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Abstract—Change detection in remote sensing images is a chal-
lenging task due to object appearance diversity and the interfer-
ence of complex backgrounds. Self-attention- and spatial-attention-
based solutions face limitations, such as high memory consumption
and an inadequate ability to capture long-range relations, leading
to imprecise contextual information and restricted performance.
To address these challenges, this article introduces a novel mask-
guided local–global attentive network (MLA-Net). The MLA-Net
incorporates a memory-efficient local–global attention module that
leverages the benefits of both self-attention and spatial attention
to accurately capture the local–global context. Through simulta-
neous exploitation of context within inter- and intrapatches and
information refinement, the feature representation capability is
significantly enhanced. In addition, we introduce a change mask
to refine feature differences and eliminate interference from irrele-
vant changes caused by complex backgrounds. Accordingly, a mask
loss is defined to guide the generation of the mask. Extensive ex-
periments on the LEVIR-CD, WHU-CD, and CLCD datasets show
that our MLA-Net performs better than state-of-the-art methods.

Index Terms—Attention mechanism, change detection (CD),
change mask, convolutional neural network (CNN), remote sensing
image.

I. INTRODUCTION

W ITH global climate change, people around the world are
more concerned about the earth than ever before [1].

Remote sensing (RS) data provide an unbiased, uninterrupted,
and unbounded view of human activities and natural processes.
By comparing pairs of images taken at different moments, RS
change detection (CD) assigns pixel-level binary labels indicat-
ing a change or no change and plays an important role in earth
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Fig. 1. Visual sample results of different methods. (a) T1 images. (b) T2
images. (c) Ground truth. (d) BIT. (e) ChangeFormer. (f) EGRCNN. (g) STANet.
(h) ICIF-Net. (i) Ours. (Red: false negative; Green: false positive.)

observation. It has driven many practical applications, including
damage assessment, urban planning, and environmental moni-
toring [2], [3], [4], [5].

Although CD performance has been improved by deep learn-
ing (DL), it still faces several challenges.

1) High diversity of target appearance: Differences in imag-
ing and lighting conditions, along with seasonal varia-
tions, lead to objects with the same semantic meaning
displaying varying colors and shapes at different times
and spatial locations. For instance, as illustrated in Fig. 1,
the same building in T1 and T2 exhibits different colors
and brightness. Even within the same scene, the appear-
ance of buildings may differ. Overcoming this challenge
requires the extraction of highly discriminative contextual
information to identify the changes of interest.

2) Background complexity: Interference from clouds, haze,
and noise is likely to introduce pseudo changes. This
necessitates the extraction of accurate feature differences
to mitigate the impact of unwanted changes.

Based on the human cognitive system, various attention
mechanisms, such as spatial attention, channel attention, and
self-attention [6], [7], [8], [9], [10], [11], [12], [13], have been
developed to enhance feature discriminative capability. Albeit
the ability to calculate long-range interactions, self-attention is
limited by high memory requirement and is often deployed on
low-resolution features, making it unlikely to obtain accurate
context information effectively. Because of long-distance imag-
ing, RS objects usually have limited details, a factor partially
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overlooked by self-attention that always pays extensive attention
to global information. Although feature maps can be recalibrated
by spatial and channel attention to highlight the important parts,
they struggle to enjoy the benefits of long-range contexts. To the
best of our knowledge, it is still underexplored to effectively en-
code both local characteristics and global semantic interactions
while suppressing background interference for CD.

There is comparatively less work on the accurate extraction of
feature differences compared with the large amount of work on
feature representation. Most work performs feature subtraction
between bitemporal images. However, background noise, scale
differences, etc., can mislead to pseudo changes and result in
false alarms [14], [15]. One way is to use recurrent neural
networks (RNNs) to capture spatial–temporal changes [16],
[17]. However, the suitability of modeling bitemporal images
using RNNs is questionable, as RNNs were originally designed
for sequential data rather than bitemporal data. An alternative
approach is to use spatialwise and channelwise attention to
refine feature changes [15], [18], [19], [20]. For example, the
MDESNet [21] applies the convolutions and sigmoid activation
function to obtain a one-channel feature difference attention
map, which is used to calibrate the concatenated features. In the
absence of supervision, it is unclear whether the attention map
can force the network to extract the accurate feature differences.

In view of the above problems, this article proposes a mask-
guided local–global attentive network (MLA-Net) for CD from
the following two aspects

1) More discriminative contextual feature representation:
We design a memory-efficient local–global attention
(LGA) module by combining the advantages of spatial
attention and self-attention. Instead of pixelwise self-
attention computation across the image, our LGA module
builds the local self-attention within patches and global
self-attention between patches to simultaneously capture
the local and global contexts. Moreover, the two attentions
are further blended, producing a weight to further filter out
the irrelevant background information.

2) More accurate feature differences extraction: We intro-
duce a change mask to refine the initial feature differences
computed via feature subtraction. An additional mask loss
is introduced to generate the mask more accurately. In
this way, unreliable pseudo-feature differences are greatly
suppressed. Thanks to the hybrid advantages of the above
techniques, our method achieves state-of-the-art perfor-
mance on the LEVIR-CD, WHU-CD, and CLCD datasets.

To summarize, the contributions of this article are threefold.
1) We introduce a memory-efficient LGA module for robust

contextual information extraction. This module effectively
leverages both local and global contexts while simultane-
ously filtering out irrelevant information. Its low memory
cost makes it feasible for application in high-resolution
feature maps, enabling better handling of the high diversity
of target appearances and the complexity of backgrounds.

2) We develop a change mask and the corresponding mask
loss to ensure the accurate extraction of feature dif-
ferences. The change mask is produced in a super-
vised manner, guiding the precise generation of feature

differences. Consequently, this approach significantly
suppresses pseudo and unwanted changes, contributing to
more accurate results.

3) Our MLA-Net has undergone extensive comparisons with
state-of-the-art methods and achieved the F1 scores of
91.72%, 95.06%, and 79.88% on the LEVIR-CD, WHU-
CD, and CLCD datasets, respectively. This showcases the
superior performance of MLA-Net in CD tasks.

The rest of this article is organized as follows. Section II
presents the related works. Our proposed approach is demon-
strated in Section III. The experimental results are reported
in Section IV. Discussion is presented in Section V. Finally,
Section VI concludes this article.

II. RELATED WORKS

A. DL-Based RS CD Approaches

Traditional works use data transformations and image alge-
bras, such as principal component analysis [22], change vector
analysis [23], [24], and multivariate CD [25], for CD. The change
map is obtained by performing threshold- and cluster-based
methods on the difference images. By contrast, classification-
based methods perform classification on bitemporal images and
regard the pixels or regions belonging to different classes as
changes [26]. However, these methods typically rely on hand-
crafted features with insufficient representation ability and are
prone to atmospheric conditions, seasonal changes, and satellite
sensors, greatly hindering CD accuracy.

Driven by the wide availability of RS images and high-
level discriminative feature extraction ability, DL-based meth-
ods have substantially boosted the CD performance [27], [28],
[29], [30]. Autoencoders [31], RNNs [32], convolutional neural
networks (CNNs) [7], generative adversarial networks [33],
and transformers [34] are widely used network architectures
for discriminative hierarchical features extraction. CD can be
regarded as the detection of semantic changes between temporal
images. For this reason, fully convolutional networks [35], [36]
and U-Net [37], [38] and their variants [39], [40] are modified for
this task. Differentiated by the way to handle bitemporal images,
early fusion and late fusion are typical approaches. Early fusion
methods cascade the inputs for feature extraction, followed by
classification. In contrast, late fusion uses a shared backbone
network to extract features from bitemporal images individually
and compare feature differences to detect changes. Compared
to early fusion networks, late fusion networks can highlight
the differences between images and obtain more competitive
performance.

As aforementioned, RS objects have diverse appearances. To
improve the separability of different objects, extensive efforts
have been made to improve the feature representation capa-
bilities of networks for CD [6], [41]. Dilated convolution can
enlarge the receptive field and was adopted in [17] to enhance
feature extraction ability. RS objects usually have irregular
shapes and different scales, which requires multiscale feature
extraction [12]. As such, Liu et al. [42] proposed a local–global
pyramid network to extract more discriminant features for the
buildings of different scales from global and local perspectives.
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Fig. 2. Illustration of the proposed MLA-Net. It includes LGA-Net, MFD-Net, and prediction head to extract highly discriminative contextual information,
produce accurate feature differences, and generate the change mask, respectively.

Zhang et al. [43] took advantage of Transformer in global
information extraction and developed Transformer U-Net to
enhance the feature extraction capability and achieved higher
accuracy. Combining the advantages of CNNs and Transformer,
Feng et al. [7] proposed an intrascale cross-interaction and
interscale feature fusion network (ICIF-Net) to harvest the
local–global features simultaneously. Following this line, we
also focus on improving the feature extraction ability of the
network but more efficiently and effectively.

B. Attention for RS Image CD

Driven by the success of the attention mechanism in many
computer vision tasks, extensive efforts have been made in CD
with attentions [44], [45]. On the one hand, attention allows
the network to focus on the most critical features and locations,
suppressing irrelevant features and locations related to back-
ground and noise [46], [47]. Channel and spatial attentions were
used in [48] and [49] to refine the channelwise and spatialwise
features, which greatly mitigates the effect of pseudo changes.
On the other hand, attention is adopted to fuse the features at
various levels, yielding semantically and contextually richer fea-
tures. Zhang et al. [14] achieved multilevel context aggregation
through a multilevel and cross-level attention fusion scheme.
However, in spatial and channel attentions, the receptive field
remains limited in capturing global context.

In contrast, by modeling pairwise long-range interactions
between different image regions [50], [51], [52], self-attention
can extract the global representation for the whole image and

enhance the discriminative capability of features. Chen et al. [11]
generated a few semantic tokens from the semantic representa-
tion of bitemporal images produced by CNNs and modeled the
long-range contexts with a transformer encoder and decoder.
After that, the ChangeFormer was introduced in [34], which
dropped the CNNs and used a hierarchical transformer encoder
with a multilayer perceptron decoder to render multiscale long-
range dependencies. CD can be considered as a dense prediction
task, where high-resolution contextual feature representations
are always important [53]. However, the existing self-attention-
based methods tend to focus extensively on the global context
while neglecting the local contexts. The high memory require-
ment also limits their deployment on high-resolution feature
maps, further reducing their effectiveness in capturing the accu-
rate context.

To this end, we introduce an effective LGA that can efficiently
perform short- and long-range visual dependencies between
high-resolution inputs while suppressing irrelevant background
information with a low memory requirement.

III. PROPOSED METHOD

This section presents the details of our method, including the
overall network, memory-efficient LGA, mask-guided feature
difference generation, and the loss function.

A. Network Overview

Fig. 2 gives an overview of the proposed MLA-Net, which is
based on the Siamese network and consists of three components:
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1) local–global attention network (LGA-Net); 2) mask-guided
feature difference network (MFD-Net); and 3) prediction head.
Formally, given the bitemporal RS images {X1, X2} ∈ R

W×H ,
the LGA-Net maps {X1, X2} into a shared feature space to
enhance their distinguishability. The LGA-Net comprises two
branches with shared architecture and weights. Each branch
includes a backbone network, an atrous spatial pyramid pooling
(ASPP) [54] module, and a feature pyramid network (FPN) [55].
The backbone network extracts maps of different scales from
bitemporal images, denoted as {F i

1, F
i
2}. Here, i ∈ {1, 2, 3, 4}

indexes the feature extraction layers, with spatial resolution de-
creasing gradually from W

4 × H
4 to W

32 × H
32 . Given the varying

sizes of objects in bird’s-eye long-distance imaging, we incorpo-
rate the ASPP module behind the backbone network to leverage
its success in capturing multiscale contexts. The extracted
features are then fed into the FPN to construct multiscale high-
level semantic feature maps, denoted as {P i

1, P
i
2}{i=1,2,3,4}.

To capture accurate contextual information, we introduce the
proposed memory-efficient LGA in the first two layers of the
backbone network.

The MFD-Net first performs feature subtraction between
bitemporal images at different scales. The resulting feature maps
then undergo a 3× 3 convolution, batch normalization, and
rectified linear unit layers to introduce nonlinearity, yielding the
initial feature differences, i.e., {Di}{i=1,2,3,4}. Similar to the
previous feature extraction step, D4 is processed through the
ASPP module to acquire multiscale change information. Subse-
quently, the change information at different scales is densely
fused in a feedforward manner. Specifically, the ith scale is
combined with the feature changes of all the previous scales
Di+1, . . . , D4 via

Di = fuse
(
Up

([
Di+1, . . . , D4

])
, Di

)
(1)

where Up(·) denotes the upsampling operation and 1× 1 con-
volution to align the feature maps in size, and fuse(·) is im-
plemented with feature concatenation. To eliminate irrelevant
changes, we introduced the change mask during the generation
of feature differences.

The prediction head uses a 1× 1 convolution conv1×1, fol-
lowed by a softmax function and an upsampling operation Up(·)
to produce the change probability map, i.e.,

p = softmax (Up (conv1×1(D))) (2)

where D is the concatenation of feature differences at different
scales. We perform upsampling on different sets of features to
ensure uniform scales and employ a 1× 1 convolution to match
the depths of the respective feature sets. In the testing process, p
is binarized with a threshold of 0.5 to generate the final change
map. In the next subsections, we introduce the memory-efficient
LGA and mask-guided feature difference generation in detail.

B. Memory-Efficient LGA

RS objects have unclear details and appearance variance.
Therefore, it is necessary to integrate the local and global interac-
tions between different regions of images to improve the feature
discriminative capability. Unfortunately, convolution usually

Fig. 3. Illustration of our LGA module.

learns local features related to edges and textures due to locally
biased receptive fields. Self-attention-based global contextual
information exploitation lacks the effective consideration of the
local context and has a very high memory requirement, which
hinders its feasibility for high-resolution RS images. To solve
the problems, we develop a memory-efficient and effective LGA
for local and global context exploitation.

Our method is based on the assumption that not all pixels have
semantic dependencies and, therefore, the connections between
pixels should be sparse rather than dense. The success of the
nonlocal means algorithm [56], [57] suggests that there are
long-range interactions between local patches that are spatially
distant from each other. In other words, pixels in each local
patch should be connected to characterize the local context,
while all the patches should be connected to capture the global
context. This observation drives us to introduce LGA to exploit
this context.

As shown in Fig. 3, given a feature map F ∈ R
W×H×C , we

first divide it into multiple nonoverlapping patches of the same
size w × h, obtaining Fi ∈ R

w×h×C . After that, self-attention
within each patch is first computed to encode the local relation-
ship between pixels, i.e.,

Li (Qi,Ki, Vi) = softmax

(
QiK

T
i√

di

)
Vi (3)

where {Qi,Ki, Vi} ∈ R
wh×C are the query, key, and value, re-

spectively, and are obtained by performing 1× 1 convolutional
operations on Fi and di = C. In this way, short-range spatial
correlation is established, facilitating the extraction of image
details. After that, the local attention of all patches is collected
according to the spatial location to derive the local attention L
of the whole feature map.

The global attention is constructed between patches. Specif-
ically, feature maps within each patch are concatenated along
the channel dimension. All the batches are rearranged to yield
F ′ = [F ′

1, . . . , F
′
N ] with F ′

i ∈ R
N×Cwh and N is the number of

patches. Accordingly, self-attention between patches is calcu-
lated as follows:

G (Q,K, V ) = softmax

(
QKT

√
d

)
V (4)
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where {Q,K, V } ∈ R
N×Cwh are the query, key, and value,

respectively, and are obtained by performing 1× 1 convolu-
tional operations on the input feature map F ′ and d = Cwh.
This step allows the local patches to interact with each other,
thus establishing global spatial semantic dependencies. Then,
the obtained global attention is reshaped to the same size as
the local attention. Thanks to the simultaneous use of local and
global attention, the feature extraction ability of the network
can be dramatically enhanced. Finally, the attentive features are
obtained by

F ′′ = F + σ(L + G)⊗ F (5)

where σ is the sigmoid function and ⊗ means the elementwise
multiplication. This step further adaptively refines the feature
maps at different locations based on local and global attentions,
thus enabling the network to focus on the targets of interest.

Our LGA model can be considered as a combination of spatial
attention and self-attention and has hybrid advantages but a
low memory requirement. Removing the σ function and the
elementwise multiplication in (5), the LGA becomes

F ′′ = F + L+G. (6)

This is very similar to the scaled dot-product-based self-
attention, except that our LGA module can effectively capture
both local and global contextual information while suppress-
ing the background information. The space complexity of our
LGA module is O(N(hw)2), while that of self-attention is
O((WH)2). As Nhw = HW , the space complexity of self-
attention is N times that of the LGA module. Accordingly, our
LGA can be flexibly deployed on high-resolution feature maps
to enrich the contextual information extraction.

Moreover, when replacing the L+G with performing con-
volutions on F , (5) reduces to

F ′′ = F + σ(conv(F ))⊗ F. (7)

This is the popular spatial attention. The difference is that our
LGA can enjoy the benefits of the global contexts to enhance
feature representation. In this way, our network is more capable
of identifying changes of interest.

C. Mask-Guided Feature Difference Generation

Because of the imaging environment and background com-
plexity, direct feature subtraction between bitemporal images
tends to introduce irrelevant change information. We further
introduce a change mask to refine the feature differences. This
mask assigns higher importance to changed pixels and lower
importance to unchanged ones. As shown in Fig. 4, the mask is
generated by

Maski = δ
(
Di

)
(8)

where δ(·) is the tanh function. As δ(·) maps Di into weight
between 0 and 1, intuitively, (8) generates mask scores that can
be used to choose positions related to real changes.

Embedding the mask into (1), we can obtain the masked
feature fusion as follows:

Di
f = fuse

(
Maski ⊗ (

Up
([
D1, . . . , Di−1

])
, Di

))
. (9)

Fig. 4. Illustration of the change mask.

In this way, we obtain a hierarchical feature difference with
higher accuracy, significantly overcoming the pseudo changes
caused by the complex background.

In the absence of supervision, it is unclear whether the mask
can force the network to extract the exact feature differences.
Intuitively, a mask loss can be associated with the mask to
guide the learning of the mask. However, the mask is the score
that indicates the possibility of feature changes, and there are
no corresponding ground truth labels to supervise the mask.
Alternatively, as the mask is directly generated from Di, the
accurate Di means a high-quality mask. Therefore, the mask
loss can be imposed on Di. The ground truth change label t is
used to supervise Di. For this regard, as shown in Fig. 4, we use
a lightweight fully convolutional network with a sequence of
convolution and upsampling operators and a softmax function
to turn Di into predicted change m. After that, the mask loss
computes the binary cross-entropy (BCE) loss and the dice loss
betweenm and the downsampled ground truth change map t, i.e.,

LMask = LDice(m, t) + LBCE(m, t). (10)

Here, LDice(m, t) is defined as

LDice(m, t) =

N∑
i=1

1− 2miti
mi

(11)

and LBCE(m, t) is

LBCE(m, t) = −
N∑
i=1

ti logmi + (1− ti) log (1−mi) (12)

where ti and 1− ti denote the changed and unchanged pixels
in the downsampled ground truth change map, respectively; N
denotes the total number of pixels.

D. Loss Function

The MLA-Net contains three loss functions, i.e., BCE loss,
dice loss, and mask loss:

Ltotal = LBCE + LDice + λ
∑
i

LMaski (13)

where λ balances the mask loss and the other two losses. We
experimentally set λ = 0.5 as the best performance is achieved.
The BCE loss calculates the loss between the ground truth
change labels and the predicted labels. The dice loss accounts
for the sample imbalance issue between the number of changed
and unchanged regions.
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IV. EXPERIMENTS

We conducted experiments on the widely used LEVIR-CD,
WHU-CD, and CLCD datasets to evaluate the performance of
our method. Moreover, detailed analysis and ablation study are
provided to show the effectiveness of our method.

A. Experiment Settings

1) Datasets: Three datasets are used for evaluation, includ-
ing LEVIR-CD, WHU-CD, and CLCD.

a) The LEVIR-CD [46] dataset is on building CD and has
637 pairs of bitemporal images, each containing 1024 ×
1024 pixels. According to the default settings in [46], each
image was cut into small nonoverlapping patches in size
of 256 × 256, producing 7120, 1024, and 2048 samples
for training, validation, and testing, respectively.

b) The WHU-CD [58] dataset consists of one pair of aerial
images of size 32 507 × 15 354. One contains 12 796
buildings captured in 2012, and the other contains 16 077
buildings captured in 2016. We cut this image into small
nonoverlapping patches in size of 256 × 256. We ran-
domly divided this dataset into 6096, 762, and 762 samples
for training, validation, and testing, respectively.

c) The CLCD [59] dataset is a cropland change dataset and
contains 600 pairs of images in the size of 512 × 512. It
includes multiple changes related to the cropland, such as
buildings, roads, lakes, and bare soil lands. Following the
setting in [59], we split the dataset into 360, 120, and 120
samples for training, validation, and testing, respectively.

2) Evaluation Metrics: Five metrics were used to measure
the CD performance, including precision (P), recall (R), F1 score
(F1), intersection over union (IoU), and total precision (OA).
These five metrics are defined as follows:

P =
TP

TP+FP

R =
TP

TP+FN

IoU =
TP

TP+FN+FP

OA =
TP+TN

TP+TN+FN+FP

F1 =
2

R−1 + P−1 (14)

where TP, FP, TN, and FN represent the number of true positive,
false positive, true negative, and false negative, respectively.

3) Implementation Details: The patch size w × h was set
as 8 × 8. The LGA modules are placed in the first and second
layers of the FPN. The change masks are applied on {D1, D2}.
We will examine their impact on the performance in the ex-
periment. Our network was implemented using PyTorch and
trained on NVIDIA GeForce RTX 3090 GPUs with the AdamW
optimizer. The initial learning rate was set to 0.002. We used the
OneCycleLR strategy to tune the learning rate with a maximum
and minimum of 0.002 and 0.002/500, respectively. For both the
LEVIR-CD and WHU-CD datasets, the batch size and the total

TABLE I
COMPARISON OF DIFFERENT METHODS ON RESULTS ON THE LEVIR-CD

DATASET

number of epochs were set as 32 and 250, respectively. For the
CLCD dataset, the batch size and the total number of epochs
were 8 and 300, respectively.

4) Compared Methods: We selected nine methods for com-
parison, including CNN-based methods (FC-EF, FC-Siam-Diff,
FC-Siam-Conc [36], STANet [46], DTCDSCN [60], and EGR-
CNN [16]), Transformer-based methods (BIT [11] and Change-
Former [34]), and a hybrid CNN and Transformer-based method
(ICIF-Net [7]). By default, we directly used the performance
of the comparison methods reported in the original article.
Otherwise, we trained them using their published code with the
default parameters.

B. Comparisons With State of the Arts

1) Results on the LEVIR-CD Dataset: Table I gives quantita-
tive comparisons of all the methods on the LEVIR-CD dataset.
We employed different backbone networks to implement MLA-
Net, including ResNet-18, ResNet-50, ResNet-101 [61], and
EfficientNet-B4 [62], to test its robustness to feature extraction.
Among all the alternative methods, ChangeFormer achieves
the highest performance thanks to the inherent advantages in
global spatial dependence modeling. Our MLA-Net provides
very competitive performance even with ResNet-18 as the back-
bone network. The advanced backbone network can further
improve the accuracy. These performance improvements are
attributed to the strong ability of the introduced LGA module to
capture the local–global context and the most important features
successfully. This enhances the discriminative power of the net-
work to identify the targeted object. In addition, the introduced
change masks are more capable of filtering out irrelevant pseudo
changes resulting from the complex background.

We further show the qualitative comparison on the LEVIR-CD
dataset in Fig. 5. FC-EF, FC-Siam-Diff, and FC-Siam-Conc
are removed because of their relatively poor performance. To
provide a better illustration, the true positive and true negative
are marked white and black, respectively. The false positive and
false negative are marked green and red, respectively. The visual
results of our MLA-Net are presented by setting the ResNet-18
as the backbone. Although the buildings are overwhelmed by
strong lighting and shadows with appearance diversity, our
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Fig. 5. Visual comparison on the LEVIR-CD dataset. (a) T1 images. (b) T2 images. (c) Ground truth. (d) BIT. (e) ChangeFormer. (f) EGRCNN. (g) DTCDSCN.
(h) STANet. (i) ICIF-Net. (j) Ours.

TABLE II
COMPARISON OF DIFFERENT METHODS ON THE MEMORY, NUMBER OF

PARAMETERS, TRAINING TIME, AND TESTING TIME

LGA-Net can more effectively extract accurate change masks
with higher completeness and fewer false detections and misde-
tections. It can also be observed that some buildings are difficult
to distinguish due to the appearance diversity and the occlusion
of trees. As a result, BIT, ChangeFormer, and STANet generate
more false negatives. In contrast, the LGA module helps our
MLA-Net successfully detect the building changes by estab-
lishing local and global contexts and refining the feature maps
spatially. On the other hand, shadows, noise, and strong light
can also introduce false changes. Due to the advanced feature
difference extraction enabled by the introduced change masks,
our MLA-Net is more capable of identifying the true changes
and presents fewer false positives and better completeness.

In Table II, we present a comprehensive comparison of other
aspects, including memory consumption, parameters, as well as
training and testing time, under consistent settings. For example,
the batch size is 16 and input image size is 256 × 256. Here, we
use ResNet-18 as the backbone network to implement our MLA-
Net. Notably, our method stands out by occupying relatively
less memory while achieving the highest performance among all
considered methods. This observation underscores the positive

TABLE III
COMPARISON OF DIFFERENT METHODS ON THE WHU-CD DATASET

impact of the LGA and change mask in our approach. It is worth
noting that, in comparison to alternative methods, our approach
exhibits fewer advantages in terms of parameter count, training
time, and testing time. However, striking a balance among these
factors is inherently challenging in the development of a method.
Acknowledging this difficulty, we view the optimization of these
aspects as our future work.

2) Results on the WHU-CD Dataset: Here, we report the
results on the WHU-CD dataset. To eliminate the impact of data
splitting, we retrained all the competing methods. As presented
in Table III, our method stands out and achieves higher scores
in F1, IoU, and OA metrics. Compared to the second best
method, BIT, our MLA-Net has a gain of 3.3% in the F1 metric
when using the same backbone ResNet-18. The performance
improvement is mainly attributed to the introduced change
mask, which effectively suppresses false changes caused by the
surrounding background.

Fig. 6 shows the qualitative comparison on the WHU-CD
dataset. Buildings and other objects, such as containers and
vehicles, have very similar visual appearances, leading to low
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Fig. 6. Visual comparison on the WHU-CD dataset. (a) T1 images. (b) T2 images. (c) Ground truth. (d) BIT. (e) ChangeFormer. (f) EGRCNN. (g) DTCDSCN.
(h) STANet. (i) ICIF-Net. (j) Ours.

variation between classes. The LGA module improves the dis-
criminative power of the network thanks to the simultaneous
exploitation of local and global contexts and the refinement
of spatial feature maps. As a result, our MLA-Net can more
adequately identify building changes and deliver noticeably
fewer false negatives. The edge guidance module in EGRCNN
helps to detect buildings. For this reason, it obtains visually
preferable performance by presenting more accurate change
boundaries. It can also be seen that our MLA-Net is more robust
to pseudo changes compared to EGRCNN. The main reason is
that more reliable feature differences can be extracted due to the
introduction of the change masks. The consistently excellent
performance on the WHU-CD dataset strongly suggests the
effectiveness of our method for CD.

3) Results on the CLCD Dataset: We further evaluated all
the methods on the CLCD dataset. Unlike the LEVIR-CD and
WHU-CD datasets, which focus only on building changes, the
CLCD dataset focuses on changes related to cultivated land.
This may be caused by multiple objects, such as roads and lakes,
making changes more difficult to distinguish. As a result, all the
methods show a performance drop on this dataset, as shown in
Table IV. The irregularity and unclear boundaries of roads and
rivers make it troublesome to learn the edge detection module.
Due to this reason, the performance of EGRCNN is poor. It
should be noted that our method significantly outperforms alter-
native methods. The noticeable performance improvements are
attributed to the following two factors. Armed with memory-
efficient LGA module, our method utilizes both local and global
contexts while effectively filtering out irrelevant information,
facilitating extracting accurate changes. In addition, the mask-
guided feature difference generation proves advantageous in
suppressing pseudo and unwanted changes, leading to more
accurate and refined results.

We provide visual results of all the methods in Fig. 7. In the
first scene, the spatial resolution is very low, and the imaging

TABLE IV
COMPARISON OF DIFFERENT METHODS ON THE CLCD DATASET

condition also changes between bitemporal images, threatening
challenges for distinguishing boundaries. Suffering from limited
consideration of local information, most methods fail to detect
the changes caused by the buildings. Attributing to the rich
local–global contextual information powered by the introduced
LGA module, our method is able to extract most of the changes.
In the next two scenes, the roads are more challenging to be told
from the surrounding environment, which inevitably introduces
more false positives and false negatives when detecting changes.
However, our model still adapts well to changes in road con-
tours due to the powerful contextual modeling capability of the
introduced LGA module. The last two scenes contain multiple
changes, including hills and buildings. Not all are associated
with cropland, making it very demanding for the model to
extract the changes of interest accurately. Benefiting from the
hybrid merits of the LGA module and the change mask, our
method can effectively reduce the impact of irrelevant changes
and accurately detect cropland changes. This is not the case
with other methods. Overall, this experiment demonstrates the
effectiveness of our method in very complicated scenarios.
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Fig. 7. Visual comparison on the CLCD dataset. (a) T1 images. (b) T2 images. (c) Ground truth. (d) BIT. (e) ChangeFormer. (f) EGRCNN. (g) DTCDSCN.
(h) STANet. (i) ICIF-Net. (j) Ours.

TABLE V
ABLATION STUDY ON DIFFERENT MODULES

C. Ablation Study

To gain a more comprehensive understanding of our MLA-
Net, we performed an ablation study of the different components
in this section. Except the first one, all the experiments were
performed on the LEVIR-CD dataset.

1) Effectiveness of Introduced Modules: We built the base-
line model by removing the change mask, mask loss, and LGA
modules and selecting ResNet-18 as the backbone network.
LGA identifies the most informative locations on a local–global
scale. Thus, as given in Table V, performance improves with
the LGA module. The additional performance gain can be
obtained using masks and corresponding losses to filter out
irrelevant pseudo feature differences. It is worth noting that the
combination of three beneficial components achieves the most
remarkable performance gain, as indicated by the F1 score.

To visually demonstrate the effectiveness of the change mask
and loss, we present the feature differences extracted from the
last four cases in Fig. 8. It can be seen that more accurate
feature differences can be obtained by suppressing irrelevant
ones and highlighting the corrected ones with the help of the
change mask and corresponding loss. For clearer intuition, we
also present the obtained change mask in Fig. 9. It is evident that

TABLE VI
COMPARISON WITH ALTERNATIVE ATTENTIONS

the additional supervision results in a precise mask, which more
closely resembles the ground truth change. Overall, the ablation
study evidently verifies the effectiveness of the introduced LGA
module and change mask in improving CD accuracy.

2) Comparison With Alternative Attentions: To fully demon-
strate the effectiveness of the proposed LGA module, we further
replaced the LGA module with self-attention in (6) and spatial
attention in (7). Equation (7) was implemented with spatial
attention in the convolutional block attention module [63]. As
can be seen from Table VI, the self-attention mechanism tends
to focus extensively on the global information but overlooks
the local contexts, leading to lower CD accuracy. The high
memory consumption also limits its usage in high-resolution
feature maps. Our LGA provides the best performance, which
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Fig. 8. Visualization of extracted feature differences. (a)–(c) Images and ground truth changes. (d)–(g) Feature differences yielded by Baseline+LGA,
Baseline+LGA+Mask, Baseline+LGA+Loss, and Baseline+LGA+Mask+Loss.

Fig. 9. Impact of the additional supervision on the change mask generation.
(a) With. (b) Without.

is attributed to the hybrid advantage of spatial attention and
self-attention. We acknowledge that our method involves a larger
computational complexity than some previous works such as
self-attention and spatial attention. However, we believe that it
is worth paying the additional computational cost for improved
performance. Moreover, our LGA module consumes less mem-
ory, making it more feasible for implementation on satellites
with limited memory space.

To gain further intuition, we visualize the resulted feature
maps in Fig. 10. It can be clearly seen that the attention generated
by our LGA module makes the network focus on the most
important locations related to buildings. This also justifies the
superior performance in Table VI.

We further conducted an ablation study on the local and global
attention in the LGA module to show their contribution to CD. As

TABLE VII
ABLATION STUDY ON L AND G IN THE LGA MODULE

TABLE VIII
IMPACT OF THE PATCH SIZE ON THE LGA MODULE

indicated in Table VII, both L and G exhibit discernible impacts
on the performance, and their combined utilization contributes
to an overall higher performance.

3) Patch Size of the LGA Module: The size of the patch
controls the memory consumption and the effectiveness of LGA.
Small sizes require a high memory load and result in local
information not being used effectively. Large size may cause
the global context to be underutilized. Table VIII presents the
performance of LGA peaks at 8 × 8, balancing local and global
context exploitation.

4) Locations of LGA Modules: By setting the patch size to
8 × 8, we change the LGA module in different layers of the
FPN, from layer 1 to layer 3, to observe the performance change.
Accordingly, the number of LGA modules increases from 1 to 3.
As shown in Table IX, the best performance is obtained by setting
the module in the first two layers, corresponding to feature maps
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Fig. 10. Visualization of the feature maps generated by the different attention modules. From top to bottom are the captured images, the feature maps of the
spatial attention, self-attention, and LGA modules.

TABLE IX
IMPACT OF THE LOCATIONS OF LGA MODULES

TABLE X
IMPACT OF THE LOCATIONS OF CHANGE MASKS

with higher resolution. In this case, the local characteristics can
be more adequately captured while requiring fewer parameters.

5) Locations of Change Masks: As the experiment with the
setting of LGA modules, we further vary the locations of masks
to see how they affect the performance. From Table X, the high-
est performance is obtained when adding masks to {D1, D2}.
We gradually fuse the feature differences from the lowest to the
highest resolution. Feature maps in {D1, D2} actually contain
finer spatial information about the changes. Therefore, more ac-
curate change masks can be generated, dramatically alleviating
pseudo changes.

V. DISCUSSION

RS CD confronts challenges arising from the high diversity
in target appearances and the complexity of backgrounds. Our

article addresses the first challenge by introducing a memory-
efficient LGA mechanism, which effectively extracts discrim-
inative contextual information. The second challenge is miti-
gated through the incorporation of a change mask, guiding the
generation of feature differences to identify genuine changes of
interest. Moreover, the feature refinement in the LGA module
is also helpful to tackle this issue. Results from both quantita-
tive and qualitative experiments demonstrate that our approach
achieves superior performance while maintaining low memory
consumption.

However, our method has certain limitations. First, it requires
a substantial number of parameters. Addressing the challenge of
reducing the parameter number while preserving performance
will be a key focus of our future research. Second, our approach
does not incorporate prior knowledge of object shapes; instead, it
relies solely on data-driven methods to achieve a highly discrim-
inative representation. Improving the robustness of the method
could be achieved by embedding object shape information into
the network, perhaps in the form of a dedicated module or
loss function.

VI. CONCLUSION

This article presents a novel MLA-Net to improve CD per-
formance in RS images. The memory-efficient LGA module
leverages the hybrid advantages of self-attention and spatial
attention to acquire more discriminative context information.
The change mask can extract more accurate feature differences,
greatly suppressing the interference of irrelevant changes. Our
MLA-Net achieves superior performance on three benchmark
datasets, demonstrating the effectiveness of our approach in RS
image CD.



XIONG et al.: MASK-GUIDED LOCAL–GLOBAL ATTENTIVE NETWORK FOR CHANGE DETECTION IN REMOTE SENSING IMAGES 3377

REFERENCES

[1] G. Reiersen et al., “ReforesTree: A dataset for estimating tropical forest
carbon stock with deep learning and aerial imagery,” in Proc. AAAI Conf.
Artif. Intell., 2022, pp. 12119–12125.

[2] J. Wang et al., “SSCFNet: A spatial-spectral cross fusion network for
remote sensing change detection,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 16, pp. 4000–4012, 2023.

[3] K. Yang et al., “Asymmetric Siamese networks for semantic change
detection in aerial images,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5609818.

[4] L. Bergamasco, S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised
change detection using convolutional-autoencoder multiresolution fea-
tures,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 4408119.

[5] J. Shi, T. Wu, A. K. Qin, Y. Lei, and G. Jeon, “Semisupervised adaptive
ladder network for remote sensing image change detection,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5408220.

[6] J. Chen et al., “DASNet: Dual attentive fully convolutional Siamese
networks for change detection in high-resolution satellite images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2021.

[7] Y. Feng, H. Xu, J. Jiang, H. Liu, and J. Zheng, “ICIF-Net: Intra-scale cross-
interaction and inter-scale feature fusion network for bitemporal remote
sensing images change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 4410213.

[8] C. Han, C. Wu, H. Guo, M. Hu, and H. Chen, “HANet: A hierarchical at-
tention network for change detection with bitemporal very-high-resolution
remote sensing images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 16, pp. 3867–3878, 2023.

[9] D. Hong et al., “SpectraLGPT: Spectral foundation model,” 2023,
arXiv:2311.07113.

[10] D. Hong et al., “Cross-city matters: A multimodal remote sensing bench-
mark dataset for cross-city semantic segmentation using high-resolution
domain adaptation networks,” Remote Sens. Environ., vol. 299, 2023,
Art. no. 113856.

[11] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5920416.

[12] Q. Guo, J. Zhang, S. Zhu, C. Zhong, and Y. Zhang, “Deep multiscale
Siamese network with parallel convolutional structure and self-attention
for change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5406512.

[13] Y. Shangguan, J. Li, and L. Chang, “Dual-attention cross fusion context
network for remote sensing change detection,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 16, pp. 8943–8959, 2023.

[14] X. Zhang, W. Yu, and M.-O. Pun, “Multilevel deformable attention-
aggregated networks for change detection in bitemporal remote sens-
ing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5621518.

[15] G. Cheng, G. Wang, and J. Han, “ISNet: Towards improving separability
for remote sensing image change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 5623811.

[16] B. Bai, W. Fu, T. Lu, and S. Li, “Edge-guided recurrent convolu-
tional neural network for multitemporal remote sensing image building
change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5610613.

[17] L. Mou, L. Bruzzone, and X. X. Zhu, “Learning spectral-spatial-temporal
features via a recurrent convolutional neural network for change detection
in multispectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 57,
no. 2, pp. 924–935, Feb. 2019.

[18] Q. Li, R. Zhong, X. Du, and Y. Du, “TransUNetCD: A hybrid transformer
network for change detection in optical remote-sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5622519.

[19] L. Zhang, X. Hu, M. Zhang, Z. Shu, and H. Zhou, “Object-level change
detection with a dual correlation attention-guided detector,” ISPRS J.
Photogrammetry Remote Sens., vol. 177, pp. 147–160, 2021.

[20] C. Zhang et al., “A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images,” ISPRS J.
Photogrammetry Remote Sens., vol. 166, pp. 183–200, 2020.

[21] J. Zheng et al., “MDESNet: Multitask difference-enhanced Siamese net-
work for building change detection in high-resolution remote sensing
images,” Remote Sens., vol. 14, no. 15, Art. no. 3775, 2022.

[22] J. Deng, K. Wang, Y. Deng, and G. Qi, “PCA-based land-use change
detection and analysis using multitemporal and multisensor satellite data,”
Int. J. Remote Sens., vol. 29, no. 16, pp. 4823–4838, 2008.

[23] M. Zanetti, F. Bovolo, and L. Bruzzone, “Rayleigh-rice mixture param-
eter estimation via EM algorithm for change detection in multispectral
images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5004–5016,
Dec. 2015.

[24] L. Bruzzone and D. Prieto, “An adaptive semiparametric and context-
based approach to unsupervised change detection in multitemporal remote-
sensing images,” IEEE Trans. Image Process., vol. 11, no. 4, pp. 452–466,
Apr. 2002.

[25] B. Du, Y. Wang, C. Wu, and L. Zhang, “Unsupervised scene change detec-
tion via latent Dirichlet allocation and multivariate alteration detection,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 12,
pp. 4676–4689, Dec. 2018.

[26] Y. Li, M. Gong, L. Jiao, L. Li, and R. Stolkin, “Change-detection map
learning using matching pursuit,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 8, pp. 4712–4723, Aug. 2015.

[27] H. Chen, W. Li, S. Chen, and Z. Shi, “Semantic-aware dense representation
learning for remote sensing image change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5630018.

[28] Y. Feng, J. Jiang, H. Xu, and J. Zheng, “Change detection on remote sensing
images using dual-branch multilevel intertemporal network,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023, Art. no. 4401015.

[29] J. Wang, Y. Zhong, and L. Zhang, “Change detection based on supervised
contrastive learning for high-resolution remote sensing imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5601816.

[30] C. Wu, B. Du, and L. Zhang, “Fully convolutional change detection
framework with generative adversarial network for unsupervised, weakly
supervised and regional supervised change detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 8, pp. 9774–9788, Aug. 2023.

[31] G. Liu, L. Li, L. Jiao, Y. Dong, and X. Li, “Stacked fisher autoencoder for
SAR change detection,” Pattern Recognit., vol. 96, 2019, Art. no. 106971.

[32] H. Chen, C. Wu, B. Du, L. Zhang, and L. Wang, “Change detection in
multisource VHR images via deep Siamese convolutional multiple-layers
recurrent neural network,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 4, pp. 2848–2864, Apr. 2020.

[33] M. Gong, X. Niu, P. Zhang, and Z. Li, “Generative adversarial networks for
change detection in multispectral imagery,” IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 12, pp. 2310–2314, Dec. 2017.

[34] W. G. C. Bandara and V. M. Patel, “A transformer-based Siamese network
for change detection,” in Proc. Int. Geosci. Remote Sens. Symp., 2022,
pp. 207–210.

[35] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[36] R. Caye Daudt, B. Le Saux, and A. Boulch, “Fully convolutional Siamese
networks for change detection,” in Proc. IEEE Int. Conf. Image Process.,
2018, pp. 4063–4067.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[38] J. Li, S. Li, and F. Wang, “Adaptive fusion nestedUNet for change detection
using optical remote sensing images,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 16, pp. 5374–5386, 2023.

[39] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[40] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 6230–6239.

[41] M. Zhang and W. Shi, “A feature difference convolutional neural network-
based change detection method,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 10, pp. 7232–7246, Oct. 2020.

[42] T. Liu et al., “Building change detection for VHR remote sensing images
via local–global pyramid network and cross-task transfer learning strat-
egy,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2021, Art. no. 4704817.

[43] C. Zhang, L. Wang, S. Cheng, and Y. Li, “SwinSUNet: Pure transformer
network for remote sensing image change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5224713.

[44] J. Huang, Q. Shen, M. Wang, and M. Yang, “Multiple attention Siamese
network for high-resolution image change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2021, Art. no. 5406216.

[45] W. Gao, Y. Sun, X. Han, Y. Zhang, L. Zhang, and Y. Hu, “AMIO-Net:
An attention-based multiscale input–output network for building change
detection in high-resolution remote sensing images,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 16, pp. 2079–2093, 2023.



3378 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[46] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, 2020, Art. no. 1662.

[47] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected
Siamese network for change detection of VHR images,” IEEE Geosci.
Remote Sens. Lett., vol. 19, 2022, Art. no. 8007805.

[48] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised
attention metric-based network and an open aerial image dataset for remote
sensing change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5604816.

[49] X. Peng, R. Zhong, Z. Li, and Q. Li, “Optical remote sensing image change
detection based on attention mechanism and image difference,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7296–7307, Sep. 2021.

[50] X. Xu, J. Li, and Z. Chen, “TCIANet: Transformer-based context in-
formation aggregation network for remote sensing image change detec-
tion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 1951–1971, 2023.

[51] Q. Guo, X. Qiu, P. Liu, X. Xue, and Z. Zhang, “Multi-scale self-
attention for text classification,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 7847–7854.

[52] P. Chen, B. Zhang, D. Hong, Z. Chen, X. Yang, and B. Li, “FCCDN:
Feature constraint network for VHR image change detection,” ISPRS J.
Photogrammetry Remote Sens., vol. 187, pp. 101–119, 2022.

[53] J. Wang et al., “Deep high-resolution representation learning for visual
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10,
pp. 3349–3364, Oct. 2021.

[54] F. S. H. A. Liang-Chieh Chen and G. Papandreou, “Rethinking atrous con-
volution for semantic image segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017.

[55] S.-W. Kim, H.-K. Kook, J.-Y. Sun, M.-C. Kang, and S.-J. Ko, “Parallel
feature pyramid network for object detection,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 239–256.

[56] A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” Image
Process. On Line, vol. 1, pp. 208–212, 2011.

[57] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005,
pp. 60–65.

[58] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[59] M. Liu, Z. Chai, H. Deng, and R. Liu, “A CNN-transformer network
with multiscale context aggregation for fine-grained cropland change
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4297–4306, 2022.

[60] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change
detection for remote sensing images using a dual-task constrained deep
Siamese convolutional network model,” IEEE Trans. Geosci. Remote
Sens., vol. 18, no. 5, pp. 811–815, May 2021.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[62] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[63] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

Fengchao Xiong (Member, IEEE) received the B.E.
degree in software engineering from Shandong Uni-
versity, Jinan, China, in 2014, and the Ph.D. degree in
computer science and technology from the College of
Computer Science, Zhejiang University, Hangzhou,
China, in 2019.

He visited Wuhan University, Wuhan, China; Grif-
fith University, Nathan, QLD, Australia; and the Uni-
versity of Macau, Taipa, Macau, in 2011–2012, 2017–
2018, and 2021–2023, respectively. He is currently an
Associate Professor with the School of Computer Sci-

ence and Engineering, Nanjing University of Science and Technology, Nanjing,
China. His research interests include hyperspectral image processing, machine
learning, and pattern recognition.

Dr. Xiong is a Topical Associate Editor for IEEE TRANSACTIONS ON GEO-
SCIENCE AND REMOTE SENSING.

Tianhan Li received the B.E. degree in computer
science and technology in 2021 from the Nanjing Uni-
versity of Science and Technology, Nanjing, China,
where he is currently working toward the M.S. degree.

His research interests include machine learning and
remote sensing image analysis.

Jingzhou Chen received the B.E. degree in computer
science and technology from Sichuan University,
Sichuan, China, in 2016, and the Ph.D. degree in
computer science and technology from the College of
Computer Science, Zhejiang University, Hangzhou,
China, in 2022.

From 2022 to 2023, he was a Senior Computer
Vision Engineer with the Security and Risk Manage-
ment Group, Ant Group, Hangzhou, China, where
his work aimed to manage the risk from the image
content. He is currently an Assistant Professor with

the School of Computer Science and Engineering, Nanjing University of Sci-
ence and Technology, Nanjing, China. His research interests include machine
learning, pattern recognition, and remote sensing image analysis.

Jun Zhou (Senior Member, IEEE) received the B.S.
degree in computer science and the B.E. degree in
international business from the Nanjing University
of Science and Technology, Nanjing, China, in 1996
and 1998, respectively, the M.S. degree in computer
science from Concordia University, Montreal, QC,
Canada, in 2002, and the Ph.D. degree in computing
science from the University of Alberta, Edmonton,
AB, Canada, in 2006.

In 2012, he joined the School of Information
and Communication Technology, Griffith University,

Nathan, QLD, Australia, where he is currently a Professor. Prior to this, he was a
Research Fellow with the Research School of Computer Science, Australian Na-
tional University, Canberra, ACT, Australia, and a Researcher with the Canberra
Research Laboratory, NICTA, Canberra. His research interests include pattern
recognition, computer vision, and spectral imaging with their applications in
remote sensing and environmental informatics.

Dr. Zhou is an Associate Editor for IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING and Pattern Recognition.

Yuntao Qian (Senior Member, IEEE) received the
B.E. and M.E. degrees in automatic control from
Xi’an Jiaotong University, Xi’an, China, in 1989 and
1992, respectively, and the Ph.D. degree in signal
processing from Xidian University, Xi’an, in 1996.

From 1996 to 1998, he was a Postdoctoral Fel-
low with Northwestern Polytechnical University,
Xi’an. Since 1998, he has been with the College of
Computer Science, Zhejiang University, Hangzhou,
China, where he became a Professor in 2002. In
1999–2001, 2006, 2010, 2013, 2015–2016, and 2018,

he was a Visiting Professor with Concordia University, Montreal, QC, Canada;
Hong Kong Baptist University, Hong Kong; Carnegie Mellon University, Pitts-
burgh, PA, USA; the Canberra Research Laboratory, NICTA, Canberra, ACT,
Australia; Macau University, Taipa, Macau; and Griffith University, Nathan,
QLD, Australia. His current research interests include machine learning, signal
and image processing, pattern recognition, and hyperspectral imaging.

Dr. Qian is an Associate Editor for IEEE JOURNAL OF SELECTED TOPICS IN

APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


