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Abstract—The variability in different altitudes, geographical
variances, and weather conditions across datasets degrade state-of-
the-art (SOTA) deep neural network object detection performance.
Unsupervised and semisupervised domain adaptations (DAs) are
decent solutions to bridge the gap between two different distribu-
tions of datasets. The SOTA pseudolabeling process is susceptible
to background noise, hindering the optimal performance in target
datasets. The existing contrastive DA methods overlook the bias
effect introduced from the false negative (FN) target samples,
which mislead the complete learning process. This article proposes
support-guided debiased contrastive learning for DA to properly
label the unlabeled target dataset and remove the bias toward target
detection. We introduce: 1) a support-set curated approach to gen-
erate high-quality pseudolabels from the target dataset proposals;
2) a reduced distribution gap across different datasets using domain
alignment on local, global, and instance-aware features for remote
sensing datasets; and 3) novel debiased contrastive loss function
that makes the model more robust for the variable appearance of
a particular class over images and domains. The proposed debi-
ased contrastive learning pivots on class probabilities to address
the challenge of FNs in the unsupervised framework. Our model
outperforms the compared SOTA models with a minimum gain of
+3.9%, +3.2%, +12.7%, and +2.1% of mean average precision for
DIOR, DOTA, Visdrone, and UAVDT datasets, respectively.

Index Terms—Debiased contrastive learning (DCL), object
detection, remote sensing analytics, unmanned aerial vehicle (UAV)
images, unsupervised domain adaptation (UDA).

I. INTRODUCTION

R EMOTE sensing images (RSIs) have numerous appli-
cations in surveillance and intelligence decision-making

systems, such as agriculture, urban planning, rescue missions,
and transportation systems. Research work has followed suit
and demonstrated what automated analytics can uncover for
the geographic mapping of resources [1], crop harvest analy-
sis [2], emergency rescue [3], and terrestrial and naval traffic
monitoring [4]. Automating aerial analytics requires localization
and identification of objects in the frame. The challenge is that
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Fig. 1. Visual difference between consumer [5] and RSIs [9].

videos captured from high altitudes have a much higher content
variability than videos captured with a person’s phone.

Examples of low variability frames in consumer data and
high variability in overhead structures of similar pixel size are
illustrated in Fig. 1. We can see how much aerial imagery content
covers large geographic areas and varies significantly within the
same capture or drone flight region. We group the data variability
along four dimensions w.r.t. object detection task, two related to
video content capture variability and two related to the object in
the video variability.

1) Lighting conditions significantly change the video footage
captured even during one drone flight. The changes can
be due to the time of day, season, weather, and cloud
distribution. Fig. 2(a) shows the variations due to image
capture time and lighting conditions, and the pixel inten-
sity distribution varies.

2) Variation in object size is large in the same dataset due
to different areas captured (e.g., urban versus rural). The
objects in the frame can vary from under 0.01% to almost
70% of the entire frame. The variation is even higher
between different datasets, as the footage is captured over
multiple dates, terrains, and missions. Fig. 2(b) (left) con-
tains well-defined objects, while Fig. 2(b) (right) contains
lots of small (players and cars) densely packed objects.

3) Geographical variance of the terrestrial terrain captured
in the imagery from such high altitude poses a critical
challenge for object localization. Fig. 2(c) illustrates the
example of the large geographical variance that can exist.

4) Object distribution variations in images make it challeng-
ing to separate nearly objects and eliminate overlapped
objects while performing nonmax suppression (NMS).

5) Object labeling in aerial datasets is challenging as it is
hard to distinguish correct labels among small and densely
packed objects [11]. Today, only a few aerial datasets exist
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Fig. 2. High-variability remote sensing frames. (a) Lighting condition variations. (b) Variations in object shape and scale. (c) High variability due to geographical
and weather changes.

that cover natural scenario object class diversity and a
sufficient number of training examples.

A common technique to generalize a model is to train on
one source dataset and fine-tune its application to another target
dataset. However, such an approach is inefficient due to high do-
main shifts across datasets and the need for manual annotations
of the target domain dataset. Therefore, unsupervised domain
adaptation (UDA) methods offer a way to effectively transfer
the knowledge gained from trained models on labeled source
data to the unlabeled target data. UDA creates domain-invariant
features using feature alignment techniques and reduces the do-
main gap between the different distributions of datasets. Based
on this idea, the UDA methods have been widely used in the
classification and segmentation tasks of RSIs [12], [14]. These
techniques mainly focus on mitigating the disparity by lever-
aging semantic feature alignment between the source and target
domains. Later, maximum mean discrepancy [16] was utilized to
preserve the main statistical properties across domains by min-
imizing the distribution distance between the source and target
domains.

Various domain adaption techniques have been proposed to
improve the cross-domain classification and semantic segmen-
tation tasks [12], [19], [31]. To our knowledge, few object detec-
tion benchmarks exist for RSIs. The dataset’s highly dense and
variable nature hinders the progress of pseudolabeling and opti-
mal object detection performance of the RSIs. Xiong et al. [22]
tackle the domain shift raised from the image and instance levels
relying on the source-free feature alignment at the image and
the instance level. On the other hand, Yan et al. [7] introduce
a semantics-guided contrastive network to transfer semantic
information for classes that have not been previously encoun-
tered. Chen et al. [10] present a cross-domain adaptation object
detection network that is rotation invariant and relation aware.
This network incorporates a relation-aware graph for aligning
feature distributions and includes a rotation-invariant regularizer
to handle variations in rotation. However, they still suffer from
several limitations pointed out in [10]. Most UDA techniques
require labeling the target datasets for instance-level domain
adaptation (DA) and feature alignment. The existing pseu-
dolabeling techniques are solely cluster based, not addressing
the possible background noise being considered as foreground

objects. Several deep learning clustering techniques [13], [18]
have been devised for RGB and hyperspectral image (HSI)
embedding classification tasks. These works [8], [13] use
graph-based semisupervised learning techniques combined with
tensor-based neural network embeddings for the problem of hy-
perspectral data classification. Moreover, spectral–spatial trans-
formation was also introduced in [8] to learn superpixel-level
spectral–spatial features from HSIs. The improved performance
from deep-learning-based clustering methods comes with large
computational overheads. However, we aim to use a faster
technique without incurring more learnable parameters in the
pipeline. Previous non-deep-learning methods use traditional
k-means or one versus all for the target dataset pseudolabel-
ing. In this work, we use an advanced clustering technique
K-means++ [6] for generating target labels due to its proven
performance [15] in high-dimensional data. Then, the current
contrastive learning approach follows the InfoNCE [20] loss
function with a single positive instance. Two problems are
involved with this technique.

1) The InfoNCE loss itself does not restrict the false negative
(FN) image being selected as the negative case. For ex-
ample, while performing local domain adaptation (LDA)
and global domain adaptation (GDA), the negative cases
are selected randomly, and an image similar to the query
image (see Fig. 3) may be selected as a negative case.

2) The default InfoNCE loss works with only a positive ex-
ample. However, it is essential to consider positive samples
with variable appearance for a particular class over images
and domains.

Therefore, instead of using the single example as the positive
sample, we propose to use N numbers of positive samples for
contrastive learning. Besides, we use the few-shot approach
to remove the noise attracted by unwanted background object
proposals. The previous work on debiased contrastive learning
(DCL) [17] focuses only on balanced datasets. However, our
experimental datasets are highly imbalanced; thus, this approach
is invalid for our task. In summary, we propose the following
research improvements:

1) a novel framework to address the high variability of RSIs
for the object detection and labeling task in previously
unseen datasets;
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Fig. 3. Contrastive learning with multiple positive cases and FN filtering. Here,
green connections denote higher similarity, and red connections denote lower
similarity with the query case.

2) an efficient pseudolabeling process that depends on N -
shot learning to remove the unwanted background noise
from the target object proposals. The experiments show
that curating target proposals significantly improve the
target domain detection performance;

3) DCL for imbalanced remote sensing data, which is very
important to produce domain-invariant features, but at
the same time, we need to maintain class variance near
the decision boundaries in the feature space. Also, we
carefully filter out the FN examples that can disturb the
learning process and result in poor performance;

4) positive multisampling of N-variant positive samples in
DA [17].

The rest of this article is organized as follows. Section II
summarizes related work, and Section III introduces the pro-
posed unsupervised domain adaptation architecture with de-
biased contrastive learning (DCLDA) method describing the
DCL approach and the different DA modules in the pipeline.
In Section IV, the proposed framework is evaluated using the
latest cross-domain detection benchmarks over two high-altitude
and two low-altitude remote sensing datasets. Finally, Section V
concludes this article.

II. RELATED WORK

Full potential use of deep neural networks (DNNs) and ma-
chine learning has been crucial in solving recent consumer
applications [23], [24]. Recent advantages in the field show
that the object detection task can be successfully solved for the
drone-captured Visdrone dataset [25] and the COCO consumer
image benchmark dataset [26].

The key to the success of DNNs is the automatic feature
extraction strategy, which is more efficient in extracting semantic
details and local features. There have been numerous works to
make object detection better and more efficient. The architecture
of the object detection models can be divided into two branches:

1) one-stage detector and 2) two-stage detector. One-stage de-
tectors [25], [27], [28] are by nature faster and lightweight due
to less learnable parameters and FLOPS. For generating region
proposals, one-stage detectors use different scale and aspect
ratios of anchors. On the other hand, two-stage detectors use a
separate module called region proposal network (RPN), which
is responsible for generating strong region candidates for object
detection.

A. Object Detection in RSIs

Shi et al. [29] propose an anchor-free-based detector called
centerness-aware network, which captures the symmetrical
shape of objects in remote sensing videos. Biswas and Tešić [30]
suggest a strong custom backbone and an image difficulty
scoring technique to help detect small and complex objects.
Wu et al. [32] use the local and global contrast information to
effectively detect small bright and dark objects from infrared
images. The authors embed a small-sized U-Net into a larger
U-Net backbone, which allows the multilevel and multiscale
representation learning of objects. Zhang et al. [33] find that
context-based feature extraction is more effective for detect-
ing complex objects and scenes in the overhead imagery. The
global context-weaving network incorporates a global context
aggregation module and a feature refinement module [34], and
transformer-based convolutional neural network encoders are
used for better feature extraction [35]. Qingyun et al. perform
extensive image augmentation to increase the number of samples
in the minor classes. Zhu et al. [25] modify darknet53 backbone
with Cross Stage Partial DenseNet and add a transformer head in
the detection layer, which gains state-of-the-art (SOTA) results
of overhead drone images. Overall, the overhead video frame
images require special care in anchor design for one-stage de-
tectors, and a good RPN should be chosen in two-stage sensors
to capture every small object from different levels of features.

B. Unsupervised Domain Adaptation

Training data for RSIs can differ significantly from the
source domain to the target domain regarding geographical,
illumination, and visual characteristics. Besides RGB images,
hyperspectral RSIs also suffer from variable illumination, en-
vironmental changes, and instrumental noise conditions. Hong
et al. [21] handle these issues as a dictionary learning prob-
lem, where the spectral variability dictionary and estimation of
the abundance maps are learned simultaneously. For a labeled
source dataset and an unlabeled target dataset, UDA methods
generalize the model by aligning source and target [36]. Chen
et al. [37] adjust the decision boundary biased toward the target
data source domain and add adversarial training in conjunction
with image-to-image translation techniques. Xiong et al. [22]
rely on the source-free feature alignment at the image and the
instance to tackle the domain shift raised from the image and
instance levels.

On the other hand, Mattolin et al. [38] implement the
confidence-based mixing (ConfMix) of source and target do-
main images, where the confidence of an instance proposal is
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Fig. 4. UDA architecture with debiased contrastive learning.

calculated based on the objectness score and the bounding box
uncertainty score of each instance proposal from the image.
A novel SemantIc-complete Graph MAtching (SIGMA) [39]
framework was proposed for the domain adaptation task, which
completes mismatched semantics and reformulates the adap-
tation with graph matching. Primarily, the graph-embedded
semantic completion module can address mismatched seman-
tics by producing hallucination graph nodes within the absent
categories. However, the above methods do not handle the
imbalanced dataset problem and high-domain gap scenarios
available in RSIs.

C. Contrastive Learning for DA

It is hard to discriminate object classes in high-variable RSIs.
Contrastive learning is a technique that is a good fit as it con-
trasts samples against each other to learn commonalities and
differences between respective object classes. Wu et al. [40]
propose a probabilistic model to analyze the influence of the
negative sampling ratio on training sample informativeness. Yan
et al. [7] propose a semantics-guided contrastive network to
transfer semantic information for classes not seen before. Bai
et al. [41] propose a strategy called RefosNet to a representation
focus shift network, which adds the rotation transformations
to contrastive learning methods to improve the robustness of
representation. Li et al. [42] use contrastive learning on over-
head imagery for the semantic segmentation task. Biswas and
Tes̆ić [43] perform contrastive learning for object detection on
the image-level feature alignment. However, these works do not
address the noise introduced in the pseudolabeling process. Also,
the mentioned contrastive learning approaches are unsuited for
highly imbalanced datasets, where debiasing is required to re-
duce FN samples.

III. METHODOLOGY

The baseline detection architecture is built on [43], as il-
lustrated in Fig. 4, which uses a better backbone and the

Fig. 5. Contrastive learning alignments: different colors represent different
domains, and shapes represent different categories.

saliency-weighted custom focal loss function for improved per-
formance. The saliency information from each image is used
to calculate the difficulty score of each image. Based on this
saliency/difficulty score, the loss function assigns more penalties
on difficult images and less on easy images.

Contrastive learning evaluates pair-to-pair relationships by
measuring the similarities between different sample pairs, such
as query–positive or query–negative. Here, the query is the
subject feature, whereas positive samples are augmented fea-
tures similar to the subject, and negative examples are randomly
selected features dissimilar to the subject feature. Performing
only image-level contrastive DA is a vital feature alignment strat-
egy that ensures that local and global features from the source
and target datasets are domain invariant by overlapping two dis-
tributions. However, it comes with the sacrifice of instance-level
discriminability, as illustrated in Fig. 5 (middle). Hence, our
goal is simultaneously aligning the image and instance levels,
as shown in Fig. 5 (right).

A. Unsupervised Domain Adaptation

In this article, we perform UDA at local, global, and instance
levels. The goal is to generate domain-invariant features at differ-
ent levels of image features and perform better in unseen/target
datasets. We also prove the performance gain from our proposed
debiased contrastive loss in the learning phase. We denote the
source as S and the target dataset as T . The CycleGAN network
produces synthesized images (see input images in Fig. 4) from
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source to target and vice versa. The synthesized images from
source to target are denoted as S ′, where the object formation is
the same as the source image, but the pixel color emulates the
target dataset. On the other hand, T ′ denotes target-to-source
conversion, where object formations are the target and pixel
color follows the source domain. The DA with contrastive learn-
ing is performed bidirectional between (S, T ′) and (T, S ′) for
better transferability and to minimize the domain discrepancies
between the two datasets. Considering (S, T ′) and (T, S ′) as
the source and target domain pairs, respectively, we take local
features from the earlier stage of the backbone representing
pixel-level and texture information and global features from the
later part of the backbone, which means a more abstract version
of the object. The authors performed only local–global (LG)
domain adaptation in the baseline paper [43]. However, we take
it further to instance-level transformation with pseudolabeling
in the target dataset.

B. Support-Set Guided Pseudolabeling

Ground truth (GT) exists for the source dataset region pro-
posals. GT is used to separate positive and negative samples
in contrastive learning. We do not have any GT for the target
dataset, so we must generate labels for the target proposals to
guide contrastive learning. To perform pseudolabeling, the target
domain instance feature vectors in a mini-batch are collected
from the RPN module (see Fig. 4).

Early-stage target feature vectors are prone to background
noise and mistake many background scenes as foreground ob-
jects. Therefore, we introduce a support-set guided curation step
in the process that reduces the number of false positives from
target object proposals. First, we take R samples from each
of the C classes and create an R-shot support set to guide the
labeling process. Here, the dimension of the R-shot support set
is R

∏
C. Then, we match all the features in a mini-batch with

the support set using cosine similarity metrics. Next, we keep
features that match any support samples passing some defined
threshold. As features are less useful during early epochs, we
restrict the number of unlabeled features for labeling to minimize
computation time and the target instance contrastive loss. After
every defined step size, we progressively increase the number
of features by some factors for the pseudolabeling task. The
curated features are then used for target pseudolabeling through
a clustering method.

The K-means++ is an improved version of the original K-
means clustering algorithm that aims to select better initial
centroids in high dimensions and reduces the chance of the al-
gorithm getting stuck to local optima compared toK-means [6].
Thus, we use K-means++ to generate pseudolabels through
clustering from deep features. The clustering performance of
the K-means++, as shown in Fig. 6, and the value of K for
clustering is selected empirically. The selection process of K is
described later in Section IV-F and Table I.

C. Debiased Contrastive Learning

Contrastive learning is a process of matching different dis-
tributions based on query (Q) and key (K) embeddings [44],

Fig. 6. Clustering visualization for pseudolabeling in 12 000 features over ten
classes of the DOTA dataset.

TABLE I
TARGET DETECTION PERFORMANCE (MAP) WITH/WITHOUT AGGREGATED

PSEUDO LABELING, CLUSTERING TIME, AND THE NUMBER OF CLUSTERS

[46]. The value of the contrastive loss function is lower when
there are high similarities between the query (Q) and positive
key (K+) pair and low similarities between the Query(Q) and
negative keys (K−) pairs. Contrastive learning performs domain
alignment by keeping similar points closer and different points
distant, as illustrated in Fig. 5. The most used formula for
contrastive learning is outlined as follows:

CL = −log
exp(sim(Q,K+)/τ)∑N
i=1 exp(sim(Q,K−

i )/τ)
(1)

where τ is a hyperparameter known as temperature to put
penalties on the calculated similarities [45], [47].

The similarity can be calculated using cosine, Euclidian, or
Wasserstein distance functions. The cosine similarity score is
used in the experiments and calculated as sim(x, y) for two fea-
tures x and y and is sim(x, y) = xT /(||x|| ∗ ||y||). We calculate
query similarity CL in (1) as a normalized sum of the similarity of
query vectorQ toN negative samples. In the baseline paper [43],
the authors used (1) for the LDA and GDA, where only a single
augmented image was used as the positive case. However, earlier
research shows that the work in [17] including more than one
positive case in contrastive learning can better generalize the
feature representation. Based on this idea, we modify the loss
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TABLE II
INSTANCE DISTRIBUTION STATISTICS (TEST SET) OF THE DIOR [9],

DOTA2.0 [48], [49], VISDRONE [50], AND UAVDT [51] DATASETS OVER

DIFFERENT CATEGORIES

function in (1) as follows:

CL = −log

∑M
i=1 exp(sim(Q,K+

i )/τ)

M ∗∑N
j=1 exp(sim(Q,K−

j )/τ)
(2)

where M is the number of augmented positive samples
for the query. We perform a cross product between the
query and positive cases following this operation Q(1, size)×
K+(M, size)′ = Sim(1,M), which gives a column vector with
a dimension equal to positive cases (M ). Then, we average
all the logits and compute a single scalar value as the final
similarity score. It is shown in Section IV that adding more
than one positive case significantly improved the performance
across different datasets.

Another challenge for contrastive learning is imbalance
classes. Table II shows that the real datasets are highly im-
balanced. As samples for contrastive learning are selected ran-
domly, we cannot control which class instances are picked in a
mini-batch. This raises the chances of getting FN picked as the
negative samples, as illustrated in Fig. 3. Earlier DA methods
for consumer datasets do not deal with this problem because
consumer datasets are usually nearly balanced. On the other
hand, remote sensing datasets are often dominated by some
major classes that require extra effort to gain optimal results.
The number of FNs increases as we increase the number of
negative samples in a mini-batch

DCL = −log
1
M

∑M
i=1 exp(sim(Q,K+

i )/τ)∑N
j=1 exp(D_K−

j /τ)
. (3)

In this light, we propose to filter out negative samples with
high similarity scores with the query sample. In Fig. 3, three out
of four images have a similarity score below 0.2, and one image
is highly similar to the query image. DCL in (3) summarizes the
process. First, reject the FN case that 70% matches the query.
Next, replace the value with the remaining average score in
the mini-batch for better consistency and stable learning. Here,
DK−

j is calculated using the following formula:

DK−
j =

{
sim(Q,neg), if sim(Q,neg) ≤ 0.7 ∗ sim(Q, pos)

Avg.(sim(Q,negs)), otherwise.

D. Debiased Local Contrastive Learning

Local adaptation is a class-agnostic adaptation because we ex-
tract features at the pixel level of the source and target domains.
From the architecture of our proposed model in Fig. 4, we can
see that the first step toward LDA is to generate synthesized
images from both the source (S) and target (T ) images in
a mini-batch. For that, we use CycleGAN and pass both the
source and target images to generate translated source (S ′) and
translated target (T ′), respectively. Then, pass S, T ′, T , and S ′

to the backbone for feature extraction. Local features are saved
from the earlier layers of the backbone in the dimension of
256× 100× 100. Next, pass parts into the bottleneck block,
which reduces the feature dimension to 32× 100× 100, where
dimensions are C, W , and H , respectively. Finally, we feed
the output of the bottleneck layer to the multilayer perceptron
(MLP) block and transform the final feature vector with a length
of 1024. The minimal size of each feature reduces the necessity
of GPU memory.

Let us represent the local features from the S, T ′, T , and S ′

as αS
i , αT ′

i , αT
i , and αS′

i , respectively, where i is the index of the
mini-batch. As we are going to perform bidirectional adaptation,
for the adaptation ofS and T ′, we select a local featureαS

i ∈ αS

as a query and choose different augmentations of the correspond-
ing feature from αT ′

i ∈ αT ′
as the positive cases. On the other

hand, negative cases are all other local features αT ′
j ∈ αT ′

in the
mini-batch, where j �= i. The bidirectional local contrastive loss
between (S and T ′) and (T and S ′) can be calculated from the
following equations:

DCLS,T ′
local = − log

1
μ

∑μ
m=1 exp(sim(αS

i , α
T ′
m)/τ)

D(
∑ν

j=1 exp(sim(αS
i , α

T ′
j )/τ))

− log
1
μ

∑μ
m=1 exp(sim(αT ′

i , αS
m)/τ)

D(
∑ν

j=1 exp(sim(αT ′
i , αS

j )/τ))
, j �= i

(4)

DCLT,S′
local = − log

1
μ

∑μ
m=1 exp(sim(αT

i , α
S′
m)/τ)

D(
∑ν

j=1 exp(sim(αT
i , α

S′
j )/τ))

− log
1
μ

∑μ
m=1 exp(sim(αS′

i , αT
m)/τ)

D(
∑ν

j=1 exp(sim(αS′
i , αT

j )/τ))
, j �= i.

(5)

In (4) and (5), D stands for Debiased, and m denotes the mth
augmentation out of μ number of augmentations for a particular
image. Finally, the number of negative examples drawn from a
mini-batch is denoted with ν. The total bidirectional local DA
loss can be formulated by accumulating the loss for all the query
images in a mini-batch, as follows:

DCLlocal = W1 ∗ DInfoNCES,T ′
local

+W1 ∗ DInfoNCET,S′
local . (6)

E. Debiased Global Contrastive Learning

GDA focuses more on the abstract view of object features.
Global image features are collected from the last layer of the
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backbones; by this, we get features with very high details on
lower spatial resolutions. Like the local adaptation, we also pass
the images of dimension 256× 25× 25 to the bottleneck layer
and reduce the dimension to 3× 25× 25. Next, features are fed
to the MLP block, and a feature vector with 1024 dimensions is
computed. Following the same notational format from previous
Section III-D, we can define the global features from S, T ′, T ,
and S ′ as βS

i , βT ′
i , βT

i , and βS′
i , respectively. Again, i is the

index number in a mini-batch. Therefore, the bidirectional global
contrastive loss between (S and T ′) and (T and S ′) can be
presented as follows:

DCLS,T ′
global = − log

1
μ

∑μ
m=1 exp(sim(βS

i , β
T ′
m )/τ)

D(
∑ν

j=1 exp(sim(βS
i , β

T ′
j )/τ))

− log
1
μ

∑μ
m=1 exp(sim(βT ′

i , βS
m)/τ)

D(
∑ν

j=1 exp(sim(βT ′
i , βS

j )/τ))
, j �= i

(7)

DCLT,S′
global = − log

1
μ

∑μ
m=1 exp(sim(βT

i , β
S′
m)/τ)

D(
∑ν

j=1 exp(sim(βT
i , β

S′
j )/τ))

− log
1
μ

∑μ
m=1 exp(sim(βS′

i , βT
m)/τ)

D(
∑ν

j=1 exp(sim(βS′
i , βT

j )/τ))
, j �= i.

(8)

The total bidirectional GDA loss can be formulated by accu-
mulating the loss for all the query images in a mini-batch, as
follows:

DCLglobal = W2 ∗ DCLS,T ′
global +W2 ∗ DCLT,S′

global. (9)

F. Debiased Instance Contrastive Learning

LG contrastive learning helps to create domain-invariant fea-
tures, as shown in Fig. 5; it is visible in the figure that image-level
adaptation can remove the domain boundary and create a uni-
form domain feature space for source and target datasets. No
class discrepancy is maintained at the image-level alignment,
and there is an overlap between different class instances in
the feature space. To solve this issue, we propose to perform
debiased instance contrastive learning for the source and target
datasets and achieve class discrepancy in features. The effect of
this learning is illustrated in Fig. 5, where we can see a moderate
separation line between the two classes.

Instance-level features are extracted from the RPN and fed
into the instance domain adaptation (IDA) block. It is important
to note that we do not perform strong feature alignment for
samples near the decision boundaries. Instead, we perform weak
feature alignment to maintain classwise discriminant in visual
features. Instances near decision boundaries may look very
similar but belong to different classes.

Notation for the source region proposals is ΓS
i , and for the

target region proposals is ΓT
i . The corresponding class set for

the source is CS
i , and for the target is CT

i ; i is the proposal index
among P proposals. For instance-level contrastive learning, the

TABLE III
ABLATION STUDY FOR DIFFERENT MODULES OF OUR DCLDA METHOD

formula can be formulated from the following equations:

DCLS
Ins = − log

1
μ

∑μ
m=1 exp(sim(ΓS

(qc,i),Γ
S
(pc,m))/τ)

D(
∑ν

n=1 exp(sim(ΓS
(qc,i),Γ

S
(nc,n))/τ))

i �= m and i �= n (10)

DCLT
Ins = − log

1
μ

∑μ
m=1 exp(sim(ΓT

(qc,i),Γ
T
(pc,m))/τ)

D(
∑ν

n=1 exp(sim(ΓT
(qc,i),Γ

T
(nc,n))/τ))

i �= m and i �= n. (11)

Equations (10) and (11) represent the source and target in-
stance losses, respectively. Here, μ and ν stand for the number
of positive and negative samples, respectively, and i stands for
ith ∈ theP proposal in the proposal setP . We define the class id
of the query, positive, and negative samples using qc, pc, and nc,
respectively. The total instance contrastive loss can be formu-
lated by accumulating the loss for all the region proposals in a
mini-batch, as follows:

DCLIns = W3 ∗ DCLS
Ins +W3 ∗ DCLT

Ins. (12)

Also, confidence tends to be less reliable at the early stage
of the adaptation. The feature quality and objectness score from
the RPN for the target dataset are generally less reliable due to
the large domain gap. In this light, we use weights
W1,W2, and W3 in (6), (9), and (12), respectively, to perform
progressive adaptation and give less weight during the early
stage of transformation and progressively increase the focus
with an increased object confidence score and quality features.
Earlier works show that LDA and GDA work well with an initial
weight of 0.1, so we keep W1 and W2 = 0.1. For the IDA, we
tried different values of W3 as presented in Table III. However,
the optimal result was achieved with an initial value of 0.01.
The total loss for the detection and adaptation process can be
calculated by summarizing all the loss components outlined as
follows:

TotalLoss = SWFL(x, pt, y) + DCLlocal

+ DCLglobal + DCLIns. (13)
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IV. EXPERIMENTS

This section evaluates our proposed DCL model against cur-
rent SOTA DA methods on four RSI datasets. The experimental
setup is described in Section IV-A, the comparison findings
are summarized in Section IV-D, and the extensive ablation
studies over different factors and parameters are outlined in
Section IV-F.

A. Implementation Details

We use the object classification pipeline similar to [43]:
1) Darknet53 as the backbone as it is shown to preserve seman-
tic information from the small objects than the residual-based
feature extractor networks [27], [54]; 2) RPN heatmap-based ap-
proach to identify dense small objects and remove NMS; and 3)
the detection block is faster-region-based convolutional neural
network (RCNN) [55]. We have used Python with PyTorch as
the deep learning framework to implement the project. Our code
implementation is heavily based on an open-source computer
vision library Detectron2 [56] and some part of SOD [30]
implementations. With DCL, we implemented three new DA
modules for LDA, GDA, and IDA. Also, we implemented a
Cythonized K-means++ that is much faster than the Python
implementation, and the clustering time is recorded in Table I.

B. Hyperparameter Settings

In CycleGAN network [57], load 800 and crop 640 were
used for the data augmentation. To train our DCLDA model,
we have resized all the images to 800× 800 pixels and set eight
as the mini-batch size in each epoch. Therefore, in total, we
send 8× 4 = 32 images in a mini-batch to train the DCLDA
model. The PyTorch color-jitter augmentation technique was
used to create multiple augmented copies of the synthesized
images for image-level contrastive learning positive cases. Dur-
ing the support-guided pseudolabeling, we chose five samples
(n) per class and created the five-shot support set. For the
feature curation, we tried different values as the cosine simi-
larity threshold and found that 70% cosine similarity thresh-
old achieves optimal performance across most of the experi-
ments. Other important hyperparameters were set: IOU = 0.5,
NMS= 0.6, L.Rate= 0.003, POST_NMS_TOPK for IDA= 64,
and POSITIVE_FRACTION = 0.40. We have used NVIDIA 2
x RTX 6000 GPU with 49 GB of memory, 11th-generation Intel
CoreTM i9-11900K @ 3.50 GHz × 16 CPU, and 167 GB of
system memory to carry out all experiments.

C. Datasets and Evaluation Metrics

1) Datasets: The DIOR dataset originally consisted of
24 500 Google Earth images from 80 countries. After selecting
only common classes, the reduced dataset has 11 402 images.
The images varied in quality and were captured in different
seasons and weather conditions. The number of pictures in the
training set is 10 888; in the testing set, we have 512 images.
The DOTA dataset comprises 2430 overhead images with im-
age sizes ranging from 800 × 800 to 29 200 × 27 620 pixels.
The ground sample distance in the dataset ranges from 0.1 to

0.87 m, and each image contains an average of 220 objects. For
experiments, we split high-resolution images into patches of size
1024 × 1024 pixels with an overlap of 200 pixels. Considering
only the common ten classes, the DOTA2.0 training set has
11 551 images, and the testing set has 3488 images. Visdrone is a
unmanned aerial vehicle (UAV) dataset containing over 10 000
image frames from more than 6 h of videos, making it one of
the largest drone datasets available. The experimental dataset
includes three common object categories, and the images have
different resolutions ranging from 540p to 1080p. The training
and testing sets contain 6883 and 546 images, respectively.
The UAVDT dataset contains over 80 000 frames in 179 videos
captured by UAVs, making it one of the largest datasets available
for object detection. The experimental dataset contains 10 000
images with three object categories with different image reso-
lutions ranging from 540p to 1080p. The dataset covers various
weather conditions, including sunny, cloudy, and rainy. The →
symbol is illustrating the direction of DA: source → target.

2) Evaluation Metrics: To assess the effectiveness of our
proposed approach in the target domain, we measure its pre-
cision, recall, and average precision (AP) by considering both
precision and recall for each object category. The mean average
precision (mAP) is then calculated as the average AP across
all the object categories. The mAP for all the experiments was
calculated with an IOU of 0.5 at the NMS stage.

D. Method Performance Comparisons

We compare our DCLDA method with several current SOTA
techniques for the adaptive object detection task on two high-
variability video image datasets and two high-variability image
datasets. Specifically, we have used the CenterNet2 [26] as the
source-only baseline, which is trained only with labeled source
data, serving as the performance lower bound for comparisons.
On the other hand, the oracle method is trained with labeled
target data, serving as the performance upper bound. We have
used feature alignment DA methods, such as MGADA [52] and
SAPNet [53], and a spatial-attention-based DA network for the
performance measurements. A novel SIGMA method [39] is
also introduced in the model comparison to have better diversity
in the plans. Finally, we introduced ConfMix [38], a sample
mixing-based paradigm of DA for SOTA comparisons. Fig. 7
presents the qualitative analysis and the detection performance
of DCLDA trained on DIOR source data and tested on the
DOTA target dataset. In detection figures, we illustrate the
GT, foreground-focused saliency map, and object detection for
different samples. It is evident from Fig. 7 that our DCLDA
model well adopted the variation in lighting conditions, object
sizes, and foggy-weather conditions between source and target
datasets. Table IV presents the quantitative performance com-
parison for DIOR and DOTA satellite image datasets. This table
shows classwise performance for the target dataset and overall
performance for both the source and target datasets. We can
see from Table IV that our baseline method achieves mAP of
66.6 and 35.4 in the source and target datasets, respectively. We
improve the baseline model with image-level LDA and GDA
and pseudolabeling-based instance adaptation, which helps us
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Fig. 7. Detection results from DIOR (source) and DOTA (target) dataset using our DCLDA method. (a) GT. (b) Saliency map. (c) Prediction.

TABLE IV
CLASSWISE PERFORMANCE COMPARISONS (MAP) FOR DIOR → DOTA BENCHMARK(IOU = 0.5), AS MEASURED BOTH ON THE DIOR (SOURCE) AND ON THE

DOTA (TARGET) DATASETS

to outperform other SOTA models by a minimum margin of 3.2%
on the target dataset. Moreover, the gap between the DCLDA
and Oracle results is now narrowed to 12.2% from 27.4%. From
the classwise performance, we notice that while other methods
ultimately failed to affect the stadium class, our DCLDA method
showed a significant gain of 7.9% mAP of this particular class.
It is also visible that CSP-Darnet53 can perform better than
the ResNet50 model with +1.5% of target mAP improvement.
Finally, the precision, recall, and F1 scores are presented in
Table V.

The Visdrone and UAVDT video datasets are two high-
variability videos captured from the UAV in Table VI. The

qualitative analysis of Visdrone and UAVDT datasets is pre-
sented in Fig. 8. Visdrone and UAVDT pose critical domain
gaps due to illumination, low light, and foggy conditions. Fig. 8
shows samples with shadows due to high buildings and sunlight
angles. In addition, we see some samples where the objects are
overexposed with traffic lights, and some are underexposed due
to low illuminations. It can be seen from Fig. 8 that our proposed
DCLDA can tackle all these critical scenarios and detect objects
successfully. Next, we evaluate the target dataset performance
over three different categories. We have not only shown excellent
performance on the target dataset but have also achieved a 59.2%
mAP (see Table VI) on the source dataset, which is noteworthy.
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TABLE V
COMPARISON OF PRECISION, RECALL, AND F1 SCORE BETWEEN THE CLOSEST SOTA COMPETITOR AND OUR PROPOSED MODEL FOR THE

EXPERIMENTAL DATASETS

Fig. 8. Detection results from Visdrone (source) and UAVDT (target) datasets using our DCLDA method. (a) GT. (b) Saliency map. (c) Prediction.

Our baseline method trained on only source data gives 26.4%
of mAP, whereas our DCLDA method achieves 41.5% of mAP
using DCL and pseudolabeling. Also, we have a +2.1% gain
margin compared to the best SOTA ConfMix method. Moreover,
using DCL, we could shrink the performance gap between the
oracle and our model from 30.5% to 15.4% compared to the
baseline model. Table VI also demonstrates that a well-designed
backbone can enhance performance by around +2.7% on the
video target domain with dominated dense objects.

In Fig. 9, we present a qualitative analysis of DCLDA with
other competitive SOTA methods. The green boxes denote cor-
rect foreground object detection, and the yellow boxes refer
to missed object detection. From Fig. 9, we can see that our
DCLDA performs significantly better in detecting challeng-
ing small and dark objects. However, we found some missing
detection from DCLDA when the object has a uniform color
distribution (e.g., green field or tennis court). On the other hand,
the SIGMA, MGADA, and ConfMix methods can do well on
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Fig. 9. Comparison of SOTA methods with our DCLDA method. In this figure, we present the comparison across different methods and datasets to illustrate the
effectiveness of our model. The green boxes denote true predictions, and the yellow boxes denote missed detections.

TABLE VI
CLASSWISE PERFORMANCE COMPARISONS (MAP) FOR VISDRONE →

UAVDT BENCHMARK (IOU = 0.5)

regular-sized objects, but we can find that there are still several
false alarms in the detection results, as they fail to align the
source and target domains properly.

Finally, each dataset’s precision, recall, and F1 scores are
presented in Table V. We compared the performance of our
DCLDA with the best competitor, ConfMix. We achieved better
precision and recall for most datasets, except for DOTA, where
ConfMix slightly outperforms DCLDA. We can also verify
the recall performance from Figs. 7 and 8, which shows the
foreground detection results from experimental datasets.

E. Computational Cost Comparisons

The DA methods are well known for their high computational
cost (see Table VII). However, carefully designing the gradient
computation tree helps our DCLDA method maintain reasonable
computational stability with optimal detection performance.
Table VII presents a computational comparison between the
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TABLE VII
MULTIFACTOR COMPUTATIONAL COST COMPARISON BETWEEN OUR PROPOSED

DCLDA AND RECENT SOTA METHODS

TABLE VIII
SOURCE AND TARGET DETECTION PERFORMANCE (MAP) WITH (W/) AND

WITHOUT (W/O) IDA

proposed and some closely competitive SOTA models. Among
the models, our DCLDA and SIGMA are end-to-end trainable
models. On the other hand, ConfMix and MGADA are two-step
trainable methods. The MGADA is the most computationally
expensive model, with 53.8 GFLOPS, whereas the ConfMix is
the most computationally efficient, with 32 GFLOPS. Although
our DCLDA requires 34.8 GFLOPS, it outperforms the ConfMix
method in object detection tasks by 3.2% and 2.1% for DOTA
and UAVDT target datasets, respectively. To reduce the learnable
parameters and GFLOPS, we turn ON gradient updates only
for the query vectors and no gradient updates for positive and
negative vectors during contrastive learning. Also, we subsample
the positive and negative keys throughout all contrastive learn-
ing to reduce training time and computation cost further. The
training time for ConfMix and DCLDA is 12.3 and 13.4 h,
respectively, for 50 epochs. Therefore, we can conclude that
exploring contrastive learning for DA tasks is computationally
convincing with the careful design of the gradient computation
graph.

F. Ablation Study

In this section, we answer several questions. The first one
is: Does the instance-level adaptation help on target data?
Table VIII shows that the IDA improves mAP 7.9% and 5.4%
recorded for the DOTA and UAVDT target datasets, respectively.
The performance on the source dataset dropped slightly by 1.5%
for the DIOR dataset after IDA (w/o curation) due to the in-
creased number of loss functions and noise from target instance
labels. When we used the support set to cure the noisy features
and guide the IDA process, we gained higher mAP in the target
dataset. We could recover from the source dataset performance
drop (see Table VIII). The second question we want to answer
is: how much we benefit from using multiple positive cases? We
claim that the single sample of positive cases for contrastive

TABLE IX
QUANTITATIVE PERFORMANCE COMPARISONS (MAP) FROM DCLDA MODEL

FOR VARIOUS NEGATIVE AND POSITIVE CASE VALUES

learning does not work for high-variability overhead videos and
imagery. Table IX illustrates the performance gain, and even
for two positive samples, improves the overall performance by
roughly 2.0% for both the target datasets.

More positive and negative examples can introduce more
noise and ultimately hamper the results, as illustrated in
Table IX for 15 negative and eight positive cases. The study
found that using seven negative and four positive points gives
the optimal results for each dataset. The third question is: how
many clusters do we set for pseudolabeling? and Table I shows
that pseudolabeling with five clusters for DOTA and two for
UAVDT can achieve up to 7.5% and 5.8% increase, respectively.
Table II shows that five significant classes dominate the DOTA
dataset labels. For UAVDT, a single class with two minor classes
separates the dataset into two clusters for target labeling.

Finally, we answer the efficacy of different modules of the
proposed DCLDA model. Table III shows that each integrated
module has some performance gain in our target dataset. We
recorded the mAP performance against the experimental dataset.
We first integrated CycleGAN-based synthetic image for trans-
fer learning, and we can see that it gains +1.8% and +1.4%
mAP on DOTA and UAVDT datasets, respectively. Next, we
integrated three contrastive learning modules (e.g., LDA, GDA,
and IDA) incrementally, and the performance is presented in
Table III. Integrating the IDA module obtains the best perfor-
mance gain. The proposed model gains +11.5% and 10.4%
increase in the mAP on the DOTA and UAVDT datasets, re-
spectively. Finally, we combined all the proposed modules in
our DCLDA architecture and ran experiments with different
hyperparameter values (W3). DCLDA is very sensitive to W3,
and we noticed a significant performance drop when weighing
the IDA close to 50%. The optimal performance on both the
target datasets was recorded by carefully selecting all the hyper-
parameters and setting W3 equal to 0.01 or 1%.

V. CONCLUSION

This article proposes specialized contrastive learning with
support-set guided pseudolabeling for the UDA task. We show
that remote sensing video frames and images have significant
domain shifts due to lighting conditions, weather changes, and
geographical variance. A careful design of the detection pipeline
and the instance-aware DA method is required for optimal per-
formance. Our proposed contrastive learning method consists
of two significant improvements. The first is DCL to remove
FN samples using the classwise probability logits. The second
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introduces multiple augmented positive cases for more stability
from object size and scale variation over images and datasets.
Next, we show that a faster and support-guided pseudolabeling
technique can improve the target instance learning performance
by eliminating noisy object features with little training time
overhead. Specifically, our method takes only a second to label
4000 target features in a mini-batch. Finally, we validate our ap-
proach in four challenging high-variability datasets that showed
significant performance gain over available SOTA methods.
For the UAVDT and DOTA target datasets, we outperformed
the latest SOTA ConfMix method by +2.1% and +3.2% mAP,
respectively. We hope our work can inspire future exploration of
DA tasks in remote sensing imagery using DCL. In the future,
we plan to make the model more computationally efficient and
further pursue the category imbalance problem in RSIs for
improved detection performance. Besides, we plan to introduce
the first-ever multimodal image-text-based DA pipeline for RSI
imagery.
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