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SSNet: A Novel Transtormer and CNN Hybrid
Network for Remote Sensing Semantic Segmentation

Min Yao"”, Yaozu Zhang

Abstract—There are still various challenges in remote sensing
semantic segmentation due to objects diversity and complexity.
Transformer-based models have significant advantages in cap-
turing global feature dependencies for segmentation. However, it
unfortunately ignores local feature details. On the other hand,
convolutional neural network (CNN), with a different interaction
mechanism from transformer-based models, captures more small-
scale local features instead of global features. In this article, a new
semantic segmentation net framework named SSNet is proposed,
which incorporates an encoder—decoder structure, optimizing the
advantages of both local and global features. In addition, we build
feature fuse module and feature inject module to largely fuse these
two-style features. The former module captures the dependencies
between different positions and channels to extract multiscale
features, which promotes the segmentation precision on similar
objects. The latter module condenses the global information in
transformer and injects it into CNN to obtain a broad global field
of view, in which the depthwise strip convolution improves the
segmentation accuracy on tiny objects. A CNN-based decoder pro-
gressively recovers the feature map size, and a block called atrous
spatial pyramid pooling is adopted in decoder to obtain a multiscale
context. The skip connection is established between the decoder
and the encoder, which retains important feature information of
the shallow layer network and is conducive to achieving flow of
multiscale features. To evaluate our model, we compare it with
current state-of-the-art models on WHDLD and Potsdam datasets.
The experimental results indicate that our proposed model achieves
more precise semantic segmentation.

Index Terms—Fusion features, multiscale features, remote
sensing (RS), semantic segmentation.

1. INTRODUCTION

EMANTIC segmentation is one of the most basic and
S important topics research in the fields of image processing,
which is widely applied to various segmentation tasks, such as
remote sensing (RS) image segmentation [2], [3] and medical
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Fig. 1. RS image segmentation example. The black box frames out the
complex backgrounds of the given image while the purple box and the green
box show high similarity objects and tiny objects in high-resolution images. The
cars, buildings and clutter in the purple box are highly similar in both shape and
size, and the green boxes show some tiny objects.

image segmentation [3], [4]. For RS, semantic segmentation is
also named ground-objects identification, referring to a dense
prediction task. In other words, it needs to categorize each
pixel in an image and then corresponds it to ground-objects
of different categories. With the fast development of computer
vision technology, semantic segmentation of RS image becomes
a current research hotspot and a useful tool in wide ranges of
applications, such as building extraction [6], land cover mapping
[7], urban planning [8], environmental change monitoring [9],
and agricultural production [10]. RS images contain various
objects, such as airplanes, cars, roads, buildings, and trees. Due
to the diverse and complex nature of ground objects, RS image
segmentation still faces great challenges, including high back-
ground complexity [11], high similarity objects [12], tiny objects
in high resolution images [13], as shown in Fig. 1. Recently,
as an important theory to extract image features, convolutional
neural network (CNN) has attracted wide attention to RS image
semantic segmentation. Many works based on CNN theory have
already achieved encouraging results. Take fully convolutional
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network (FCN) [6] for example, it is a seminal study in se-
mantic segmentation using CNN, which performs pixel-level
categorization of images. Since then, FCN has inspired many
following works [24], [25], [26] and encoder—decoder structure
has become a main choice for semantic segmentation. Further-
more, researchers have focused on enhancing such structure in
various aspects. Specifically, [24], [26], [28], [29], [30] explored
expanding the receptive field. Contextual information has been
acknowledged as a crucial feature, with [31], [32], [33], [34],
[35] delving into this domain. In addition, there are works on
auxiliary networks, which aimed at extracting boundary infor-
mation to assist in pixel classification, such as [36]. Recently,
SegNext [1], based on the traditional convolutional improve-
ment, has been proposed, which employs a similar pyramid
structure to SegFormer [18] and uses multiscale convolutional
features to evoke spatial attention mechanism.

On the other hand, the outstanding modeling capabilities
of self-attention have brought new achievements in computer
vision. Computer vision models, such as [40], [41], and [42], em-
ployed self-attention to capture dependencies between features
in spatial and channel dimensions. Recently, vision transformer
(ViT) [15]is atypical representation for image classification pro-
posed by Dosovitskiy et al., which was inspired by transformer
scaling successes of natural language processing (NLP) [14]. To
improve ViT, various works have explored a variety of theories
for modifying ViT and presented some excellent performance,
such as [16], [18], [19], [43], [44], [45], [46]. Both the decoder
and encoder of DETR [43] use the transformer structure, and
deformable DETR [44] improves on this structure. A pure trans-
former backbone network in semantic segmentation, was intro-
ducedin SETR [45], and CNN-based decoders were proposed. In
addition, related PE problems were explored in CPVT [46], and
a dynamic positional embeddings (PEs) theory was proposed.
Meanwhile, multiscale feature maps are crucial in visual tasks,
so PVT1 [19] proposed a transformer backbone with multiscale,
which is a significant improvement. SegFormer [18] improved
ViT by introducing a hierarchical network, while using mix-FFN
instead of PE, which is a remarkable achievement.

Following ViT models usually divide an image into multiple
linearly embedded patches and input them into a standard trans-
former with PEs, resulting in encouraging performance. Trans-
former models are powerful at modeling global context [20], and
require global features reasoning by computing self-attentions
among all the tokens [21], but unfortunately deteriorate local
feature details [22]. Due to this characteristic, great problems
may exist, especially in semantic segmentation of RS images
with complex backgrounds, or with small and highly similar
objects. Here are several reasons. First, complex backgrounds
can fool small objects, that is, self-attentional learning of pixels
on small objects absorbs complex backgrounds noise, resulting
in poor segmentation results [13]. Second, it is difficult to
classify highly similar objects based on their shape, color, and
pattern. Last but not least, the image local continuity can be
easily lost [18].

While both CNN and transformer models excel in the field of
semantic segmentation, there are differences between them. One
major difference is the feature interaction mechanism. In CNN,
convolutional kernels are locally connected to the input feature
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maps, where features only interact with their local neighbors
[21]. In other words, the modeling range of CNN is limited by
the receptive field of convolution kernels. Although the limited
receptive fields of convolutions inevitably result in the neglect
of global image features, they are more sensitive to local in-
formation, hence more sensitive to tiny objects. In addition, it is
mentioned in [27] that CNNs are “texture biased”” and make pre-
dictions mainly from texture in an image. Texture information
plays a more importantrole, when distinguishing between highly
similar objects and between objects with complex backgrounds.
Therefore, the feature interaction mechanism of CNN has the
benefit of remedying such fine details in the image that are
deteriorated or neglected in transformer. Various works [17],
[20], [47], [48], [49] explored the theory of fusing CNN and
transformer.

In this article, to compensate the limitations of transformer
in local modeling, a novel semantic segmentation network for
RS images called SSNet was constructed, which obtains feature
maps from two complementary mechanism, SegFormer and
SegNext, thus selectively promote the convergence and flow
of both. In addition, feature fuse module (FFM) and feature
inject module (FIM) are designed in our network. The purpose
of FFM is to enhance the local details in transformer by fusing
the features of CNN and transformer, then inject the fused
features into transformer. FIM selectively acquires multiscale
feature information to inject into CNN as to enhance the flow
between global information and local information in each stage.
Furthermore, a CNN-based decoder is constructed to restore the
feature map size and acquire the semantic segmentation results.
The primary contributions of this work are as follows.

1) We present a novel network designed specifically for RS
semantic segmentation, which retains local and global
information in both branches. It maximizes the injec-
tion of complementary information from CNNs into self-
attention to obtain excellent segmentation results.

2) To enhance the detail information of transformer, four
branches are designed in FFM to handle two-style features.
A combination of attention mechanisms and pooling lay-
ers is used to wake up the module’s ability to orchestrate
global and local information.

3) We apply strip convolution and squeeze-and-excitation
(SE) module [40] to compensate for CNN’s neglect of
global information during downsampling in FIM. SE mod-
ule allows selective focus on channels, while depthwise
strip convolution increases the ability to capture tiny ob-
jects.

4) We propose a CNN-based decoder that combines ASPP
module to preserve more details. With skip connections
within encoder and decoder, it improves deep features,
recover feature maps to the original image resolution, and
achieves competitive results.

II. RELATED WORKS

In this section, we make a compendium of semantic segmen-
tation models from three different perspectives. Section II-A
introduces the use of CNN models in semantic segmentation.
Section II-B is an introduction to the model of self-attention and
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transformer. Section II-C describes the model combining both
self-attention and CNN.

A. CNN-Based Methods for Semantic Segmentation

With the prevalence of computer vision in RS, semantic seg-
mentation for RS image based on CNN has garnered significant
attention. Semantic segmentation is systematically studied in a
seminal work FCN [6]. FCN has an encoder—decoder architec-
ture, which has inspired many works adopting this architecture
in semantic segmentation. The encoder plays a crucial role in
feature representation learning and like most other CNNs de-
signed for computer vision, it comprises stacked convolutional
layers. Considering the computational cost, a strategy of grad-
ually reducing the feature maps resolution is applied, allowing
the encoder to learn more semantic information by gradually
increasing the receptive field. Although FCN has high efficiency
and low complexity, the semantic segmentation results are not
satisfying enough, because this network ignores the relationship
between pixels and does not consider spatial consistency, leading
to misclassification of object categories. After FCN, researchers
focused on improving it in different ways.

PSPnet [26] and Deeplab series [24], [28], [29], [30] are
examples that improve FCN, in terms of expanding the recep-
tive field. PSPnet proposed the pyramid pooling module which
incorporates a (1 x 1) convolution operation for global pooling
and upsampling and concat operations, incorporating contextual
information at different scales and increasing the perceptual
field. PSPnet reduces the probability of missegmenting image
categories in the FCN network.

The Google team has proposed a series of semantic segmen-
tation algorithms, among which [24], [28], [29], [30] are very
widely used. DeepLabV1 [24] is based on the improvement
of CNN, which solves the problem of repeated pooling and
downsampling leading to resolution degradation. This makes
the image location information unrecoverable, and the use of
conditional random field (CRF) improves the segmentation of
fine details. DeepLabV2 [28] improves the network architec-
ture based on DeepLabV1, mainly proposing the ASPP to
address the problem of the existence of multiscale objects in
images. DeepLabV3 [29] builds on DeepLabV2 by deleting
the fully connected CRFs and improves the ASPP module by
parallelizing the dilated convolution with different dilate rates.
DeepLabV3+ [30] proposes a depthwise separable convolution,
which has been highly influential in the field, and the model
is obtained by adding decoder on top of DeepLabV3, signif-
icantly improving network performance. Depthwise separable
convolution can greatly reduce computation while maintain-
ing performance and allowing better recovery of object edge
information.

Contextual information is also important for semantic seg-
mentation performance, and many methods [31], [32], [33], [34],
[35] explore context dependencies to obtain better segmentation
results. EncNet [33] presents a new context encoding module and
enhances model effectiveness by incorporating global contextual
information. The main process is to do semantic segmentation
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by first predicting the category information present in the im-
age and then executing contextual encoding with feature atten-
tion mechanism. Authors of adaptive pyramid context network
(APCNet) [35] argue that global guided local affinity is vital
for construction of semantic features, which was neglected in
previous research works. Considering this, the authors proposed
a novel solution, the APCNet, dedicated to advancing semantic
segmentation, which uses multiple adaptive context modules
(ACMs) to adaptively construct multiscale contextual represen-
tations. In particular, each ACM uses the global image as a guide
to every subregion, then uses these affinities to compute the
context vector. This favors the further construction of adaptive
and multiscale contextual representations.

The prediction of object boundary is likewise an aspect worth
exploring. In GSCNN [36], the authors argue that color, shape,
and texture contain various kinds of information that are critical
to understanding an image, so it may not be ideal to process them
together in CNN. Hence, GSCNN proposes a novel dual-stream
CNN architecture with a shape stream and a classical stream
processing information in parallel, where the shape stream shape
information apart. This architecture introduces a novel type of
gate to establish connections between the intermediate layers of
the two streams. This new type of gate is the key component in
the architecture. Also, thanks to the sharper boundary prediction,
GSCNN greatly improves the segmentation performance on thin
and smaller objects.

In conclusion, FCN and corresponding variants were widely
used in RS semantic segmentation works [37], [38], [39]. The
exploration of semantic segmentation models in different aspects
has also contributed to the progress of RS images. CNN has
demonstrated significant potential in the realm of RS semantic
segmentation, owing to its modeling effectiveness and exten-
siveness.

B. Self-Attention and Transformer in Vision

Recently, self-attention mechanisms have been prevalent in
computer vision tasks. Inductive bias of CNN may impose
limitations on the model’s ability to extract long-range spatial
dependencies, thereby degrading its performance. To address
this issue, researchers have explored the incorporation of self-
attention to aid CNN in feature extraction.

SENet [40] leverages a global average pooling layer to es-
tablish connections between channels and completes the re-
calibrating of original features of the channel dimension dy-
namically and adaptively, which pays attention to the depen-
dence at the channel level of the model for the first time.
CBAM [41] uses channel-level and spatial-level attention mod-
ules to refine adaptive features. The channel attention mod-
ule (CAM) emphasizes the relationship of feature maps be-
tween different channels, and the spatial attention generates
a spatial attention map, which allows the model to focus
on important features. DANet [42] proposes a dual atten-
tion network, including position attention module (PAM) and
CAM. These two modules are employed to capture the fea-
ture dependencies in spatial dimension and channel dimension,
respectively.
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The work in [14] is one of the dominant architectures in
NLP that utilizes multihead attention to establish long-range
dependencies. Inspired by the transformer scaling successes in
NLP, ViT [15] is a typical representative of image classification
task and has achieved outstanding performance. But for dense
prediction tasks, it requires a higher training cost and only
outputs lower solution features.

To accommodate dense prediction tasks, some researchers
modify ViT architecture and achieved state-of-the-art perfor-
mance. For example, DETR [43] leverages the transformer
decoder to frame object detection as an end-to-end dictionary
lookup problem, where learnable queries are used, effectively
eliminating the requirement for handcrafted processes, such as
nonmaximum suppression. Building upon DETR, deformable
DETR [44] incorporates a deformable attention layer to em-
phasize a sparse set of contextual elements, leading to faster
convergence and improved performance. SETR [45] is the pi-
oneering network that employs a pure transformer structure
as backbone in semantic segmentation, which constructs three
different CNN-based decoders for backbone to obtain dense
predicted results. By combining the transformer-based encoder
with a simple decoder, a powerful segmentation model can be
achieved. CPVT [46] advocated a novel positional encoding
(PE) scheme, named conditional positional encoding (CPE).
Different from PE used in previous works, such as ViT, which are
predefined and input-agnostic, CPE is generated in a dynamic
way and is conditional on the local neighborhood of an input
token. As aresult, PE varies depending on input size and ensures
the desired property of translation-invariance.

PVTI1 [19] generates multiscale feature maps by introducing
pyramid modules to the transformer framework, based on which
a pure transformer backbone is proposed for dense prediction
tasks. Although PVT1 reduces the computational cost to some
extent, its complexity remains quadratic with the image size.
SegFormer proposes a hierarchical transformer structure without
PE and significantly reduce computational complexity. It avoids
PE interpolation, as it can adversely affect the model’s perfor-
mance, under the condition where the test resolution differs from
the training one. In semantic segmentation, SegFormer demon-
strates impressive performance as a dedicated transformer.

C. Self-Attention and CNN

Local feature details are tended to be neglected by the self-
attention mechanism in transformer [22], [47]. In contrast, CNN
possesses distinct advantages in local modeling and translation-
invariance. Since TransUNet [20] generates a new encoder for
improved semantic segmentation by sequentially concatenating
the two, this would allow it to benefit from transformer self-
attention while retaining the effective encoder—decoder structure
of U-Net. TransFuse [48] performs parallel concatenation of
them and fuses the relevant features by a BiFusion module which
incorporates both self-attention and multimodal fusion mecha-
nisms. Furthermore, TransFuse employs a simple progressive
upsampling method to recover the spatial resolution. UNet-
Former [17] selects CNN as the encoder and also proposes an
efficient global-local attention mechanism to model global and
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local information in the transformer-based decoder. ST-UNet
[49] uses swin transformer [16] to assist UNet [25], where CNN
is used as the primary encoder and swin transformer encoder is
used as an auxiliary encoder. DS-Net [47] applies self-attention
and convolution as dual-resolution processing paths, in which
the self-attention path is designed to capture local fine-grained
details, while the convolution path aims to explore features from
a global perspective.

Different from existing excellent works, we design a novel
network that preserves both CNN and transformer features. In
this design, both local and global information can be extracted
at each stage, and the advantages of the two were fully utilized
to obtain better semantic segmentation results.

III. METHODOLOGY

In this section, we provide a comprehensive overview of the
architecture of SSNet. In Section III-A, we generally introduce
the design of our pipeline. Subsequently, in Section III-B and
III-C, we provide an in-depth introduction to the general archi-
tecture schemes for SegFormer and SegNext. Then, in Section
III-D and III-E, we introduce FIM and FFM, respectively, in
terms of both mathematical principles and workflows. Finally,
in Section III-F, we illustrate the structure of the CNN-based
decoder.

A. Overall Architecture

Fig. 2 illustrates the proposed network, which follows the
encoder—decoder paradigm, connecting both modules through
skip connection layers. As depicted in Fig. 2, this framework
mainly contains three modules as follows.

1) A hybrid encoder of the SegFormer and SegNext.

2) FFM used to fuse the feature from transformer and CNN;
FIM utilized to inject multiscale information into the CNN
feature map from the transformer branch.

3) A CNN-based decoder for progressive recovery of feature
map size and prediction of segmentation results.

Unlike transformer, such as ViT and STER, where backbones
only generate single-resolution feature maps when given an in-
put RS image, our backbone is to generate multiscale features in
four stages. These different resolution feature maps can enhance
the property of semantic information extraction. In detail, for a
given RS image (3 x H x W), a hierarchical feature map £,
with a resolution of (C,, x H/2"+! x W/2"*1) are obtained.

For FFM, it fuses two-style features in each stage, then passes
the output features into the SegFormer to increase the trans-
former abilities. And FIM injects the multiscale features into
the SegNext to enhance the CNN global perception capability.
CNN-based decoder is used to restore the feature map size and
inject the shallower informative features from the shallower
layers of the encoder into the decoder by skipping connections
to obtain a more detailed feature map.

B. Transformer-Based Encoder

Unlike the generic transformer, the SegFormer is more flex-
ible and efficient, so we adopt SegFormer to extract global
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Proposed framework consists of three main modules: A hierarchical hybrid encoder of transformer and CNN to extract coarse and fine features; FFM and

FIM ensure the flow of information between CNN and transformer; a CNN-based decoder to recover the size of the feature map.

features, which uses four stages to extract the feature map.
Each stage generates feature maps at different resolution ratios
than the original image, including 1/4, 1/8,1/16, 1/32. For an
RS image (3 x H x W), it was first split into patches of size
(4 x 4). We use such small patches instead of size (16 x 16)
employed in ViT, since smaller patches perform better for in-
tensive prediction tasks. These patches serve as inputs to the
hierarchical transformer encoder, resulting in the generation of
multilevel feature maps.

As shown in Fig. 3, the main component of SegFormer en-
coder is the transformer block, which mainly comprises efficient
self-attention and mix-FFN. During the original process, the
self-attention is estimated as follows:

T
Attention(Q, K, V) = Softmax (QK )> V. (1)

V dhead

In (1), the vectors query(Q), key(K), and value(V') are fun-
damental components of the attention mechanism, commonly
used as building blocks. Each of these vectors @), K, and V'
has dimensions of (C' x H x W), where (H x W) represents
the sequence length. Wang et al. [19] proposed the sequence
reduction process to improve original multihead self-attention,
which brings the computational complexity down from O(N?)
to O(N 2/ R), where R is a reduction ratio. In our experiments,
we use the process and set the parameter R to [64, 16, 8, 1].
Moreover, for semantic segmentation, PEs are not required.
They introduce mix-FFN which combines a (3 x 3) convolution
and multilayer perceptron (MLP) into each feedforward network

hw N
'32°32

Mix-FFN
*N

Efficient
Self-Attn

Y

Transformer block 1

\ Overlapped Patch /

LayerNorm

Flatten

Conv2d, k=7, s=4, p=3

Fig. 3. Structure of the SegFormer encoder. The main component of Seg-
Former encoder is the transformer block, which mainly comprises efficient
self-attention and Mix-FFN.

(FFN). Mix-FFN can be represented as follows:

Xou = MLP (GELU (Convsyxs(MLP(Xin))))) + Xin  (2)

where Xj, and X, represent the input and output feature maps,
so the feature map with approximate PE can be obtained by
mix-FFN. By choosing diverse hyperparameters and varying the
number of transformer blocks in each stage, we can obtain five
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traditional convolution.

Structure of the core component MSCA in SegNext consisting of

SegFormer backbones with various complexities. We choose
mit-B5 as our transformer backbone, which has a deeper network
layer and the best performance.

C. CNN-Based Encoder

Thanks to the improvement of traditional convolutional
blocks and the use of multiscale feature convolution following
[50], SegNext achieves a simple and efficient performance.

As shown in Fig. 4, the SegNext encoder is composed of three
key components as follows.

1) A depthwise convolution to consolidate local information.

2) Multibranch depthwise strip convolutions, which enable

the capture of multiscale feature maps. Strip convolutions
are a form of 1-D convolution operation, distinct from
the common 2-D convolution kernels, typically taking the
shape of (n x 1) or (1 x n). The specific description can
be found in the FIM presentation and Fig. 8. They are
commonly applied for horizontal or vertical processing of
feature maps.

3) A (1 x 1) convolution facilitating the modeling of rela-

tionships in different channels. It can be written as follows:

Out = Convy (Z(Scale&DWConv(F)))) ®F

i=0
3)
where DW—Conv is depthwise convolution (5 x 5), and
Scale; denotes the convolution of three different scales
respectively. Like some common semantic segmentation
networks, SegNext adopts four stages and each produces
feature maps at different resolutions. We choose SegNext-
B as the CNN encoder because it has the optimal perfor-
mance with lower computational requirements and can
generate feature maps of the same size as SegFormer.

D. Feature Fuse Module

Highly similar tiny foreground and confusing objects are
prevalent in RS images, which may significantly impact the
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semantic segmentation quality. For such images, an adequate
combination of local and global information, such as shape,
color and texture, is needed to achieve better segmentation
effects. However, SegFormer approach weakens the local feature
detail to a certain extent, even if it uses smaller patches, unlike
ViT.

To improve the quality of segmentation, by taking full ad-
vantages of local and global information, we propose FFM.
The FEM fuses features from both the CNN and transformer
branches and injects them back into the transformer branch,
enriching the local details of the transformer branch. We have
designed two distinct streams to handle features from the CNN
and transformer branches separately.

As shown in Fig. 5, the features from transformer go through
the pooling layer and PAM [42] to obtain more local information,
where PAM captures the spatial relationships among different
positions within the feature map. Max pooling can retain more
texture features, and avg pooling can better retain the overall
features and highlight the background information. On the sec-
ond stream, the CAM and strip convolution receive the features
from CNN, where CAM explicitly models interdependencies be-
tween channels, and the depthwise strip convolution can obtain
fine feature representations. Finally, we multiply the features
computed by the two streams and change the dimensions by an
(1 x 1) convolution as the final output. This can be represented
as follows:

Outl = (MaxPool(f;) + Avgpool(f:)) - CAM(f.) (4)

Out2 = (Z Str—Conv(fc)) -PAM(f;) (%)
Output = Convyy (Outl - Out2) (6)

where f; and f. represent the feature maps from transformer and
CNN, respectively. str—Conv is depthwise strip convolution of
different scales. The final results of the two streams are Outl
and Out2, respectively.

PAM, illustrated in Fig. 6, first takes the input feature map
A and passes it through a convolution layer, resulting in three
different feature maps, namely B, C, and D, where B, C, and
D are all of size (C' x H x W), subsequently reshaping them
from (C'x H x W) to (C x N), where N = H x W. Sec-
ond, the transposed features BT € RWV*) of B € R(C*N) are
multiplied with C' € R(®*N) and the weights S € R(N*N) are
obtained by softmax. Its calculation process can be described as
follows:

exp(Bi - C))
v, (exp(B; - C)

Sij = (N

where S;; measures the ith position’s impact on jth position.
Then, the feature map D € R(©*N) and the transpose of
the weight S € R(V*N) are multiplied together with a scale
parameter «. After reshaping the result from (C' x N) to
(C x H x W), we perform an elementwise sum operation with
the original input feature map A to obtain the final output
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Fig. 5.

Reshape & transpose
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Fig. 6.  Structure of PAM.
E
A
Reshape Reshape N
=7
Reshape Softmax m
HE; CxHxW
CxHx cxC
Reshape & transpose
Fig. 7.  Structure of CAM.
E € R(E*HXW) aq depicted in the following:
N
Ej =« E (SZJDZ) + Aj (8)
i=1

where « is initialized as 0 and gradually learns to assign more
weighs by (8). It can be inferred that the resulting feature E for
each location is a weighted sum of all location features and the
original features [42].

The structure of CAM is depicted in Fig. 7. We first reshape
the input feature map A from (C' x H x W) to (C x N),
where N = H x W. Then, we perform a matrix multiplication
between A € R(C*N) and the transpose of A7 € RWW*C), By

Structure of FFM. FFM takes full advantage of local features and global information by two different streams.

C2XHXW

Fig. 8.

Structure of FIM.

applying the softmax layer on the result, we obtain the chan-
nel attention map X € R(©*Y) which can be represented as
follows:

exp(4; - A;)
Ziczl (exp(A; - 4;)

where X;; measures the ith channel’s impact on the jth channel.

In addition, we perform a multiplication between X €
R(©*C) and A € R(©*N) and then reshape the result to obtain
R € R(CEXHXW) - Afterward, we multiply the R € R(C*HxW)
by 3 which is a scale parameter and perform an elementwise sum
operation with A to compute the final output £ € R(C*H*W),

©))

ij =
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This process can be represented as follows:

C
Ej =8 (XijAi) +A; (10)

i=1

where 3 learns a weight from 0. Equation (10) implies that the
final features of each channel are computed as the weighted sum
of the features from all channels and the original features [42].

E. Feature Inject Module

With the aim of leveraging the complementary nature of the
two-style features, our work consecutively establishes FIM to
integrate multiscale information from the transformer branch
into the feature maps of CNN. This approach strengthens the
global perception capability of the CNN branch and facilitates
the efficient flow of feature maps between CNN and transformer,
as depicted in Fig. 8.

As done in [1], [51], for every FIM branch, we employ
three depthwise strip convolutions to extract information, which
can approximate the standard depthwise convolution of a large
kernel and thus remains lightweight. That is to say we only
need a pair of (7 x 1) and (1 x 7) convolutions to approximate
the effect of a convolution with (7 x 7). This is one reason for
the usage of depthwise strip convolution. In addition, there are
many strip-like objects in the segmentation scenes. Therefore,
strip convolution can be used as a complement to the mesh
convolution and helps extract strip-like features [51], [52]. In
addition, we introduce the SE module [40]. For SE, the main
focus is to calculate the channelwise weights for each feature
map that enters. With the addition of SE, by learning the cor-
relation between channels, the network is supposed to focus on
those channels that need more attention. FIM can be written as
follows:

Out = (Z str—Conv(f)) -SE(f)

where str-Conv means depthwise strip convolution of different
sizes.

The SE module includes two main processes which are SE
operations. The feature f € R(C*H>*W) s squeezed to produce
atensor of p € R(C*1*1) Therefore, each element in the vector
encodes the global information of its corresponding channel, and
the cth element of p is calculated using the following formula:

an

1 H W
pe=Fu(fe) = w2 2 ) (12)

i=1 j=1

where 7 and j refer to the position coordinates of the elements
in feature f, and Iy, means global pooling layer.

Next, we change the dimensionality of the features through
two different fully connected layers. Then, the weights of each
channel in the input feature layer are obtained through the
sigmoid function. In the end, the final output is obtained by
multiplying the weights with the original input feature f, and its
detailed structure can be expressed as follows:

V = Sigmoid(FCs(ReLu(FCy(p)))) ® f (13)
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Fig. 9. Structure of ASPP.

where FC means fully connected layer. The differences between
FCs and FC; are that numbers of neurons are set to (C'/r) and
C, respectively. In our SE modules, the reduction ratio r is set
to 16.

F. CNN-Based Decoder

Classical semantic segmentation U-shaped architecture is
adopted in our work, and we employ a CNN-based decoder
to progressively recover the feature map size and predict the
segmentation result. But encoders and decoders play different
roles in feature extraction, with encoders supporting the ex-
traction of shallow features, such as color, texture and edges,
while decoders are better at deep information, that is, semantic
information. To keep the transmission of details and to promote
the interaction of multiscale characteristics, this study uses
skip connections to fuse shallow features with deep features
between CNN-based encoder and decoder. By employing skip
connections, we keep the transmission of details and improve
the communication of multiscale features, achieving the fusion
of shallow and deep features between the CNN-based encoder
and decoder. We aggregate feature maps from four stages with
different resolutions.

In addition, ASPP is an excellent module in semantic seg-
mentation which samples the given inputs in parallel with di-
lation convolutions of different dilation rates. In our work, to
obtain multiscale contextual information, ASPP is added after
the encoder. ASPP is shown in Fig. 9, which includes global
pooling operation, (1 x 1) convolution, upsampling and concat
operations. In detail, the feature maps passed to ASPP are first
passed through four convolutional layers with different dilation
rates and a pooling layer. Then, the obtained feature maps are
concat to obtain feature maps containing multiscale contextual
information for subsequent segmentation prediction.

The structure of the CNN-based decoder is depicted in Fig. 2.
First, it keeps the resolution of the feature maps in CNN encoder
stages 2—4, which are (128, H/8, W/8), (320, H/16, W/16),
(512, H/32, W/32), respectively. The output feature size of the
ASPP module is (1024, H/32, W/32). To change the output
feature channel dimension of ASPP from 1024 to 512, a (3 x 3)
convolution is utilized, while keeping the resolution. Let us
denote the obtained feature as f1, then f1 € R(512:H/32,W/32)
At this point, f1 and s4 which are the feature maps output by
CNN encoder stage 4, have the same size. Then, we merge f1
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with s4 in a way of elementwise addition, and the result size is
(512, H/32, W/32). To gradually recover to the original image
size and fuse the feature maps of s3, we first change the channel
dimension of result from 512 to 320 by (1 x 1) convolution,
and subsequently upsample that to (H/16, W/16) using bilinear
interpolation and the result can be named as f2 whose size is
(320, H/16, W/16). Similarly, then we merge f2 with s3, and the
result size is (320, H/16, W/16). Next, the size is altered to (128,
H/8, W/8) by an (1 x 1) convolution and bilinear interpolation,
denoted as f3. Similarly, we fuse the features of f3 and s2 by
way of elementwise addition to obtain a feature map (128, H/S,
W/8), and we then restored the feature map by convolution and
bilinear interpolation and output the final result.

IV. EXPERIMENTAL SETUP
A. Datasets

The proposed model has been evaluated on datasets of
WHDLD and Potsdam, respectively.

1) WHDLD: WHDLD, released by Wuhan University in
2018, is a dense labeling dataset suitable for multilabel tasks,
such as RS image retrieval and classification, as well as pixel-
based tasks, such as semantic segmentation [53], [54]. Each
image in the dataset is labeled with six class labels, including
building, road, pavement, vegetation, bare soil, and water. The
dataset comprises a total of 4940 images, each sized at 256 x
256 pixels. To ensure proper training, validation and testing, we
split the dataset into a training set (3000 images), a validation
set (1000 images), and a test set (940 images).

2) Potsdam: Potsdam, situated in northeastern Germany, is
characterized by large buildings, narrow streets, and dense traf-
fic. The Potsdam dataset has a ground sampling distance of 5 cm
and consists of 38 patches, each measuring 6000 x 6000 pixels.
Within this dataset, six classes of objects are labeled, namely
building (blue), car (yellow), low vegetation (cyan), impervious
surface (white), tree (green), and background (red). Following
[49] and [56], we utilized 24 images from the dataset for training,
which were cropped into 13 824 images of size 256 x 256 pixels.
The remaining 14 images were used for verification and were
likewise cropped into 8064 images, each measuring 256 x
256 pixels.

B. Evaluation Metrics

For each method, we evaluate model performance using
the mean intersection over union (MIoU) and accuracy (Acc)
metrics. These evaluation indicators are computed using the
accumulated confusion matrix, which are calculated as follows:

N
1 TP,
MIoU = — 14
© N;TPk+FPk+FNk (14)
TP + TN
Acc = + (15)
TP + FN + FP + FN

where TP, FP, TN, and FN indicate the true positive, false posi-
tive, true negative, and false negatives, respectively.
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C. Implementation Details

For our trials in present research, all experiments were per-
formed using PyTorch on our lab device, which is equipped with
an Intel 19-10900 processor, an RTX3090 graphics processor,
and 64G of RAM. All models are our own PyTorch-based
implementations, and we did not pretrain them. The AdamW
algorithm was selected as the gradient decent optimizer algo-
rithm for setting model parameters. The initial learning rate is
0.0006, and weight decay is 0.001 with loss function of soft
crossentropy.

V. EXPERIMENTS AND RESULTS

We would like to emphasize that we trained all the networks
on our lab devices and did not use any pretrained weights. The
ablation experiments were conducted using the WHDLD and
Potsdam datasets with 300 epochs.

A. Effect of Encoder Structure

We first analyzed the influence of various encoders, includ-
ing SegNext and various shallower SegFormer. The results are
presented in Table III, which demonstrates the performance
of various types of encoders. As the Table III show, we can
initially observe that the best-performing architecture is the fu-
sion of SegFormer (MiT-B5) and SegNext, while the shallowest
SegFormer (MiT-B0) exhibits the lowest performance. In addi-
tion, the standalone SegNext outperforms SegFormer (MiT-B4)
slightly. In terms of MIoU and ACC, the fused architecture,
which is SegFormer (MiT-B5) and SegNext, have MIoU and
ACC scores of 60.63% and 87.16% on WHDLD, and 76.04%
and 84.50% on Potsdam, respectively. On WHDLD the fused
architecture outperforms the standalone SegNext by 0.8% and
1.45%, and it also surpasses the deepest SegFormer by 0.22%
and 0.64%. Similarly, on Potsdam, it outperforms the other two
standalone architectures by 2.54% and 2.61%, and 0.48% and
0.82%, respectively. It turns out that the encoder combining
CNN and transformer can capture more information favorable
for semantic segmentation.

B. Effect of FFM

To explore the impact of FFM in our model, we conducted
a comparison of the semantic segmentation results with and
without the incorporation of FFM. Table I shows these data,
on WHDLD and Potsdam, where MIoU and ACC improve by
0.67% and 1.02%, 0.84%, and 0.99%, respectively. From the
point of view of details, on WHDLD we find that FFM better
facilitates the segmentation of road, pavement and build, with
1.57% and 1.08% and 0.92% improvement in MIoU for road
and pavement and build, respectively. From the visualization
in Fig. 10, it can be found that road and pavement are highly
similar and indistinguishable in some ways, and after integrating
FFM, the segmentation performance of confusing objects is
significantly improved.



3032

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE I
ABLATION EXPERIMENT OF THE PROPOSED MODULES ON WHDLD AND POTSDAM VALIDATION SET

Modules TIoU%(WHDLD) Evaluation metrics
Network A A _ WHDLD Potsdam
FFM FIM Build Road Pavement Vegetation Bare Soil  Water

MIoU%  Acc% | MIoU%  Acc%

SegFormer+SegNext 54.82 5771 41.25 81.33 36.76 93.34 60.86 87.36 76.33 84.69

SegFormer+SegNext+FFM v 5574  59.28 42.33 81.52 37.02 93.31 61.53 88.38 77.17 85.68

SegFormer+SegNext+FIM v 55.26  58.88 4191 81.42 36.98 93.30 61.29 87.53 76.68 85.35
SegFormer+SegNext

+FFM4FIM v v 56.00 59.76 42.64 82.03 37.28 93.90 61.93 88.62 77.67 85.92

TABLE II

ABLATION EXPERIMENT OF SKIP CONNECTION ON WHDLD VALIDATION SET

) Evaluation metrics
Nework | S0P WHDLD Potsdam

MIoU%  Acc% | MIoU%  Acc%

No Skip 60.85 85.10 76.32 82.51

SegFormer sd+£1 61.02 86.44 76.39 83.76
+SegNext

+FFM+FIM s3+f2 61.62 88.31 77.28 85.62

s2+f3 61.28 86.77 76.65 84.03

Three Skips 61.93 88.62 77.67 85.92

Bold values in the table are the highest values among data in the column.

TABLE III
ABLATION EXPERIMENT OF ENCODER ON WHDLD AND
POTSDAM VALIDATION SET

WHDLD Potsdam
Encoder Decoder
MIoU%  Acc% | MIoU%  Acc%
SegNext | mrp | s983 8571 | 7350 8189
SegFormer(Mit-B0) 44.30 65.93 56.54 64.91
SegFormer(Mit-B1) 49.98 74.46 62.87 72.18
SegFormer(Mit-B2) MLP 55.07 82.62 69.45 80.21
SegFormer(Mit-B3) 58.51 84.29 73.33 81.70
SegFormer(Mit-B4) 59.58 86.15 74.61 83.52
SegFormer(Mit-B5) 60.41 86.52 75.56 83.68
Seghormer(Mit-B5) ‘ MLP | 60.63  87.16 ‘ 76.04 8450
+SegNext

Bold values in the table are the highest values among data in the column.

/

/1

7

(a) (b)

Image GT

Fig. 10. Comparison of segmentation results before and after using FFM in
the proposed network. The first column has the original RS images and the
second column has ground truth segmentation results. (a) Results without FFM.
(b) Results with FFM.

C. Effect of FIM

We conducted an analysis of the effect of FIM, as presented
in Table I. First, when using the FIM independently, the seg-
mentation results on WHDLD show an improvement of 0.43%
on MIoU and 0.17% on Acc. On Potsdam, MloU and ACC
were 76.68% and 84.65%, an increase of 0.35% and 0.66%,
respectively. Moreover, the segmentation results of road and
pavement on WHDLD are significantly improved after inte-
grating FIM; MIoU achieves growth of 1.17% and 0.66% for
road and pavement, respectively, thanks to the depthwise strip
convolutions in FIM, which are more sensitive to the strip-like
objects. Although the results are better than the original model
after adding FIM, they are still slightly inferior to the result using
FFM. This is because FFM incorporates both global and local
information, while FIM is more focused on strip-like objects.

In addition, we can observe the joint effect in Table I. Adding
both FFM and FIM results in an increase in the MIOU and
Acc indicators of the two datasets, respectively, which exceeds
the performance when adding FFM or FIM alone. Specifically,
on WHDLD, MIoU and Acc increase by 1.07% and 1.26%,
respectively, and on Potsdam, they increase by 1.43% and
1.23%, respectively. These results indicate that incorporating
both FFM and FIM enhances the flow of different information
between CNN and transformer, leading to improved semantic
segmentation performance of the model.

D. Effect of the Skip Connection

In the present part, we evaluate the effectiveness of the skip
connections in our model. As shown in Fig. 2, we introduce a
total of three skip connections in the decoder, s2, s3, s4, which are
combined with f3, £2, f1 in turn. To avoid additional interference,
we keep the layers of the decoder unchanged and only disable the
integration of skip connections. We conducted five experiments.
The first one did not use any skip connections, and then we added
(s4+f1), (s3+f2), and (s2+f3) separately, and finally, we added
three skips to the model.

In a word, the addition of any skip connection leads to an im-
provement in the evaluation indicators of the model. Specifically,
the proposed model with three skip connections achieves the
highest performance on WHDLD and Potsdam. First, the highest
MIoU and ACC on WHDLD are 61.93% and 88.62%, respec-
tively, which are 1.08% and 3.52% higher than the model without
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TABLE IV

ABLATION EXPERIMENT OF ASPP ON WHDLD VALIDATION SET
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Modules IoU%(WHDLD) Evaluation metrics
Network , , . WHDLD Potsdam
ASPP Build Road Pavement Vegetation Bare Soil  Water
MIoU%  Acc% | MIoU%  Acc%
SegFormer+SegNext X 55.79  58.76 41.97 81.51 37.76 93.54 61.56 88.43 77.20 85.73
+FFM+FIM+Decoder
v 56.00 59.76 42.64 82.03 37.28 93.90 61.93 88.62 77.67 85.92

any skip connections. And on Potsdam, our model achieves the
highest MIoU and ACC of 77.67% and 85.92%, respectively.
Similarly, this result is 1.35% and 3.41% higher than the lowest
scores in MIoU and ACC, respectively. As shown in Table II, for
WHDLD, we find that between not using any skip connection
and using (s4+f1), the model is not significantly improved. The
addition of (s3+f2) improves the MIoU and ACC of the model the
most, by 0.77% and 3.21%, respectively. After adding (s2+{3),
the model behaves better than adding (s4+f1), but worse than
adding (s3+f2), meanwhile, MIoU and ACC are increased by
0.43% and 1.67%, respectively, compared with adding (s4+f1).
For Potsdam, we can clearly observe that the experimental
results have a similar trend to the results on WHDLD. (s3+f2) has
strong support for model performance; it is 0.96% and 3.11%
higher than no skip in MIoU and ACC. (s4+f1) and (s2+f3)
contribute slightly more to the model than no skip. According to
the experimental results, there are significant differences in the
information transmitted by different connections. Therefore, the
connection scheme should be optimized to effectively improve
the performance of the model.

E. Effect of ASPP

The ASPP block effectively captures multiscale features that
are crucial for semantic segmentation results by using dila-
tion convolutions with various dilation rates. To investigate
the impact of ASPP in our model, we compared the semantic
segmentation results when the ASPP block was added and when
it was not included.

As shown in Table IV, it can be seen that the metric increases
when including ASPP blocks in our network. On WHDLD
and Potsdam, MIoU and ACC increase by 0.37% and 0.19%,
0.47% and 0.19%, respectively. This demonstrates the posi-
tive effect of the ASPP block on improving the segmenta-
tion performance of our model. In terms of specific classes,
ASPP is more significant for road and pavement, with IoU
increasing 1% and 0.67%, respectively. However, for classes
like build and water, the improvement was not as prominent.
In general, the overall impact of the ASPP block on the en-
tire network was positive, so ASPP is incorporated into our
network.

F. Comparison With Other Methods

To demonstrate the effectiveness of the proposed network SS-
Net, we compared it with a bunch of present methods, including
FCN [6], DeeplabV3 [29], UNet [25], DANet [42], TransUnet

[20], all of which we used Resnet101 [55] for the backbone of
the network except TransUnet and Unet. All models are based
on CNN except TransUnet, which is a hybrid network of Unet
and ViT.

To be fair, we trained these models, using the same hyperpa-
rameters and devices. It is important to note that we did not use
any pretrained weights for these models.

1) Results on WHDLD Dataset: Table V presents the quan-
titative results on the WHDLD dataset, which further validates
the effectiveness of our proposed model. From the quantitative
point of view, our model reaches 61.93% in MIoU and 88.62%
in ACC; it is evident that the proposed model is superior to other
methods in both MIoU and ACC and outperforms other models
in terms of segmentation results for each category, except for
the category of bare soil.

Fig. 11 illustrates the segmentation results of all mod-
els from a visual perspective. Thanks to the addition of
FFM and FIM, our network not only improves the segmen-
tation performance of strip-like objects, but also better pre-
serves the detailed contours of some complex and irregular
objects.

2) Results on Potsdam Dataset: We conducted experiments
on the Potsdam dataset to further evaluate the effectiveness
of our method. Table VI presents the quantitative results on
the Potsdam dataset. Our model achieves MIoU of 77.67%
and ACC of 85.92%, which significantly outperforms previous
methods. Compared to other models, our network achieves the
highest enhancement of 2.93% and 1.62% in MIoU and ACC,
respectively, and it demonstrates an increase in the segmentation
performance of each category.

To visually showcase the segmentation performance of our
model, we present the segmentation results in Fig. 12. In
the first and third rows, our model is more likely to iden-
tify the impervious surface. The second and fourth rows
are similar and mainly show the results of our model’s
partitioning of the tree, and the fifth row mainly shows
our model’s segmentation results for the background or
clutter.

3) Results for FLOPs, Params, and MIoU on WHDLD
Dataset: When evaluating a deep learning model, two crucial
factors to consider are the number of floating-point operations
(FLOPs) and the number of learnable parameters in the model.
FLOPs offer an estimate of the model’s computational com-
plexity, while params represent the number of parameters that
require learning during model training, reflecting the model’s
space complexity.
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Fig. 11. Comparison between the proposed network and other methods on WHDLD dataset. Examples are selected randomly from the validation set of the
WHDLD dataset. (a) FCN. (b) DeepLabV3. (c) UNet. (d) DANet. (e) TransUnet. (f) Our network.

I:I Impervious - Background- Low _Vege

DO Y. CWW. BV,

——-
Lad head
-

T

Image GT (a) (b)' (c) (d)' (e) )

Fig. 12. Comparison between the proposed network and other methods on Potsdam dataset. Examples are selected randomly from the validation set of the
Potsdam dataset. (a) FCN. (b) DeepLabV3. (c¢) UNet. (d) DANet. (e) TransUnet. (f) Our network.
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TABLE V
RESULTS ON WHDLD VALIDATION SET

Method IoU% Evaluation metrics
Build Road Pavement Vegetation Bare Soil ~Water | MIoU%  Acc%

FCN [6] 53.52  56.15 39.27 80.10 38.37 92.66 60.01 87.09
DeepLabV3 [29] | 54.29  56.20 39.04 80.11 37.52 92.67 59.97 87.12
UNet [25] 54.56  56.01 39.98 80.60 38.30 93.28 60.46 87.39
DANet [42] 4844  54.52 36.30 77.97 36.61 91.11 57.49 85.70
TransUnet [20] 51.62  52.39 37.64 79.61 37.69 92.56 58.58 86.56
Our method 56.00 59.76 42.64 82.03 37.28 93.90 61.93 88.62

Bold values in the table are the highest values among data in the column. The underlined values mean the second highest value

among data in the column.

TABLE VI
RESULTS ON THE POTSDAM VALIDATION SET

Method IoU% Evaluation metrics
Impervious surface  Building Low vegetation = Tree Car MIoU%  Acc%

FCN [6] 78.92 85.71 68.27 70.41  76.29 75.92 85.33
DeepLabV3 [29] 80.10 87.53 69.17 7176 76.34 76.68 8591
UNet [25] 79.33 87.01 69.54 72.56  77.02 77.09 85.90
DANet [42] 79.23 86.57 68.42 70.24 7422 75.74 85.42
TransUnet [20] 77.03 82.41 68.32 70.46  75.52 74.74 84.27
Our method 80.35 88.09 69.58 72.81 77.54 77.67 85.92

Bold values in the table are the highest values among data in the column. The underlined values mean the second highest value among

data in the column.

TABLE VII
COMPARISON RESULTS OF FLOPS AND PARAMS AND MIOU ON WHDLD
VALIDATION SET

Method FLOPs(G) Params(M) MIoU%
FCN 54.22 51.94 60.01
DeepLabV3 60.53 58.62 59.97
Unet 40.21 17.26 60.46
DANet 19.18 66.42 57.49
TransUnet 25.00 66.81 58.58
SSNet 10.73 54.00 61.93

Bold values in the table are the highest values among data in the column. The
underlined values mean the second highest value among data in the column.

Table VII shows data of the various models on WHDLD. First
and foremost, it is clear that SSNet has the best segmentation
performance of 61.93% and the lowest model complexity, al-
though the number of parameters is in the middle of the pack.
For FLOPs, SSNet only needs 10.73G FLOPs, which is about
two to four times less than UNet, DANet, and TransUnet, and
more than five times less than DeepLabV3 and FCN. Compared
to standard models like FCN, the SSNet model delivers state-
of-the-art efficiency while maintaining high accuracy and strong
performance for semantic segmentation.

Since transformer performs semantic computation based on
self-attention, SSNet does not have the least number of parame-
ters, but it strikes an optimal balance between parameters number
and efficiency as well as property. SSNet achieves this level of
performance with up to about six times fewer FLOPs than other
models with similar parameter counts. For instance, DeepLabV3
has 58.62 M parameters but requires 60.53G FLOPs compared
to SSNet’s 10.73 G FLOPs, while SSNet’s MIoU is 2% higher
than DeepLabV3. And with 54 M parameters, SSNet retains suf-
ficient capacity for handling complex segmentation tasks, unlike
extremely lightweight models like Unet (17.26 M parameters).
Benefiting from the advantages of the CNN-transformer hybrid
architecture, SSNet demonstrates state-of-the-art MIoU perfor-
mance while maintaining relatively lower FLOPs and Params,
showcasing its feasibility and potential in RS applications.

Finally, for accuracy as measured by MIoU, SSNet achieves
61.93% MlIoU. This edges out prior top models by up to 2%,
representing a substantial accuracy gain. Fig. 13 visualizes the
results of different models in the three performance dimensions-
efficiency, computation cost, and precision.

In a word, the model effectively balances tradeoffs between
efficiency, size, and accuracy for superior overall performance
compared to prior methods.
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Fig. 13.  Performance versus model efficiency of different models. The vertical

axis represents the MIoU. The horizontal axis indicates the FLOPs. The diameter
of the circle indicates the number of model parameter.

VI. CONCLUSION

In this research, we propose an innovative network for se-
mantic segmentation of RS images. Our focus is on effectively
integrating the benefits of local and global information to en-
hance the feature discrimination of ground objects. The proposed
model follows the classical encoder—decoder mode, with the
encoder combining CNN and transformer. It consists of four
stages, producing feature maps with different resolutions, while
the decoder gradually restores feature maps to the original map
resolution size and predicts the semantic segmentation results.
Between the decoder and the encoder, we use skip connections
to keep the shallow and deep features fused with each other,
enhancing the communication of multiscale features. Moreover,
we proposed FFM to improve the quality of segmentation, which
takes full advantages of local features and global information.
FIM managed to help extract strip-like features as much as
possible and learn the correlation between channels. Although
our proposed model achieves encouraging performance on the
Potsdam and WHDLD datasets, we remain to be concerned with
the parameters number and speed, and it is unclear whether it
can work well in small mobile devices. Also, we do not have a
separate design for boundary detection, which we will verify in
our future work.
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