica-
tion to various areas. Finding effective ways to apply this technology
to real-world use-cases is a current area of research in the remote
sensing community. This article proposes an adiabatic quantum
kitchen sinks (AQKS) kernel approximation algorithm with par-
allel quantum annealing on the D-Wave Advantage quantum an-
nealer. The proposed implementation is applied to support vector
regression and Gaussian process regression algorithms. To evaluate
its performance, a regression problem related to estimating chloro-
phyll concentration in water is considered. The proposed algorithm
was tested on two real-world datasets and its results were compared
with those obtained by a classical implementation of kernel-based
algorithms and a random kitchen sinks implementation. On aver-
age, the parallel AQKS achieved comparable results to the bench-
mark methods, indicating its potential for future applications.

Index Terms—Parallel quantum annealing, quantum annealing
(QA), quantum computing (QC), regression, remote sensing (RS).

I. INTRODUCTION

THE task of estimating biophysical quantities from remote
sensing (RS) measurement data is a well-studied problem

in the research community, covering a range of applications such
as water chlorophyll concentration estimation [1], [2], [3], ozone
concentration estimation [4], and crop yield prediction [5].
The task can be interpreted as an inverse modeling problem
whose objective is to find a relationship between acquired
measurements of some specific physical quantities and a value
of interest [1]. On a formal point of view the objective is to
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determine a function y = f(x) : Rd → R, where x ∈ Rd

is the input feature vector containing the data of the optical
measurements and the scalar y ∈ R is the quantity of interest
to be determined. The learning of process of the function f(.) is
carried out by observing a training set of data observation, i.e a
set of N pairs of observation measurements vectors and their
corresponding target value {(xi, yi), i = 1, . . . , N}. Regres-
sion tasks in remote sensing (RS) have been studied by applying
different supervised learning algorithms and among the most
popular are support vector regression (SVR) [6], [7], kernel
ridge regression (KRR) [8], and Gaussian process regression
(GPR) [9]. A common feature of these methods is the usage
of a kernel function k(x,x′), which allows to calculate the
dot product between a nonlinear map of the input vectors in a
transformed feature space taking as argument the original input
vectors, i.e., k(x,x′) = φ(x)Tφ(x′), where φ(.) is a nonlinear
feature map. One of the advantages of using kernel methods
comes from the so-called kernel trick: if in the mathematical
formulation of a learning algorithm feature vectors appear only
as dot products between them, it is possible to “kernelize” the
algorithm by substituting such products with the kernel function
calculated on the same feature vectors [10], [11]. The main
characteristic of this procedure is that it is not necessary to
know the nonlinear feature mapping φ(.) nor the transformed
vectors themselves since the only information needed can be
obtained implicitly by the evaluation of the kernel function.
Kernel methods, however, tend to scale badly as the size of
the training set increases [12]. Starting from this observation,
Rahimi et al. [12], [13] proposed the random kitchen sinks (RKS)
kernel approximation algorithm, which approximates the kernel
function by using randomized features. This procedure, also
known as Random Fourier Features, therefore does not employ
a kernel function but instead explicitly generates transformed
feature vectors through randomization.

Quantum computing (QC) [14], [15] is a computational model
based upon the properties of quantum mechanics that was the-
oretically proven to have the potential to outperform classical
computers in terms of computational complexity on some spe-
cific tasks [16], [17]. However, the availability of a reliable
large-scale quantum computer might still be a distant goal [18].
The growing interest towards the application of different QC
algorithms to enhance machine learning (ML) frameworks laid
the foundations for the development of the research field of quan-
tum machine learning (QML) [19], [20], [21], [22], [23]. In the
context of RS, QML have been applied to image classification
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through the usage of a hybrid quantum-classical neural network
whose quantum layer was implemented with a parametrized
quantum circuit [24], [25], [26].

A QML-based implementation of the Random Fourier fea-
tures has been recently proposed with gate-based quantum com-
puting [27] and quantum annealing (QA) [28]. In the QA-based
implementation, also referred to as adiabatic quantum kitchen
sinks (AQKS), data are linearly encoded in the Hamiltonian of
a quantum system which is then evolved, and the measurement
value taken at the end of the process is then used to generate the
transformed feature vectors that are then used to train a support
vector machine (SVM) for binary classification tasks. In this
work, the AQKS kernel approximation algorithm is applied to
two different kernel-based regression algorithms: SVR and GPR
on two real RS datasets related to chlorophyll concentration
estimation. The obtained results are then compared with those
obtained by the corresponding traditional kernel-based versions
and those obtained by the same algorithm trained using the clas-
sical RKS kernel approximation algorithm. The implementation
of the AQKS kernel approximation algorithm is done using a
D-Wave Advantage system quantum annealer, whereas the work
in [28] simulated the quantum system through trotterization.
Moreover, since the workflow of AQKS requires to solve with
the quantum annealer many problems of small size, the concept
of parallel quantum annealing [29] was used in order to reduce
the computational time during the learning process by running
multiple problem instances in the same annealing cycle. This
is possible because, if two or more problems are independent,
they can be solved in the same annealing cycle by solving the
optimization problem obtained by summing them together. For
the sake of clarity in the notation, the algorithms implemented
with a traditional kernel, the AQKS kernel approximation, and
the RKS kernel approximation are referred to as classical,
quantum, and RKS-based, respectively. Our contributions in this
work can be summarized as follows: Implementation of AQKS
on a real QA device, application of such a scheme to regression
problem with two different algorithms, integration of AQKS
with parallel QA to reduce the computational time, and to the
best of our knowledge, first time application of such a scheme
to a real RS use-case.

II. QUANTUM ANNEALING AND QUBO PROBLEM

FORMULATION

To solve a problem with a quantum annealer it is necessary
to reformulate it as as a quadratic binary unconstrained opti-
mization (QUBO), which corresponds to the optimization of the
following energy function:

min
a1,...,aN

N∑
i=1

N∑
j=i+1

aiQijaj (1)

where ai ∈ {0, 1} and Q is an upper-triangular matrix con-
taining the coefficients of the problem that is referred to as
QUBO weight matrix. By defining a ∈ {0, 1}N � [a1, . . . aN ]
it is possible to rewrite (1) in matrix product form as

min
a

aTQa. (2)

Alternatively, it is also possible to reformulate the problem as a
Ising spin model [30], which is a binary model whose variables
take value in the set {−1,−1}. For QA purposes both problem
formulations can be used.

III. KERNEL REGRESSION METHODS

In this section a description of the classical kernel-based
regression methods is now provided. In principle any symmetric
and positive semidefinite function k(x,x′) can be used as kernel
function [12]. In ML, one of the most popular choice for kernel
function is the radial basis function (RBF) kernel, which has the
property of depending only on the distance of the inputs, i.e:
k(x,x′) = k(||x− x′||). The formula of the RBF is as follows:

k(x,x′) = exp

( ||x− x′||
γ

)
. (3)

The prediction function of the kernel-based algorithms used
in this work can be formulated as a weighted sum of kernel
function evaluations between the N training data points and the
input vector x

f(x) =

N∑
i=1

αik(xi,x) + b (4)

where α1, . . . , αN are a set of scalar whose value is determined
in the learning phase on the training set. The prediction function
is linear with respect to the kernel function evaluations so the
nonlinear modeling in the original feature space is achieved by
applying a linear model in the transformed feature space. In the
following, it will be denoted as X the N × d design matrix in
which each of its row corresponds to a training sample, i.e.,
X[i, :] = xi i = 1, . . . , N and as y ∈ RN the corresponding
target vector. Let us also define as K the N ×N symmetric
matrix, referred to as Gram matrix, that stores the kernel function
evaluation between every pair of training sample xi and xj , i.e.,
Kij = Kji = k(xi,xj).

A. Support Vector Regression

The formulation of the SVR can be obtained by considering
the optimization of a regularized regression problem where the
considered loss function is a ε− insensitive loss function [31],
i.e., a function that gives an error only if the absolute difference
between the actual value and the predicted one is greater than a
value ε > 0 [10]

Lε(f(x)− y) =

{
0, if |f(x)− y| < ε;

|f(x)− y|, otherwise.
(5)

The loss function to be minimized is then

C

N∑
n=1

Lε(f(xn)− yn) +
1

2
||w||2. (6)

In the formula, C is a parameter that controls the overfitting
that by convention multiplies the error term in the equation, and
therefore can be thought as a (inverse)-regularization parame-
ter [10]. The vector w is associated with the linear coefficients
in the transformed feature space.
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It can be shown that the training of the SVR amounts to the
solving of the following constrained optimization problem [10]:

L(ααα, α̂αα) =
1

2

N∑
n=1

N∑
m=1

(αn − α̂n)(αm − α̂m)k(xn,xm)+

− ε

N∑
n=1

(αn + α̂n) +

N∑
n=1

(αn − α̂n)yn (7)

subject to the constraints

N∑
n=1

(αn − α̂n) = 0 (8a)

0 ≤ αn ≤ C (8b)

0 ≤ α̂n ≤ C (8c)

with respect to the variables αi and α̂i with i ∈ 1, . . . , N . Once
the values of α1, . . . , αN and α̂1, . . . , α̂N have been determined
a prediction on an input sample x can then be made through the
formula

f(x) =

N∑
n=1

(αn − α̂n)k(x,xn) + b. (9)

The value of b can be obtained from any point for which 0 <
αn < C or 0 < α̂n < C through the formula

b = tn − ε−
N∑

m=1

(αm − α̂m)k(xn,xm). (10)

It is preferable, however, to average over multiple data points in
order to get a more stable estimation [10].

B. Gaussian Process Regression

The regression approach of GPR is different from that of SVR
because it provides a output distribution of the target y instead
of a point estimation. Such probability distribution is Gaussian
and therefore, it is completely determined by the value of the
mean μ∗ and variance σ∗. In GPR, the relationship between the
input vectors stored in X and the target values is modeled as a
sum between a Gaussian multivariate function N (0,K) and a
independent noise component N (0, β−1IN ). The Gram matrix
is used to construct the covariance matrix that is used to model
the generation process of the training set. By the properties of the
Gaussian function [10] the target values assume the following
probability distribution:

y ∼ N (0,K+ βIN ). (11)

To make a prediction on a unseen input x, let us consider X∗

the N + 1× d matrix obtained by vertically concatenating the
vector x to the matrix X, i.e., the last row of X∗ is equal to
the investigated input vector x while the other rows are equal to
the row of the design matrix X. The probability distribution of
the associated output vector y∗ ∈ RN+1, according to the GPR
framework is

y∗ ∼ N (0,K∗ + βIN+1). (12)

The N + 1×N + 1 matrix K∗, is the Gram matrix calculated
on the design matrix X∗. In the prediction phase the first N
element of the vectory∗

i , i ∈ 1, . . . , N are fixed to the values of
the training samples yi. The last element ofy∗, which is the value
of interest in the regression problem, will have a probability
distribution that depends on the value taken by the first N entries
of the vector and the kernel function evaluations stored in the
Gram matrix K∗. Because of the property of the Gaussian
multivariate function such conditional posterior probability is
still Gaussian and its parameters are given by

μ∗ = κT (K+ βIN )−1y (13)

σ∗ = k(x,x)− κT (K+ βIN )−1κ (14)

where μ∗ and σ∗ denote the mean and variance, respectively,
and κ is defined as κ ∈ RN � [k(xi,x), . . . , k(xN ,x)]. By
defining α ∈ RN � (K+ βIN )−1y (13) can be expressed in
the form of (4) as: αTκ. Since in this work, we were interested
in a point estimation of the target values, the value of the mean
was taken as prediction output for the GPR.

IV. ADIABATIC QUANTUM KITCHEN SINKS

An implementation of RKS employing parametric quantum
circuits as random feature generators has been recently proposed
[28]. In such a procedure, data are encoded in the parameters of
quantum circuit, i.e., the angle rotations of the quantum gates
that make up the circuit, and the randomization in the feature
generation process is obtained by carrying out the measurement
on the quantum state after the application of the quantum circuit.
They key aspect of this method is that the data encoding is
done by a linear function, therefore the nonlinear modeling
achieved in the feature transformation is attributable to quantum
computation effects. In the QA-based AQKS, implementation
data is encoded in a QUBO problem that is then solved with QA.
The resulting solution after the Hamiltonian evolution is then
used to construct the transformed feature vectors. The encoding
is determined by E random matrices Ai, i = 1, . . . , E of size
q × d and E random vectors bi, i = 1, . . . , E of size q, where q
is a hyperparameter that controls the dimension of the resulting
QUBO problem and d is the dimension of the input feature space.
For each training sample xi, E random vectors he

i are generated
with the formula

he
i = Aexi + be (15)

where the subscripts i and the superscripts e are used to denote
the random vector h generated from trainig sample i at episode
e. Each vector he

i is then encoded in a QUBO problem of size q
with the following rule:

Ql = he
i,l (16)

Ql,m = he
i,lh

e
i,m (17)

with l,m ∈ {1, . . . , q}. At the end of the annealing evolution
the vector φ(xi,Ae,be) of length q is obtained by performing
a measurement process and by normalizing by a factor 1/E. The
transformed feature vector zi of size E × q is then obtained by
concatenating the E vectors {φ(xi,Ae,be) e = 1, . . . , E}. The
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Algorithm 1: AQKS Feature Vectors Generation.

encoding procedure is again linear and therefore any nonlinear-
ity in the data transformation comes from the QA process. The
complete algorithmic workflow for generating the transformed
AQKS, defined by Noori et al. [28], is outlined in Algorithm 1
for convenience

The distribution p(A) is generally a multivariate Gaus-
sian where each element of A follows a normal distribution
N (μa, σa) while p(b) is a uniform distribution. In our exper-
iments, for each annealing cycle a total of 1000 readouts were
considered by setting the parameter num_reads in the sampling
function from the D-Wave software accordingly. The final value
was obtained by doing a weighted average over the obtained
samples using as weighting factor the relative occurrence of
each vector.

The workflow of AQKS requires the solving ofN × E QUBO
problems of size q to generate the transformed feature vectors.
The values of the parameters used in the experiments in this
work were E=50 and q=4 for the NOMAD dataset and E=100
and q=2 for the SeaBAM dataset, whereas for both cases μa=0,
σa=0.01. The vectorbwas ignored in the encoding phase. Since
the value of q is generally small, then the annealer will be used
to solve many problems of small size in which the vast majority
of the available physical qubits will remain unused. In this work,
therefore we integrate AQKS with parallel QA to run multiple
problem instances together to reduce the computational time.
The implementation of AQKS with parallel QA will be referred
to as parallel AQKS.

V. PARALLEL QA

When solving a QUBO problem with a D-Wave quantum
annealer the problem graph must be minor-embedded [32] in
the quantum processing unit. This is done because the hardware
topology, which is a Chimera topology for the D-Wave 2000Q
and a Pegasus topology for Advantage, does not provide a full
connectivity on the hardware graph and therefore, it is often
necessary to represent a logical qubit with multiple physical
qubits. During this process each logical qubit, which corre-
sponds to a binary variable in the QUBO model, is mapped
to a group of connected qubits, which are referred to as a
chain. The first step in the minor embedding process is the
construction of the problem graph G(V,E), in which each of

the nodes in V represent a binary variable in the QUBO problem
and for each quadratic term in the QUBO a weighted edge
with weight equal to the corresponding quadratic coefficient
is added. The problem graph is then minor-embedded in the
graph defined by the hardware topology. After that, a subgraph
of the quantum hardware topology will be then assigned to the
problem and the solver will start the annealing procedure on
the qubits of such subgraph. In some cases, especially if the
problem is of small dimension, it will happen that many of
the available qubits will remain unused during the annealing
process. Starting from this observation, parallel QA [29] was
proposed in order to make better use of the available quantum
hardware, considering that two or more independent QUBO
problem can be solved together in the same annealing cycle. Let
us in fact consider two QUBO problemsQ1 andQ2, of size m and
n, respectively. For the sake of convenience in the notation, let
us also denote the variables of Q1 as {a1, . . . , am} ∈ {0, 1}m,
and those of Q2 as {am+1, . . . , am+n} ∈ {0, 1}n. Now let us
consider the QUBO problem Q∗ � Q1 +Q2, whose variables
will then be a1, . . . , am+n ∈ {0, 1}m+n. It is easy to verify from
the problem definition that the minimum of Q∗ is equal to the
sum of the minimum of Q1 and Q2. Moreover, the optimal
solution of Q∗ will preserve the optimal solutions of Q1 and
Q2, i.e., the first m variables of the optimal solution of Q∗ will
be equal to the optimal solution of Q1 whereas the remaining
n variables will be equal to the optimal solution of Q2. The
problem graph related to Q∗, since there are no edges between
ai and aj with i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . ,m+ n},
will be composed by two independent graphs that are identical
to the problem graphs of Q1 and Q2. This reasoning could be
extended to more than two problems, thus setting the theoretical
basis for solving multiple QUBO problems together.

The structure of the encoding problem defined in Section IV is
a fully connected graph of size q. Each of the N × E problems
that are needed to generate the feature vectors has the same
graph structure, therefore the same embedding scheme can be
used when solving together the same number of problems.
By solving multiple QUBO problems in parallel we therefore
managed to obtain the feature transformation for 20 samples in
each annealing cycle. The complete workflow for the proposed
parallel implementation of AQKS is outlined in Algorithm 2.

In the pseudocode of Algorithm 2, it was assumed that the
number of training sample N was a multiple of the number of
samples processed in each annealing cycle, samples_per_run.
If this is not the case, i.e., N = p ∗ samples_per_run+
r,with p, r ∈ N and 0 < r < samples_per_run, the algo-
rithm will run with num_iteration = p+ 1: The first p itera-
tions will follow the procedure described by Algorithm 2, while
the last one will iterate the for loop over the variable n over
1, . . . , r instead of 1, . . . , samples_per_run.

VI. EXPERIMENTAL VALIDATION

A. Datasets

The experimental validation in this work has been carried out
on two real RS dataset related to water chlorophyll concentra-
tion [33].
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Algorithm 2: Proposed Implementation Parallel AQKS Im-
plementation.

1) SEABAM [34] (SeaWiFS Bio-optical Algorithm Mini-
Workshop) The first dataset used contains 919 in situ
measurements of chlotophyll concentration in water taken
from several locations in U.S. and Europe. However, due
to some missing data value only 793 samples were used in
the experiments. The measurements were carried out with
the Sea-viewing Wide Field-of- view Sensor (SeaWiFS)
at five different wavelengths (412, 443, 490, 510, and
555 nm) and the chlorophyll concentration takes values
in the range 0.019 and 32.787 mg/m3.

2) NOMAD [35] (NASA bio-Optical Marine Algorithm
Dataset) The second dataset used is also an in situ dataset
and contains several bioptical data information such as sur-
face irradiances, water-leaving radiances, diffuse down-
welling attenuation coefficients, and chlorophyll concen-
tration values. In this work data taken at five different
wavelengths (411, 443, 489, 510, and 555 nm) were used
as input features vectors for the regression algorithms.
Specifically, for each spectral band the corresponding

feature value was taken as the ratio between the corre-
sponding spectral water-leaving radiance and the spectral
surface irradiance [2]. For the experimental part of this
work, a total of 1210 measurements were used and the
chlorophyll concentration value ranged between 0.017 and
70.21 mg/m3.

For the training phase in both datasets, the values of both
the feature vector and the target value were converted to the
logarithmic domain. The reason for this is that the values of
the bio-physical quantities were assumed to be log-normally
distributed [36].

B. Implementation Details

For each dataset the two regression methods (SVR, GPR)
implemented with the parallel AQKS kernel approximation were
tested on ten different randomly sampled training and test sets of
size 200 each. On each of these run a classical implementation
of the regression algorithm using a RBF kernel and a RKS kernel
approximation were tested and their results in terms of R2 score
and mean squared error (MSE) were compared as a benchmark.
The results achieved in terms of R2 score and MSE by the three
different kernel implementation were then compared.

In each run the hyperparameters of the regression algorithms
were tuned by running a exhaustive grid search defined over a
discrete hyperparameter space on a five-fold validation on the
training set. Specifically, the training set has been divided in five
different subsets (folds) and each hyperparameter configuration
was tested on each fold after being trained on the remaining
four other. The configuration that achieved the highest average
R2 score over the five different folds was selected. Since the
parameters of parallel AQKS kernel approximation were not
optimized empirically because of the computational burden, it
was not performed an optimization of the kernel parameter γ for
the classical and RKS-based algorithm. Such value was set to 1
for the SVR and 2 for the GPR in the classical case, whereas it
was set to 1 for both SVR and GPR in the RKS implementation.
The number of components in the RKS algorithm was set to 50.
All the classical algorithms have been implemented using the
python library scikit-learn [37]. The hyperparameter spaces for
the learning algorithms are as follows.

1) SVR: C : [2−8, 2−7, 2−6, 2−5, 2−4, 2−32−2, 2−1, 1, 2, 22,
23, 24, 25, 26, 27, 28], ε : [10−3, 10−2, 10−1]

2) GPR: Noise parameterβ: [10−10, 10−9, 10−8, 10−7, 10−6,
10−5, 10−4, 10−3, 10−2]

As indicated in Section VI-A, the training phase has been
conducted by considering the logarithm values of both the input
vector and the target value. The trained prediction function then
provided a target value estimation in the logarithmic domain.
For the evaluation of the chosen performance metrics two dif-
ferent setting were considered: In the first one, the comparison
between the predicted and the actual values was carried out
by comparing the value provided by the prediction function
and the logarithm of the target value, whereas in the second
setting the evaluation was conducted by considering the original
target value and the prediction value in the original domain
(obtained by exponentiation). In the following these two settings
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TABLE I
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE LOGARITHM SETTING FOR THE NOMAD DATASET

TABLE II
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE ORIGINAL SETTING FOR THE NOMAD DATASET

TABLE III
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE LOGARITHM SETTING FOR THE SEABAM DATASET

will be referred to as logarithm setting and original setting,
respectively.

VII. RESULTS

The results on the NOMAD dataset in the logarithm and
original setting are reported in Tables I and II, respectively.
Tables III and IV show the results for the SEABAM dataset
(logarithm and original setting, respectively). In the logarithm
domain the three kernel implementations performed similarly in
terms of R2 score and MSE on both datasets with the classical
GPR implementation obtaining slightly better results overall.
Interesting insights can be considered by analyzing the results

in the original domain: For the NOMAD dataset the parallel
AQKS implementation achieved the best average results on both
R2 score and MSE. In the SEABAM dataset, the situation was
more diverse: The classical SVR implementation achieved the
best R2 score, whereas the classical GPR obtained the worst
performances on the same evaluation metric. The parallel AQKS
GPR performed slightly better than RKS implementation while
for the SVR the latter kernel approximation method performed
slightly better. Regarding the MSE, the results were also similar
with the classical SVR and GPR obtaining the best and worst
results, respectively. It is also worth noting that the proposed
parallel AQKS implementation never obtained a negative value
for the R2 score across the various experimental runs, while
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TABLE IV
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE ORIGINAL SETTING FOR THE SEABAM DATASET

the RKS-based implementation obtained a negative score once
with GPR algorithm (experimental run 9 on the SEABAM in the
original setting) and the classical GPR twice (experimental run 7
for the SEABAM and experimental run 8 for the NOMAD, both
in the original setting). Another interesting fact can be observed
by analyzing the best R2 score achieved across the various ex-
perimental runs. In the original setting for the SEABAM dataset
both the RKS-based and classical algorithm always obtained
a higher best R2 across the different runs with respect to the
AQKS even when the AQKS achieved a higher average score.
This fact might indicate a better robustness of the AQKS in terms
of generalization with respect to new dataset sampling, however
further research is needed to verify this hypothesis.

VIII. CONCLUSION

The objective of this work was to develop a AQKS kernel
approximation implementation on a quantum annealer using
parallel QA for regression applications. The choice of using
a parallel implementation was motivated by the high number of
QUBO problems that are needed in the workflow. The proposed
implementation managed to achieve results comparable to those
obtained by classical kernel methods and the traditional RKS
kernel approximation algorithm, which could be indicative of its
potential. The maximum number of samples obtained on each
annealing cycle, given the number of epochs E and the number
of qubits q, is limited by the size of the quantum hardware. In
our work we managed to obtain 20 transformed feature vectors
in each annealing cycle, which makes the process unfeasible for
large datasets. The problem graph for the parallel annealing,
since is composed of many independent smaller subgraphs,
is sparsely connected and therefore, might scale well with a
increased availability of physical qubits in future GA hardware.
Further research could also be conducted to improve upon the
proposed implementation. For instance, the samples that are
selected on each annealing cycle were chosen in a sequential
approach based on their sample index in the dataset; further
research could investigate a way to select the samples to be con-
sidered in the same annealing cycle to increase the performances.
The code associated with this work can be found at this GitHub
repository.1

1GitHub repository: https://gitlab.jsc.fz-juelich.de/sdlrs/quantum-kernel-
estimation-parallel-random-kitchen-sinks
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