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Abstract—Multitemporal change detection (CD) plays a crucial
role in the remote sensing application field. In recent years, super-
vised deep learning methods have shown excellent performance in
detecting changes in very-high-resolution (VHR) images. However,
these methods require a large number of labeled samples for train-
ing, making the process time-consuming and labor-intensive. Un-
supervised approaches are more attractive in practical applications
since they can produce a CD map without relying on any ground
reference or prior knowledge. In this article, we propose a novel un-
supervised CD approach, named transformer-based multivariate
alteration detection (trans-MAD). It utilizes a pre-detection strat-
egy that combines the compressed change vector analysis and the
iteratively reweighted multivariate alteration detection (IR-MAD)
to generate reliable pseudotraining samples. More accurate and ro-
bust CD results can be achieved by leveraging the IR-MAD to detect
insignificant changes and by incorporating the transformer-based
attention mechanism to model the difference or similarity between
two distant pixels in an image. The proposed trans-MAD approach
was validated on two VHR bitemporal satellite remote sensing
datasets, and the obtained experimental results demonstrated its
superiority comparing with the state-of-the-art unsupervised CD
methods.

Index Terms—Change detection (CD), deep learning,
iteratively reweighted multivariate alteration detection (IR-MAD),
transformer, unsupervised, very-high-resolution (VHR) remote
sensing images.
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I. INTRODUCTION

CHANGE detection (CD) is a crucial task in various
remote sensing application fields. It involves identifying

the differences of an object or phenomenon over a certain
region by analyzing two or more images captured at different
times [1]. CD technique enables successful applications like
land-cover mapping, disaster assessment, urban development
monitoring, and ecological environment monitoring [2]. It
provides a great opportunity to discover and analyze land-cover
changes caused by human activities or natural phenomenon,
which helps to make prompt and sound decisions [3]. With
the rapid development of observation platforms and optical
sensors, the very-high-resolution (VHR) remote sensing images
have become the primary data source in the data archive. VHR
images contain fine spatial information and thus are able to
depict land objects at a detailed scale, whereas their spectral
information is relatively coarse when comparing with the
dense-sampling hyperspectral images.

In the past decades, numerous CD methods have been pro-
posed, ranging from traditional techniques to advanced deep
learning-based approaches. The category of traditional CD
methods includes image algebra, image transformation, post-
classification comparison, and others [4]. Within this context,
popular CD methods are mainly developed based on spectral
analysis of the original bands, such as change vector analysis
(CVA) [5], compressed change vector analysis (C2VA) [6] and
its adaptively sequential version (S2CVA) [7], multivariate alter-
ation detection (MAD) [8] and its iteratively reweighted version
(IR-MAD) [9], principal component analysis (PCA) based [10],
and slow feature analysis (SFA) based [11]. In order to explore
more robust change representation, some works also focused
on features that derived from the original spectral bands and
incorporated into C2VA or IR-MAD [12], [13]. However, such
features are mainly shallow and artificially designed, whose
effectiveness is not sufficient for representing different types
of changes at different significance levels. Furthermore, these
traditional CD methods may face challenges concerning reduced
accuracy and robustness when dealing with the VHR images
over complex scenes, since they are mainly designed based on
the utilization of original spectral bands or extraction of simple
handcrafted features. In addition, data quality issues, such as
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the seasonable variations, illumination conditions, and spectral
variability may lead to the degradation of the CD performance
[14], [15], [16].

In recent years, deep learning techniques have demonstrated
remarkable success in various remote sensing application tasks
[17], [18], [19], [20], [21], [22], [23]. They have also emerged
as promising alternatives to address the limitations of traditional
CD methods. According to the utilization of reference data,
they can be divided into two main categories: supervised and
unsupervised methods. The former relies on the available ground
reference samples to train the model, such as fully convolutional
network (FCN) [24], UNet++ [25], and bitemporal image trans-
former (BIT) [26]. The latter does not require ground reference
samples thus is data-driven with a higher degree of automation.
Gong et al. [27] proposed a method based on a generative
adversarial network (GAN) to generate better differential im-
ages, and built the mapping relationship between training data
and corresponding patches, and finally obtained binary change
maps. Saha et al. [28] developed a deep change vector analysis
(DCVA) framework, and made full use of the multi-layer deep
features extracted by convolutional neural network (CNN) to
determine the changed pixels. Chen et al. [29] proposed a method
named DSMS-CN that used the deep siamese CNN to extract
the multi-scale spectral-spatial features for CD. Du et al. [30]
proposed a deep SFA (DSFA) method based on the original SFA,
which used two symmetric fully connected networks to project
input data into a new feature space, and then extracted the most
invariant components to highlight the changed components. Wu
et al. [31] built a deep siamese kernel principal component
analysis convolution mapping network (KPCA-MNet) to extract
high-level spectral-spatial feature maps and generated the final
CD map.

Despite the effectiveness of the aforementioned unsupervised
approaches, several issues still require to be analyzed and ad-
dressed.

First, the quality of pseudotraining samples largely depends
on the pre-detection step. If the pre-detection algorithm does
not work properly, it will introduce inaccurate or even wrong
samples during the training process, eventually affecting CD
accuracies. For example, in the existing KPCA-MNet algorithm,
image patches are randomly selected as samples for training the
KPCA convolutional layer, whose uncertainty will inevitably
lead to unstable CD performance with the occurrence of omis-
sion and commission errors. The predetection step in DSFA is
achieved by using CVA to obtain pseudotraining samples. To
follow the convention of SFA, it only selects the pixels with
the lowest change intensity as samples. However, this cannot
be successfully extended to other methods relying on different
CD strategies. Note that the insufficient representativeness of
the samples will result in poor performance of CD especially in
those complex scenarios.

Second, existing methods exhibit limitations in feature ex-
traction. DCVA relies on pretrained deep CNN to extract deep
features, and its generalization ability is unstable when dealing
with different complex scenarios. The DSMS-CN method uti-
lizes deep siamese CNNs to extract multiscale spectral-spatial
features. However, due to its inherent characteristics and limited

receptive field of convolutional kernels, CNN can only capture
spatial contextual information at the local scale. It is challenging
to capture long-range dependencies and contextual information,
which has a significant impact on CD accuracy, leading to the
occurrence of commissions and omissions. There are existing
methods (e.g., BIT, hybrid-TransCD [32], and TransUNetCD
[33]) using Transformer to model global contextual features,
but they are all trained in a supervised manner and require a
large number of training samples.

To overcome these limitations, in this article, we propose a
novel deep learning-based CD framework named transformer-
based multivariate alteration detection (trans-MAD). The main
contributions and novelties are summarized as follows.

1) Improved Predetection (IPD) and Pseudotraining Sam-
ple Generation: The challenging issue of pseudotraining
samples generation in the unsupervised CD is addressed
by taking advantages of the joint change representation
from two independent pre-detection algorithms C2VA and
IR-MAD, without relying on the ground reference data or
prior knowledge. This facilitates the generation of highly
reliable and representative pseudotraining samples in an
automated and unsupervised fashion, even in complex
scenarios.

2) Innovative Shallow-to-Deep (SD) Feature Extraction:
Considering that the traditional IR-MAD method directly
performs linear transformations on the original spectral
bands to extract change information, it is easily affected
by noise. This article develops an innovative unsupervised
framework that uses CNN, transformer, and IR-MAD to
harmoniously extract and fuse SD features, effectively
describing local and global change information, thereby
reducing omission errors and generating more accurate
CD maps.

3) Robust Handling of Sampling Randomness: Trans-MAD
incorporates a dedicated decision fusion (DF) based CD
module to mitigate the challenges posed by random sam-
pling uncertainty when generating pseudotraining sam-
ples. This strategy reduces commissions in CD output and
ensures the stability of the final result.

The proposed trans-MAD approach is validated on two real
VHR image datasets, and obtained experimental results confirm
its effectiveness when comparing with the several state-of-the-
art unsupervised CD methods.

The rest of this article is organized as follows. Section II
introduces the related works. Section III presents in detail the
proposed approach. Section IV describes the datasets and de-
tailed experimental design. Experimental results and discussions
are provided in Section V. Finally, Section VI concludes this
article.

II. RELATED WORKS

A. Convolutional Neural Network

The CNN, a specialized neural network architecture, is partic-
ularly designed for data with grid-like structures. It has emerged
as a powerful tool for detecting changes in VHR remote sensing
images. Many research endeavors involve training CNN models
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to learn feature difference between bitemporal images, thereby
facilitating the CD process [10].

CNN is characterized by hierarchical structure, typically com-
prising convolutional layers, activation functions, and pooling
layers. They operate on input data using learnable convolution
kernels, and apply activation functions to introduce nonlinearity
to the network. Subsequently, the pooling layer subsamples
each feature map to reduce redundancy. Over a series of al-
ternating convolutional and pooling layers, CNN autonomously
generates advanced features from the input data. Commonly,
the network parameters are optimized using stochastic gradient
descent (SGD) and the backpropagation algorithm. Through
several rounds of training with annotated data, CNN performs
supervised learning and generates increasingly representative
features.

B. Bitemporal Image Transformer

The BIT serves as the main feature-extracting module with
three key components: a siamese semantic tokenizer, which
groups pixels into concepts to generate a compact set of semantic
tokens for each temporal input; a transformer encoder, which
models context of semantic concepts in token-based space-time;
and a siamese transformer decoder, which projects the cor-
responding semantic tokens back to pixel-space to obtain the
refined feature map for each temporal image [26].

Let I1, I2�RH×W×B be the bitemporal images, where H,
W, B is height, width, and number of bands of the image.
BIT-based model first extracts high-level features X1 and X2

by a small CNN. Two token sets are computed by a semantic
tokenizer based on the extracted features. Then, BIT models the
global relationships within these token sets using a transformer
encoder, resulting in context-rich semantic tokens T1 and T2. As
the core of the transformer encoder, self-attention is calculated
as follows:

Attention(Q,K, V ) = softmax

(
QK ′
√
dk

)
V (1)

where Q, K, and V are query, key, and value vectors from
semantic tokens, respectively, and dk represents the dimension
of the key vector. It calculates the correlation weight matrix
coefficients of Q and K and normalizes the weight matrix through
softmax operation. The weight coefficients are superimposed
on V to achieve modeling of global contextual information
[26]. These context-enriched tokens contain high-level semantic
details that effectively highlight the changes. To bridge the
gap between these representations and pixel-level features, BIT
employs a modified siamese transformer decoder to refine the
image features for each image.

The final deep features obtained are f1 and f2, respectively. In
summary, BIT interprets a feature map as a sequence of patches
via its semantic tokenizer, facilitating the learning and correla-
tion of global context related to high-level semantic concepts.
The transformer’s self-attention mechanism plays a crucial role
in capturing long-range dependencies among pixels, enabling
the modeling of comprehensive contextual information within

images. As a result, BIT excels in comprehending the spatial re-
lationships and overall characteristics of complex change targets
in VHR images, substantially enhancing its capacity to represent
change-related information.

C. Iteratively Reweighted Multivariate Alteration Detection

IR-MAD is an optimized iterative version of MAD, which
essentially uses multivariate random variables to represent mul-
tispectral bitemporal images, and detects changes through mul-
tivariate statistical analysis [9]. The core step of IR-MAD is
canonical correlation analysis, which involves deriving linear
combinations from two sets of original variables and using cor-
relation coefficients to analyze the correlation between two sets
of variables, thereby reflecting the overall correlation between
the original bitemporal images. The result obtained by calcu-
lating canonical variables and performing difference operations
reflects the maximum change information of all spectral bands.

According to (2), a linear transformation is firstly performed
on the input f1 and f2 using projection vectors a and b to obtain
the U and V. Using U–V to represent the change information
between images, the algorithm aims to find suitable a and b for
maximizing the variance (3) of difference between U and V,
that is, minimize the correlation between U and V, in order to
concentrate as much change information as possible{

U = aT f1
V = bT f2

(2)

D (U − V ) = 2 (1− Corr (U, V )) . (3)

The variance-covariance matrix of f1 and f2 is (4). Using the
Lagrangian multiplier method and denoting Corr (U, V) as r,
(5) can be derived. The problem eventually turns into seeking
eigenvalues r2 and sorting them

∑
=

[∑
11

∑
12∑

21

∑
22

]
(4)

∑−1

11

∑
12

∑−1

22

∑
21

a = r2a. (5)

After finding the eigenvectors a and b, the corresponding
canonical correlation variables can be calculated. The MAD
variates (6) are linear combinations of input variables f1 and
f2. The square sum of the MAD variates divided by the standard
deviation approximately satisfies a chi-square distribution with
p (number of bands) degrees of freedom. In addition, if there is
no change at pixel j, then the ith MAD value, MADij, has a mean
0. On this basis, calculate the chi-square distance chij according
to (7) and update the weight wj of pixel according to (8).
After the convergence of the canonical correlation coefficient,
a thresholding algorithm is used to generate a binary CD map
according to a predefined threshold value t.

Following the above principle, IR-MAD iteratively high-
lights change targets. It can effectively process multidimensional
high-level features from the feature extraction module without
excessive manual intervention

MAD = aT f1 − bT f2 (6)
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Fig. 1. Architecture of the proposed trans-MAD approach.

Fig. 2. Scheme of generating pseudotraining sample patches based on his-
togram of an intensity map.

chij =
p∑

i=1

(
MADij

σMADi

)2

∈ χ2 (p) (7)

wj = P {chij > t} = P
{
χ2 (p) > t

}
. (8)

III. METHODOLOGY

The proposed trans-MAD approach mainly consists of three
modules: the improved predetection (IPD) module; the SD
feature extraction module; and the DF-based CD module. The
overall structure of the proposed approach is shown in Fig. 1.
Details of each module are provided as follows.

A. Improved Predetection Module

This step aims to generate reliable pseudotraining samples for
CD from the original image pair. To this end, C2VA and IR-MAD
methods are jointly considered to be used for pre-detection.
Let I1, I2�RH×W×B be the bitemporal images with B bands.
Two change intensity maps ρC

2
VA and ρMAD are computed

independently according to the following equations:

ρC2VA =

√∑B

k=1

(
Ik1 − Ik2

)2
(9)

ρMAD =

√∑B

k=1

(
MADk

σMADk

)2

. (10)

Fig. 2 shows the scheme of generating pseudotraining sam-
ple patches. Let Ntotal be the total number of image pixels.
The number of no-change sample pixels (ωnc) and change
sample pixels (ωc) are Nnc and Nc, respectively. Based on

the intensity histogram, 10% Ntotal pixels with the lowest
change intensity are selected as no-change pseudotraining sam-
ples, and 10% Ntotal pixels with the highest intensity are con-
sidered as change pseudotraining samples, while the remain-
ing pixels are the background. The corresponding threshold
values are tnc and tc for the no-change and change classes,
respectively.

The sample pixel sets that generated by the C2VA and IR-
MAD pre-detection step are defined as SC

2
VA and SMAD, re-

spectively. Then, a conflict elimination operation is performed.
For a given pixel q in the image, its assigned categories in
SC

2
VA and SMAD are SC

2
VA and CMAD, respectively. If q is

selected as a sample pixel in both SC
2

VA and SMAD, but has
category conflicts (SC

2
VA�CMAD), then it will be removed

from SC
2

VA and SMAD simultaneously. This operation guar-
antees the unique and valid category of final obtained sample
pixels.

After the above process, the sample pixel sets are reshaped
into the shape of original image. Starting from the top left
corner of the image, an m×m pixels window is used to slide
and crop the image at a stride of s pixels. Finally, a series
of sample patches containing pre-change, post-change images
and binary labels were cropped out from two sets of pre-
detection results, which are denoted as ΩC

2
VA and ΩMAD,

respectively.
In order to jointly utilize the information of two pre-detection

algorithms to enhance the discriminative ability of the samples,
we randomly select labels from two sample patch sets. In the nth
sampling, corresponding to the previous cropping position (x, y),
the final label Lxy will be selected from ΩC

2
VA or ΩMAD with

equal probability and added into final pseudotraining sample
patch set Ωn. This sampling step is independently repeated Ns

(Ns usually is the odd value) times to obtain Ns pseudotraining
sample patch sets {Ω1, Ω2, …, ΩNs} for training deep learn-
ing models. The whole process of this step is summarized in
Algorithm 1.

B. SD Feature Extraction Module

The purpose of this module is to extract advanced features
based on the pseudotraining samples generated in the previous
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Algorithm 1: Improved Pre-detection Module.

stage. This is realized by utilizing both CNN and BIT, which
are complementary in feature extraction, thereby enriching the
change representation information. In particular, CNN can cap-
ture the hidden change information within a local range of
image through convolution operations, which is very helpful
for identifying tiny differences in specific regions. Unlike this,
BIT focuses more on global context and uses Transformer’s
self-attention mechanism to establish dependencies between
distant pixels, thus enabling a better understanding of the overall
structure and interrelationships of changed targets in the whole
scene.

As shown in Fig. 2, a CNN backbone is firstly employed
to process pseudotraining sample images from the predetection
module and obtain the image features X1 and X2. Then, they are
fed into BIT to generate refined global features f1 and f2. These
deep features provide higher-level representation of original
images and filter out some irrelevant information, enhancing
the ability to capture complex changes that may not be easily
distinguished in the original images. By taking advantages of
the SD feature extraction process, both the local and global
information of the bitemporal images is enhanced, which largely
increases the change representability in the IR-MAD in the next
step. By inputting the extracted SD features into the IR-MAD
algorithm, it can effectively reduce the omission errors caused by
directly extracting change information from the original bands.

Note that this feature extraction is also unsupervised and
automatic relying on the generated pseudotraining samples, and
can well model the local and global image information thus
is more robust for CD, especially in dealing with the complex
high-resolution images with limited spectral bands.

C. Decision Fusion-Based CD Module

This step is designed to generate the final CD results. Specif-
ically, in the previous steps, a feature extraction framework
combining CNN and transformer extracts SD features from
the original pseudotraining sample images. These enhanced
features are input into the CD process and utilized by IR-MAD

Fig. 3. Bitemporal images of the GZ dataset obtained in (a) 2015, (b) 2017,
and (c) change reference map.

algorithm to capture better change information. Unlike directly
extracting change information from original spectral bands, this
CD method reveals previously hidden information in the data,
greatly improving the ability to detect and understand changes.
The OTSU algorithm is used to generate the binary CD map. In
addition, a majority voting fusion strategy is applied to the CD
results obtained on different batches to improve the stability and
reliability of the final output. Corresponding to the Ns sample
sets {Ω1, Ω2, …, ΩNs} obtained in the pre-detection process, a
total of Ns CD maps {CM1, CM2, …, CMNs} were obtained. For
a given pixel on the image, its final category C can be assigned
according to the following rule:

C ∈
{
ωc, count > Ns

2
ωnc, otherwise

(11)

where count represents the number of CD results that consider
the pixel to be a change. Accordingly, the final binary CD map
CMfinal can be obtained.

By fusing several CD results through decision voting, com-
mission errors can be effectively reduced to a certain extent,
and the quality of the final output is better than that of a single
detection CD map, with higher reliability.

IV. DATASET AND EXPERIMENTAL DESIGN

A. Dataset Description

Two satellite remote sensing VHR images CD datasets are
considered to evaluate the proposed approach in the experiment,
which are introduced as follows.

1) Guangzhou (GZ) Dataset [34]: This is a large-scale VHR
multispectral satellite image data set that acquired by Google
Earth service, covering the suburb of Guangzhou, China. RGB
color images were considered with a spatial resolution of 0.55 m.
One pair of images (1836 × 1836 pixels) was selected in our
experiment, where the main changes are related to the buildings,
farmland, bare land, etc. in the image scenario (denoted as GZ
dataset). Note that the initial annotation only focuses on the
specific change of buildings, thus we carefully modified the
original change map and carried out further labeling to add
more comprehensive change classes including farmland, bare
land, waters, and roads. The considered VHR images and the
corresponding change reference map are illustrated in Fig. 3.

2) Nanjing (NJ) Dataset: This dataset is made up of two
pan-sharpened multispectral images acquired by BJ-3 satellite
in 2022 and 2023, covering the urban area of Nanjing city, which
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Fig. 4. Bitemporal images of the NJ dataset obtained in (a) 2022, (b) 2023,
and (c) change reference map.

is denoted as the NJ data set. The pair of bitemporal images
consist of three spectral bands (red, green and blue) with a spatial
resolution of 0.5 m and 512 × 512 pixels. A change reference
map [see Fig. 4(c)] was made by careful image interpretation,
and changes in this scene were mainly buildings, vegetation,
road, and bare land.

B. Experimental Design

In order to evaluate the effectiveness of the proposed trans-
MAD approach, several SOTA unsupervised CD methods are
considered for a comparison purpose, including four traditional
algorithms, i.e., C2VA [6], SFA [11], MAD [8], IR-MAD [9],
and three deep learning-based CD methods, i.e., DCVA [28],
DSFA [30], and KPCA-MNet [31].

The proposed algorithm was implemented using the PyTorch
framework on an NVIDIA RTX2050 GPU with 4GB memory.
The basic learning rate was set to 0.01 and decreased linearly.
The SGD optimizer with a momentum of 0.9 and a weight decay
of 5 × 10−4 was applied to update the learning rate based on the
training data and improve convergence speed. The batch size
was set as 4 according to the GPU memory. The size of the
cropping window m was 256 when generating pseudotraining
sample patches. The sliding stride s was set to 64 and 16 for the
GZ and NJ datasets, respectively.

Parameter settings for the reference methods were as follows.
Layers in DCVA was set as {2, 5, 8}. The regularization param-
eter in DSFA was 10−4, and the network had 2 hidden layers
with 128 nodes per layer. The network depth of KPCA-MNet
and the number of KPCA convolution kernels were 4 and 8,
respectively. The radial basis function kernel was chosen as
the kernel function, with kernel parameter equal to 5 × 10−4.
The convolution kernel’s size was set to 3 according to the
experimental performance.

C. Evaluation Metrics

In binary change maps, the changed (positive) areas are repre-
sented by white pixels, while the unchanged (negative) regions
are represented by black pixels. True positive (TP) indicates
the number of changed pixels which are correctly detected.
False positive (FP) is the number of unchanged pixels that are
falsely detected as changed ones. True negative (TN) means
the number of pixels predicted correctly as unchanged, and
false negative (FN) denotes the number of pixels predicted
incorrectly as unchanged.

TABLE I
ACCURACY INDICES ON THE GZ DATASET

Quantitative evaluation was carried out based on the obtained
binary CD maps and the corresponding pixel-level change refer-
ence map. To this end, overall accuracy (OA), Kappa coefficient
(KC), precision, recall, and F1-score (F1) were calculated by the
following formulas [32]:

OA =
TP+ TN

TP + FP + TN+ FN
(12)

KC =
OA− PE

1− PE
(13)

PE =
(TP+FP) (TP+FN) + (FN+TN) (FP+TN)

(TP + FP + TN+ FN)2

(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2× Precision× Recall

Precision + Recall
. (17)

In particular, OA represents the proportion of the number of
correctly classified samples to the total number of samples. KC
describes the similarity between the CD result and the ground
truth. Precision can represent the proportion of TP pixels in
the number of pixels detected as positive (changed). Recall
represents the proportion of TP pixels in the number of pixels
that are actually positive (changed) on the ground. F1 is the
harmonic average calculated by the comprehensive Precision
rate and recall rate, which represents the level of precision and
recall at the same time.

V. RESULTS AND DISCUSSION

A. Performance Comparison

The proposed approach and other seven reference methods
were tested on two considered VHR-CD data sets. Obtained
results are shown in Figs. 5 and 6, and Tables I and II. The
results in the second row of Figs. 5 and 6 are locally enlarged
images, with enlarged areas marked in red boxes in Figs. 3 and
4, respectively.

In particular, for the GZ data, as shown in Fig. 5, one can see
that compared with the reference methods, the proposed trans-
MAD resulted in the best binary CD map with lower omission
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Fig. 5. Binary change maps obtained by different methods on the GZ dataset. (a) Compressed change vector analysis. (b) Slow feature analysis. (c) Multivariate
alteration detection. (d) Iteratively reweighted multivariate alteration detection. (e) Deep change vector analysis. (f) Deep SFA. (g) Kernel principal component
analysis convolution mapping network. (h) Trans-MAD. First row: Whole CD maps; second row: Enlarged subsets of the whole CD maps as highlighted in red
box.

Fig. 6. Binary change maps obtained by different methods on the NJ dataset. (a) Compressed change vector analysis. (b) Slow feature analysis. (c) Multivariate
alteration detection. (d) Iteratively reweighted multivariate alteration detection. (e) Deep change vector analysis. (f) Deep SFA. (g) Kernel principal component
analysis convolution mapping network. (h) Trans-MAD. First row: Whole CD maps; second row: Enlarged subsets of the whole CD maps as highlighted in red
box.

TABLE II
ACCURACY INDICES ON THE NJ DATASET

errors, fewer noises, and a more regular and well-recognized
changed region. This is benefit from the following aspects:
it effectively generates samples representing various types of
changes by the designed IPD strategy. Then, an advanced SD
feature extraction module is utilized to better capture features in
VHR images, and local and global information about changes
is modeled to effectively reduce omission errors. The DF output
step also plays an important role in reducing the uncertainty
of pseudotraining sample generation, reducing false alarms and
making the final CD result more accurate. From Fig. 5(h), it is

worth noting that trans-MAD effectively identified changes with
varying significance linked to different land-cover transitions
(e.g., buildings, vegetation, and bare land changes). However,
the performance of KPCA-MNet was relatively poor due to a
large number of commissions. This may be caused by the limited
training samples and insufficient representativeness of features
extracted by KPCA convolution, and by its incompatibility to
the specific scenario, finally leading to false alarms occurred
in the detected soil and water changes. The CD map that pro-
duced by DCVA exhibited fewer salt-and-pepper noises due
to the morphological processing. However, it produced many
omissions associated to the vegetation changes. This could be
attributed to the limitation of the feature extraction ability of
the pretrained model used in the algorithm. As for the DSFA
method, its detection result was fragmented with many omission
errors, which may be affected by sample selection limitations
and the poor feature extraction in fully connected networks.
However, as we can see from the results, for the compared deep
learning-based CD reference methods, they only focus on the
most significant land-cover changes in the scene (i.e., mainly
are building changes). For the reference four traditional unsu-
pervised CD methods, many commission errors were presented
in the obtained CD maps. The main reason is that they only
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utilize the shallow spectral features (i.e., original bands) of VHR
images without considering more robust deep features.

Table I gives the quantitative evaluation indices obtained by
different CD methods on GZ data. The best values of each
evaluation criteria are highlighted in bold. As one can see, the
proposed trans-MAD achieved significantly higher accuracies
than other methods on all criteria. In particular, the OA value
(i.e., 0.8116) was 18.64% higher than the best in deep learning
methods and 10.7% higher than the best in traditional methods.
KC value (i.e., 0.6088) was 41.6% and 24.59% higher than the
best performance of the deep learning method and traditional
method, respectively. In addition, the precision, recall, and F1
of the proposed approach were 0.8592, 0.6830, and 0.7610,
respectively, also ranking first among the comparison methods.
A higher Precision rate demonstrates that the proposed trans-
MAD approach presents fewer commission errors in CD. In
the meantime, excellent performance on recall values indicates
that fewer change areas are falsely detected as unchanged by
trans-MAD. In summary, among all traditional CD methods,
C2VA performs best on OA, KC, and Precision indicators, while
MAD-based methods perform better on Recall and F1. In deep
learning methods, the proposed trans-MAD achieves the best
performance.

For the NJ dataset, the binary CD maps obtained by the
proposed trans-MAD approach and the reference methods are
given in Table II. Compared with other reference methods,
the proposed trans-MAD obtained the most accurate CD map,
and comprehensive qualitative evaluation showed its superior
performance. Specifically, the result of the trans-MAD method
[see Fig. 6(h)] showed significant noise suppression compared to
the CD results of the traditional SFA method [see Fig. 6(b)] and
MAD method [see Fig. 6(c)], effectively avoiding the creation
of many unrelated error detection regions. Compared with the
CD method based on deep learning [see Fig. 6(e)–(g)], the trans-
MAD approach had the smallest number of omission errors and
significant advantage in generating more regular and meaningful
change maps. Experimental results confirm that trans-MAD has
the ability to capture both significant and insignificant changes
in VHR images with remarkable clarity.

According to the statistical results given in Table II, the
proposed trans-MAD outperformed the reference algorithms on
OA values (i.e., 0.7753), which indicated that more change and
unchanged areas were accurately detected. The KC value (i.e.,
0.5010) was 4.15% higher than the second highest value from
IR-MAD, indicating a higher consistency between the CD output
of trans-MAD and the reference change map. The recall value
(i.e., 0.6427) and F1 value (i.e., 0.6711) of trans-MAD exceeded
the second highest scoring method by 4.82% and 5.15%, re-
spectively. The advantage of the trans-MAD approach in Recall
indicates that it has fewer omission errors than other refer-
ence algorithms. The leading performance of the trans-MAD
method in F1-score demonstrates that the algorithm strikes a
good balance between omission and commission errors, thus
can achieve high Precision and Recall values simultaneously.
The quantitative results confirm that by considering the trade-off
between accuracies and CD errors (i.e., omissions and commis-
sions), the proposed trans-MAD achieves overall excellent CD
performance with the best OA, KC, Recall, and F1 values.

TABLE III
ABLATION ANALYSIS ON DIFFERENT MODULES ON THE GZ DATASET

TABLE IV
ABLATION ANALYSIS ON DIFFERENT MODULES ON THE NJ DATASET

B. Ablation Analysis

In this section, ablation experiments were carried out on GZ
and NJ dataset to evaluate the individual performance and con-
tribution of newly-added modules in the proposed trans-MAD
model. We evaluated the significance of IPD module and DF
module in trans-MAD model. Unless otherwise indicated, all
experimental settings remain consistent and comparable. The
findings are given in Tables III and IV .

1) IPD Module: This module is a core component in trans-
MAD responsible for generating pseudotraining samples.
It utilizes C2VA and IR-MAD algorithm simultaneously
to recognize the basic change areas with high confidence
from bitemporal images. To determine the effectiveness
of IPD module in generating pseudotraining samples, we
replaced it with a single pre-detection algorithm (i.e.,
C2VA or IR-MAD). As one can see from the obtained
experiment results, compared with the trans-MAD, the
predetection module with only C2VA led to a significant
decrease of recall values from 0.6830 to 0.2826 on GZ
dataset, and from 0.6427 to 0.5575 on NJ dataset. F1-
scores also decreased over 32% and 7%, respectively,
on two datasets. This highlights the importance of the
IPD module. Additional experiments using IR-MAD-only
predetection showed the same trend as well. In summary,
the superiority of change information capturing and pseu-
dotraining samples generation ability using an IPD module
is validated.

2) Decision Fusion-based CD Module: We also performed an
ablation analysis to evaluate the DF Module in the trans-
MAD. As given in Tables III and IV, methods without
the DF component (w/o DF) exhibited poor performance.
On the GZ dataset, OA values decreased from 0.8116 to
0.7887, Precision values dropped from 0.8592 to 0.8096,
and F1-scores declined from 0.7610 to 0.7383. On the
NJ dataset, the OA, precision and F1 values reduced from
0.7753, 0.7022, and 0.6711 to 0.6721, 0.5493, and 0.4942,
respectively. This suggests the DF module can effectively
reduce CD errors to improve the final CD accuracy, espe-
cially the commission errors.
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TABLE V
NOTATIONS USED IN THIS ARTICLE

VI. CONCLUSION

In this article, a new unsupervised deep learning CD method
named trans-MAD was developed. In order to achieve unsuper-
vised network training, it performs an IPD by taking advantages
of C2VA and IR-MAD, enhancing the quality and diversity of
generated pseudotraining samples. A deep learning-based SD
feature extraction scheme is utilized relying on CNN and Trans-
former and integrated with the IR-MAD algorithm. It achieves
more effective feature expression, enhances change representa-
tion, as well as reduces CD omissions. In addition, a DF-based
CD step is implemented to reduce commission errors, thus
improving the overall accuracy of CD. The proposed approach
exhibits excellent performance in complex urban scenarios,

which is superior to other advanced unsupervised methods. Note
that it can better identify diverse types of changes with different
significance levels in the scene, rather than only focusing on the
most significant changes (e.g., buildings).

Experiment results obtained on two VHR remote sensing CD
datasets confirm the effectiveness of the proposed approach in
identifying accurately complex changes over different scenes.
Comprehensive qualitative and quantitative evaluations demon-
strated that the proposed trans-MAD method outperforms other
compared methods, showing the potential in land-cover CD.
Future research will be devoted to improving the adaptability
and automation of the predetection algorithm. In addition, the
possibility of extending the ability of trans-MAD on multiclass
CD is worth further study.
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