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Abstract—Accurate and timely flood forecasting, facilitated by
remote sensing technology, is crucial to mitigate the damage and
loss of life caused by floods. However, despite years of research,
accurate flood prediction still faces numerous challenges, including
complex spatiotemporal features and varied flood patterns influ-
enced by multiple variables. Moreover, long-term flood forecasting
is always tricky due to the constantly changing conditions of the sur-
rounding environment. In this study, we propose a heterogeneous
dynamic temporal graph convolutional network (HD-TGCN) for
flood forecasting. Specifically, we designed a dynamic temporal
graph convolution module (D-TGCM) to generate a dynamic ad-
jacency matrix by incorporating a multihead self-attention mech-
anism, enabling our model to capture the dynamic spatiotemporal
features of flood data by utilizing temporal graph convolution
operations on the dynamic matrix. Furthermore, to reflect the
impact of multiple meteorological and hydrological features on
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the heterogeneity of flood data, we propose a novel approach that
utilizes multiple parallel D-TGCMs for processing heterogeneous
graph data and implements a fusion mechanism to capture var-
ied flood patterns influenced by multiple variables. Experiments
conducted on a real dataset in Wuyuan County, Jiangxi Province,
demonstrate that the HD-TGCN outperforms the state-of-the-art
flood prediction models in mean absolute error, Nash–Sutcliffe effi-
ciency, and root-mean-square error, with improvements of 80.32%,
0.15%, and 73.99%, respectively, providing a more accurate flood
forecasting method that will play a critical role in future flood
disaster prevention and control.

Index Terms—Deep learning, dynamic graph convolution, flood
forecasting, multivariable prediction, spatiotemporal graph data.

NOMENCLATURE

G, Gt Graph matrix and the graph at time t.
V , vi Nodes of graph, |V| = N and the ith node.
E, Et Edges of graph and the edges at time t.
U Eigenvector matrix.
Λ Eigenvalue matrix.
D Degree matrix.
L, Lsym, L̃ Laplacian matrix, regularized Laplacian ma-

trix, and rescaled Laplacian matrix.
IN Identity matrix of size N .
Q, K, V Query matrix, key matrix, and value matrix

of the attention mechanism.
C Number of dynamic graphs.
Nc Number of nodes in the cth dynamic graphs.
Wc

t ∈ RNc×Nc Weighted adjacency matrix.
M Number of features.
Xt ∈ RC×Nc×M Heterogeneous spatiotemporal graph signal.
Th Historical sequence length.
Tp Predictive sequence length.
F Number of objective nodes.
Y ∈ RF×Tp Predicted spatiotemporal graph signal.
h Number of heads in MHSA.
f , fc Predictive function and graph convolution

filter.
ut, rt, ct, ht Update state, reset state, cell state, and hid-

den state at time t.
σ2 Variance.
ε Threshold.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-2644-3224
https://orcid.org/0000-0002-4971-5029
https://orcid.org/0009-0001-6603-3580
https://orcid.org/0000-0003-1219-4386
https://orcid.org/0000-0001-8173-0408
https://orcid.org/0000-0001-7601-5434
https://orcid.org/0009-0005-7234-2098
https://orcid.org/0000-0001-7013-9081
mailto:jiangejiang@stu.xidian.edu.cn
mailto:leiliu@mail.xidian.edu.cn
mailto:qqpei@mail.xidian.edu.cn
mailto:qqpei@mail.xidian.edu.cn
mailto:cc2000@mail.xidian.edu.cn
mailto:cc2000@mail.xidian.edu.cn
mailto:zhy@mwr.gov.cn
mailto:stefano.berretti@unifi.it
mailto:zhoujm27@chinaunicom.cn
mailto:shaohua.wan@uestc.edu.cn


JIANG et al.: HETEROGENEOUS DYNAMIC GCNS FOR ENHANCED SPATIOTEMPORAL FLOOD FORECASTING BY REMOTE SENSING 3109

I. INTRODUCTION

F LOODS cause immense economic and social impact an-
nually on a global scale, highlighting the critical need for

timely and accurate flood forecasting to aid in flood control
and disaster reduction efforts (see Fig. 1). Remote sensing
technology, encompassing high-resolution satellite images and
data from various sensors, can play a pivotal role in enhancing
flood forecasting accuracy by providing comprehensive and
precise surface information. This includes details such as water
body distribution, terrain characteristics, and soil moisture, all of
which are crucial for understanding the intricate spatiotemporal
features involved in the formation and development of floods.
Flood forecasting not only provides indispensable decision-
making information for flood control departments but also as-
sists in the regulation of reservoirs and managing river basins,
mitigating losses caused by floods. Consequently, an expanding
contingent of researchers is dedicating themselves to the study of
flood forecasting. Early flood forecasting research can generally
be categorized as process- and data-driven methods.

Process-driven methods establish flood forecasting models
with physical significance by encompassing topographical, ge-
ological, climatic, and vegetational factors, along with natural
physical traits, hydrodynamics, hydrologic processes, and flow
generation [1]. Given that the model involves a myriad of distur-
bance factors, advanced expertise and experience are necessary
to calibrate parameters or hypothesize unknown parameters,
resulting in a considerable decrease in forecast efficiency and
accuracy. Fortunately, with the advancement of the Internet of
Things and 5G/6G technologies, the extensive accumulation
and retention of hydrological data have catalyzed the rise of
data-driven approaches.

Different from process-driven methods, data-driven methods
do not require a priori consideration of the physical mechanisms
of hydrological processes. Instead, they employ mathematical
analyses of temporal data series and rely on differential or dif-
ference equations to excavate the pertinent relationships between
input and output variables. These methods obviate the challenges
associated with model assumptions or predetermined perturba-
tions, thereby exerting a substantial influence on model accuracy
and flexibility. For instance, machine-learning-based models,
such as autoregressive integrated moving average (ARIMA) [2],
support vector regression (SVR) [3], [4], and multilayer per-
ceptron [5], have remained popular in contemporary hydrolog-
ical research. However, these models are often encumbered by
the constraints of stationary assumptions in predicting highly
nonlinear nonstationary flood time-series data. Furthermore,
traditional machine learning models necessitate manual feature
extraction and preprocessing, which can limit their applicability
in complex real-world scenarios [6].

Recently, emerging deep learning models have facilitated
automated feature extraction and learning from data, curtail-
ing manual interventions and amplifying processing efficacy,
such as recurrent neural network (RNN) [7], long short-term
memory (LSTM) [8], [9], gated recurrent unit (GRU) [10],
bidirectional recurrent neural network (BiGRU) [11], etc. Lever-
aging the gate units of RNNs, these models can effectively

Fig. 1. Proportion of flood disasters in losses incurred by human society
and economy in the past 30 years due to natural disasters. (a) Proportion of
direct economic loss (to GDP) due to natural disasters. (b) Number of people
affected/number of deaths and missing. (c) Overall frequency.

extract temporal features from flood series data. However, spatial
features, such as the dispersion of hydrological and meteo-
rological data, fluvial morphology, and edaphic composition,
bear significant influences on the genesis and progression of
inundations [12]. Remote sensing technology can provide more
comprehensive and accurate surface information by acquiring
high-resolution satellite images and data from other sensors [13],
[14], [15]. This information includes water body distribution,
terrain characteristics, soil moisture, and more. Such data are
crucial for understanding the spatiotemporal features involved
in the formation and development of floods. As shown in Fig. 2,
the same amount of rainfall will result in different runoff for
stations located in different geographical locations. To effec-
tively exploit spatial features in the time-series forecasting (i.e.,
spatiotemporal sequence forecasting), a few academics have
harnessed convolutional neural networks (CNNs) to derive the
adjacency relationships within the spatial domain. For instance,
the ConvLSTM model employed by Chen et al. [16] adeptly
uses LSTM to extract temporal features, while simultaneously
drawing on the CNN to extract the spatial characteristics of
grid flood data. Despite their notable accomplishments, these
methodologies continue to face significant hurdles in achieving
accurate forecasts of flooding.

First, flood data have irregularity and nonlinearity concerning
their spatiotemporal distribution, coupled with discernible au-
tocorrelative and nonsimilar attributes. These features of flood
data pose a formidable challenge to the grid-based analysis
approach (CNNs). Graph-based methodologies furnish a more
proficient recourse to address the intricate data characteris-
tics and facilitate the discernment of spatiotemporal correla-
tions. Nevertheless, the existing graph convolutional network
(GCN)-based techniques commonly integrate manually defined
adjacency matrices to characterize spatial associations, necessi-
tating detailed priors for optimal model exhibition. This stems
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Fig. 2. Effects of spatial features on runoff under same rainfall conditions in Wuyuan County.

from the inherent capacity of graph construction to dictate node
relations, hence influencing the feature extraction capabilities
of GCNs. A maladaptation in graph structure may result in the
distortion or loss of information, thereby exerting a deleterious
influence on the prognostic efficiency of model. Moreover, rely-
ing on a static graph structure in graph convolution presumes
a homogeneity in the spatiotemporal correlations within the
data, which seems implausible given the mercurial nature of
spatiotemporal data. For instance, alterations to natural factors,
such as precipitation, geology, and topography, may exert an
impact on river water level, flow velocity, and other relevant
attributes, eliciting variations in the connectivity among hydro-
logical stations.

Second, flood spatiotemporal forecasting entails modeling
diverse sorts of data using remote sensing technology, such as
meteorological, hydrological, topographic, and anthropogenic
patterns, among others. These data typically exhibit disparate
attributes and structures that defy portrayal through identical
graphical frameworks. Moreover, such a corpus often manifests
multitier correlations, spanning across diverse spatial and tem-
poral spheres, thereby mandating modeling at various scales.
Predictive frameworks that utilize heterogeneous graphs can
adeptly account for disparate data relationships and features
based on heterogeneous nodes and edges, thereby conferring
superior adaptability and scalability, culminating in enhanced
precision of flood prediction. Consequently, another pivotal
challenge in the realm of flood spatiotemporal prediction lies
in constructing models for spatiotemporal data based on het-
erogeneous graph to comprehensively consider multiple data
types and provide richer data information for accurate flood
prediction.

To overcome these challenges, we propose a novel deep learn-
ing model, namely, heterogeneous dynamic temporal graph con-
volutional network (HD-TGCN), which is designed to overcome
the limitations of the existing methods by seamlessly integrating
remote sensing data into the forecasting framework. The HD-
TGCN not only leverages the adaptability of graph structures
but also accommodates heterogeneous data types encompassing
meteorological, hydrological, topographic, and anthropogenic
patterns, among others. This enables the model to capture the
multifaceted correlations inherent in flood dynamics across

diverse spatial and temporal scales. The main contributions of
this article are summarized as follows.

1) We design a dynamic temporal graph convolutional mod-
ule (D-TGCM) that creatively introduces self-attention
mechanisms to generate a self-adaptive adjacency matrix
for extracting spatiotemporal dynamics in flood data.

2) We propose an HD-TGCN, which utilizes multiple par-
allel GCNs to process heterogeneous graphs and uses
fusion mechanisms to capture complex relationships and
dynamic changes between heterogeneous graphs.

3) We evaluate our proposed model on flood datasets and
outperform the state-of-the-art flood prediction mod-
els in the mean absolute error (MAE), Nash–Sutcliffe
efficiency (NSE), and root-mean-square error (RMSE)
with improvements of 80.32%, 0.15%, and 73.99%,
respectively.

The rest of this article is organized as follows. In Section II, we
summarize the related work on flood prediction and GCNs. Sec-
tion III introduces the preliminary concepts. In Section IV, we
describe the technical details of our proposed HD-TGCN model.
Subsequently, in Section V, we evaluate the performance of
our proposed model on real-world datasets. Finally, Section VI
concludes this article.

II. RELATED WORK

In this section, we will summarize the literature works and
provide the motivation for our research.

A. Machine Learning for Flood Forecasting

Flood forecasting constitutes a fundamental and paramount
problem within the realm of smart hydrology, which has gar-
nered significant attention from scholars over the past several
decades [17]. In recent years, the integration of remote sensing
data has emerged as a promising avenue to enhance the accuracy
and reliability of flood forecasting models. While earlier stud-
ies utilized prototypical machine learning approaches, such as
history average (HA), ARIMA, SVR, and vector autoregressive
(VAR), to account for linear interdependencies among multiple
time series [4], [18], the incorporation of remote sensing data
introduces a new dimension of information that can capture
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the complex spatiotemporal dynamics inherent in flood events.
However, these conventional time-series models pose rigorous
assumptions regarding data stationarity, linearity, and normality
and are susceptible to data noise, rendering their capacity to
predict highly nonlinear flood data. More recently, given the
remarkable efficiency of deep learning in automated feature
extraction or representation learning, extensive research has
been devoted to applying deep-learning-based methodologies
for flood prediction. The authors of [8], [12], and [19] applied
the LSTM network model for flood forecasting. Chen et al. [11]
explored the BiGRU-based encoder–decoder framework for
multistep-ahead flood forecasting. In addition, the fusion of
remote sensing data with machine learning methods, such as
stacked autoencoders and RNN, has been proposed to enhance
flood inundation forecasts [20]. CNNs have also been applied
to extract the spatial characteristics of hydrological data. Chen
et al. [16] converted the river network to a regular 2-D grid and
applied a CNN to model the spatial dependencies of hydrological
data. Khosravi et al. [21] prepared a flood susceptibility map of
Iran using a deep CNN algorithm.

B. Graph Convolution for Prediction

While CNN-based models can extract the spatiotemporal
characteristics of hydrological data, they are restricted to pro-
cessing Euclidean data. GCNs were first introduced in [22],
which bridge the spectral graph theory and deep neural networks.
The diffusion convolutional recurrent neural network [23]
and the spatial–temporal synchronous graph convolutional net-
work [24] are constructed based on the GCN to extract the
spatial feature of traffic networks, which improves the repre-
sentation of spatial correlations among traffic flows [25]. Yan
et al. [26] proposed the spatiotemporal graph convolutional
network (STGCN), which leverages the GCN to model and
recognize dynamic human skeletal movements and learn spatial
and temporal patterns in skeletal dynamic data. Seo et al. [27]
proposed the graph convolutional recurrent network to predict
time-series data on graph structures, which has been validated
in video prediction and natural language processing domains.
While the existing graph convolutional models often rely on
expert-defined static graphs based on real geographic sensor
relations, the dynamic nature of remote sensing data necessitates
a more adaptable approach.

Our method is different from all those methods. We model
the sensor network as a dynamic graph based on the input
data, which is more consistent with the features of flood pre-
diction than grid and static graphs. Moreover, we design a
parallel GCN predictive framework to handle heterogeneous
graphs, as the formation of floods is influenced by various
exogenous factors, such as meteorological conditions including
precipitation. The integration of remote sensing data within
both the machine learning and graph convolution frameworks
presents a significant advancement in flood forecasting. How-
ever, computational costs effectively remain a challenge, yet
the benefits outweigh these tradeoffs in flood prediction and
management.

III. PRELIMINARIES

In this section, we present a comprehensive analysis of the
key concepts and methodologies that form the basis of our
research. We begin by introducing the concept of GCNs, which
have emerged as a powerful tool for analyzing graph-structured
data. Then, we present the key principles of multihead attention
(MHA), a fundamental technique that has shown remarkable
success in modeling sequential data [28], [29]. To facilitate
comprehension, we present all the symbols and their respective
meanings in the Nomenclature.

A. Graph Convolutional Network

GCNs are a type of neural network designed to work with
graph data. A graph is typically represented as G = (V,E),
where V represents the set of nodes, V = {v1, v2, . . ., vN}, N
is the number of nodes, and E represents the set of edges.
Each node represents an entity, and each edge represents the
relationship between the entities. The main idea behind the GCN
is to learn the node embedding by aggregating and transforming
the features of the node and its neighbors through a series of
convolution operations.

1) Spectral Graph Convolution: According to the convolu-
tion theorem, given a signal x as input and the other signal y as
filter, graph convolution ∗G could be written as

x ∗G y = U
((
UTx

)� (UTy
))

(1)

where the convolution filter in the spectral domain is UT y.
Let UT y = [θ0, . . . , θn−1]T and gθ = diag[θ0, . . . , θn−1]; (1) is
expressed as

x ∗G y = UgθU
Tx (2)

where UTx is the graph Fourier transform, gθUTx is a convo-
lution in the spectral domain, and UgθU

Tx is the inverse graph
Fourier transform.
UT = [u1, . . . , un]

T is the complete set of orthonormal
eigenvectors {ul}nl=1 of L, ordered by its nonnegative eigen-
values {λl}nl=1, i.e.,

L = UΛUT (3)

Λ =

⎡⎢⎢⎢⎣
λ1

λ2

. . .
λn

⎤⎥⎥⎥⎦ . (4)

Therefore

gθ = diag [θ0, . . . , θn−1]

= gθ(Λ) = θ0Λ
0 + θ1Λ

1 + · · ·+ θnΛ
n. (5)

Equation (2) is expressed as

x ∗G y = Ugθ(Λ)U
Tx. (6)

However, there are some drawbacks to performing spectral graph
convolution according to (6):

1) requiring eigendecomposition of Laplacian matrix; eigen-
vectors are explicitly used in convolution;
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2) high computational cost, multiplication with the eigenvec-
tor matrix U is O(n2);

3) not localized in the vertex domain.
To address these issues, Hammond et al. [30] proposed that

a truncated expansion using Chebyshev polynomials Tk(x) up
to the Kth order can be used to obtain a good approximation of
gθ(Λ)

x ∗G y ≈ U

K−1∑
k=0

βkΛ
kUTx

=

K−1∑
k=0

βkUΛkUTx

=

K−1∑
k=0

βkL
kx. (7)

Note that the number of free parameters reduces from n to K,
computational cost is reduced from O(n2) to O(|E|), and the
convolution is K-localized in the vertex domain.

2) Graph Convolutional Networks: In the GCN, the con-
volution operator is defined based on the Laplacian matrix of
the graph. The Laplacian matrix is a matrix derived from the
adjacency matrix. The Laplacian matrix is defined as

L = D −A (8)

where A is the adjacency matrix of the graph, which is used to
represent the connection between nodes. D is the degree matrix,
Dii =

∑
j Aij

Lsym = D−1/2LD−1/2. (9)

Lsym has n nonnegative eigenvalues corresponding to n mu-
tually orthogonal eigenvectors. To avoid gradient explosion,
it is required that x ∈ [−1, 1] in the Chebyshev polynomials
Tk(x), i.e., the eigenvalues of the Laplacian matrix ∈ [−1, 1].
The eigenvalues of Lsym ∈ [0, 2]; therefore, Lsym needs to be
rescaled to

L̃ =
2

λmax
Lsym − IN (10)

where λmax is the maximum eigenvalue of Lsym. Limiting the
number of Chebyshev polynomials to K = 2, a linear function
can be obtained. In this linear formulation of a GCN, we fur-
ther approximate λmax ≈ 2. Under these approximations, (7)
simplifies to

x ∗G y ≈ β0x+ β1 (Lsym − IN )x

= β0x+ β1

(
D−1/2(D −A)D−1/2 − IN

)
x

= β0x− β1

(
D−1/2AD−1/2

)
x. (11)

Let β0 = −β1 = β; then, (11) is further simplified as

x ∗G y = β
(
IN +D−1/2AD−1/2

)
x

= β
(
D̃−1/2ÃD̃−1/2

)
x (12)

where Ã = A+ IN and D̃ii =
∑

j Ãij .

B. MHA Mechanism

The MHA mechanism serves as a fundamental operation in
the model, which is widely utilized in deep learning models,
particularly in tasks related to natural language processing and
sequence modeling [31], to enhance the modeling capability of
sequential data by capturing dependencies. An input sequence
is represented as a matrix X ∈ Rn×d, where n denotes the
sequence length, and d represents the dimension of each element
in the sequence.

Given the input sequence, the MHA mechanism involves
transforming the input matrixX into multiple sets of queries (Q),
keys (K), and values (V ). These transformations are expressed
as linear projections

Q = XWQ, K = XWK , V = XWV (13)

where the weight matrices WQ, WK , and WV are learnable.
Next, attention weights are independently computed for each
attention head. For each head i, the attention weights Ai are
calculated by taking the dot product between Q and K, scaled
by the square root of the key dimension

Ai = softmax

(
QWQ

i ·KWK
i√

dk

)
(14)

where dk represents the dimension of the keys. The attention
weights Ai are then utilized to weight the corresponding values
Vi, resulting in contextual representations for each attention head

headi = AiVi. (15)

Finally, the contextual representations from all the attention
heads are concatenated and linearly combined to obtain the final
contextual representation

MultiHead(Q,K, V )

= Concatenate (head1, head2, . . . , headh)W
O (16)

where h represents the number of attention heads, and WO

denotes the learnable weight matrix for linear combination.
By incorporating multiple attention heads, the MHA mech-

anism enables the model to capture diverse aspects and rela-
tionships within the input sequence. The parallel processing of
attention heads allows effective attention to different parts of the
sequence, facilitating the extraction of relevant information and
enhancing the capabilities of model for tasks such as time-series
prediction.

IV. OUR APPROACH: HD-TGCN

A. Problem Definition

Definition 1 (Heterogeneous dynamic graph): The network
of stations within a watershed is defined as a heterogeneous
dynamic graph Gt = {G1t ,G2t , . . .,GCt }, consisting of C dy-
namic graphs, and the network structure evolves over time.
Gct = (Vc

t , Ect ,Wc
t ) represents the cth dynamic graph, where Vc

t
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is a set of |Vc
t | = Nc nodes representing monitor stations, includ-

ing those equipped with remote sensing devices. Ect represents
the set of edges in the graph, whileWc

t ∈ RNc×Nc is a weighted
adjacency matrix used to denote the connectivity relationships
among the Nc nodes in the cth dynamic graph.

Definition 2 (Heterogeneous spatiotemporal matrix): At each
time step t, the observations on the graph Gt are denoted by a
heterogeneous spatiotemporal matrixXt = (X1

t ,X
2
t , . . . ,X

C
t ).

Xc
t = (xc,1

t ,xc,2
t , . . . ,xc,Nc

t ) ∈ RNc×M represents the spa-
tiotemporal matrix on the cth dynamic graph, which includes
the data collected by monitor stations equipped with various
sensors, including remote sensing devices, where xc,n

t denotes
the feature vector on the nth node, and M is the number of
features.

Provided the graph Gt and its historical Th step heteroge-
neous spatiotemporal matrices {Xt−Th+1,Xt−Th+2, . . . ,Xt},
flood forecasting aims to learn a mapping function f(·) that
transforms the historical spatiotemporal matrices, including data
from remote sensing devices, into future spatiotemporal matri-
ces Y = {Y1,Y2, . . . ,YF } ∈ RF×Tp of all the objective nodes
over the next Tp step, where Yf = (Yf

t+1,Yf
t+2, . . . ,Yf

t+Tp
)

denotes the future hydrological values of node f from t. The
mapping relation is represented as follows:

Yt+1:t+Tp
= f(Xt−Th+1:t;Gt). (17)

B. Dynamic Temporal Graph Convolution Module

In many existing architectures, the graph convolution has
been served as a key module in modeling non-Euclidean data.
The weighted adjacency matrix, as a fundamental component
of graph convolution, is typically manually defined based on
expert knowledge to quantify the relationships between nodes.
However, this practice not only significantly compromises the
efficiency of GCNs but also leads to decreased accuracy due
to the temporal dynamics inherent in graph structures. To effi-
ciently and accurately extract spatiotemporal features of flood
sequences, we adopt an attention mechanism to automate the
construction of dynamic adjacency matrices in the D-TGCM.
By leveraging the inherent dynamics of the graph, we aim to
fully exploit the spatiotemporal characteristics. The dynamic
adjacency matrix is divided into two distinct components: the
static subgraph, denoted as Gs, and the dynamic subgraph,
denoted as Gt. The construction of Gs = (Vs, Es,Ws) is based
on the physical locations of the stations within the basin using
a thresholded Gaussian kernel [32]

w(i,j)
s

=

⎧⎨⎩exp

(
−d(vi,vj)

2

σ2

)
,i �= j and exp

(
−d(vi,vj)

2

σ2

)
≥ ε

0, otherwise
(18)

where vi is the ith node, d(vi, vj) represents the distance from
station vi to station vj according to haversine formula [33], while
w

(i,j)
s denotes the edge weight between station vi and station

vj . σ2 and ε determine the distribution and sparsity of matrix,

respectively:

HAVERSINE

(
d

R

)
= haversin (ϕ2 − ϕ1)

+ cos (ϕ1) cos (ϕ2) · haversin(Δλ)
(19)

haversin (θ) = sin2(θ/2) = (1− cos(θ))/2 (20)

where R represents the radius of the earth, which can be taken
as an average of 6371.393 km, ϕ1 and ϕ2 represent the latitudes
of two points, and Δλ represents the difference in longitudes
between two points.

The weight matrix W c
t of the cth dynamic graph Gc is derived

through the utilization of the multihead self-attention (MHSA)
mechanism, where the MHSA mechanism enables the model
to learn intricate dependencies between each individual feature
and all other features within the graph. It offers a larger receptive
field compared to the conventional MHA mechanism

Ŵc
t = MultiHead(Xc

t−Th+1:t,X
c
t−Th+1:t,X

c
t−Th+1:t) (21)

where Ŵc
t ∈ RTh×Nc , and the computation complexity of

MHSA is O(T 2
hMh). After the diagonalization operation

wc
t (i, j, k) =

{
ŵc

t (i, j), j = k
0, otherwise.

(22)

The matrix Ŵc
t is transformed into Wc

t ∈ RTh×Nc×Nc . This
process expands the second dimension of Ŵc

t , creating a new
matrix that allows for a more detailed representation of the
relationships between elements in the spatiotemporal matrix.
Based on this, we can obtain the dynamic Laplacian matrix Lc

t

of the cth dynamic graph at time t

Lc
t =

1

Nc
Wc

t +Wc
s + INc

(23)

where Wc
s ∈ RNc×Nc

is the static weight matrix constructed
from the nodes in the cth dynamic graph, and INc

is the identity
matrix of dimension Nc. Specifically, we have normalized the
graph Laplacian L̂c

t as

L̂c
t =

(
D̃c

t

−1/2
L̃c
tD̃

c
t

−1/2
)

(24)

where D̃c
t is the diagonal degree matrix of L̂c

t with D̃c
t (ii) =∑

j L̃
c
t (ij).

Intuitively, the elements L̂c
t(ij) of the matrix L̂c

t can simul-
taneously characterize the spatiotemporal correlation between
node i and node j in the cth dynamic graph. Notably, this correla-
tion exhibits a dynamic nature, thus aligning appropriately with
the inherent spatiotemporal heterogeneity encountered in the
domain of flood prediction. Such heterogeneity arises due to the
ever-changing characteristics of the riverbed substrate, necessi-
tating an adaptive representation of the evolving spatiotemporal
relationships. Algorithm 1 demonstrates the procedure to create
a dynamic Laplacian matrix for the D-TGCM.

Then, we use the D-TGCM based on the two-layer tempo-
ral graph convolutional network (T-GCN) model [34] to learn
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Algorithm 1: CREATELAPLACIAN: Create a Dynamic
Laplacian Matrix for the D-TGCM.
Input: The latitude and longitude coordinates for Nc nodes

in the cth dynamic graph (lat, lng); Historical flood data
sequence {Xc

t−Th+1,X
c
t−Th+2, . . . ,X

c
t}; Historical

sequence length Th; Variance σ2; Threshold ε; The
number of heads in MHSA h.

Output: Dynamic Laplacian Matrix: Lc
t .

1: // Create static matrix
2: for int i, j=1 to Nc do
3: d(vi, vj) = HAVERSINE(lat, lng);

4: if i �= j and exp(−d(vi,vj)2

σ2 ) ≥ ε then

5: w
(i,j)
s = exp(−d(vi,vj)2

σ2 );
6: else
7: w

(i,j)
s = 0;

8: end if
9: end for

10: // Create dynamic matrix
11: Q,K, V = Xc

t−Th+1:t;

12: headi = softmax(
QWQ

i ·KWK
i√

dk
)Vi;

13: Ŵc
t = Concatenate (head1, head2, . . . , headh)W

O;
14: for int i, j, k=1 to Nc do
15: if j=k then
16: wc

t (i, j, k) = ŵc
t (i, j);

17: else
18: wc

t (i, j, k) = 0;
19: end if
20: end for
21: Lc

t =
1
Nc

Wc
t +Wc

s + INc
.

spatiotemporal features from sensors data

fc (X c,Lc) = softmax
(
L̂c ReLU

(
L̂cX cW (0)

)
W (1)

)
(25)

ut = σ (Wu [fc (X c
t ,L

c
t) , ht−1] + bu) (26)

rt = σ (Wr [fc (X c
t ,L

c
t) , ht−1] + br) (27)

ct = tanh (Wc [fc (X c
t ,L

c
t) , (rt ∗ ht−1)] + bc)

(28)

ht = ut ∗ ht−1 + (1− ut) ∗ ct. (29)

Each execution of the graph convolution operation requires
matrix multiplication, which results in a complexity of O(N2),
whereN is the number of nodes. Fig. 3 illustrates the architecture
of our D-TGCM, which can extract the dynamic spatiotemporal
features. At each time step, the module demonstrates an autore-
gressive behavior, wherein the previously generated data are
leveraged as an additional input to produce the next sequence of
data.

Fig. 3. Architecture of the D-TGCM. The T-GCN utilizes a dynamic Laplacian
matrix generated by an MHA mechanism to capture the spatiotemporal dynamics
of input features. The module is autoregressive and generates data in a sequential
manner, where each step takes into account the previously generated data.

C. Heterogeneous Dynamic Temporal Graph Convolutional
Network

To accurately predict the occurrence and development trends
of floods, it is necessary to combine multiple influencing fac-
tors such as hydrology and meteorology, using a multivariate
prediction method [35]. The multivariate prediction method
takes multiple related variables as model inputs and considers
the interrelationships between variables to establish a predic-
tion model for the target variable. This method can greatly
reduce prediction errors caused by omitting key factors and
better reflect the complexity and diversity of the real world.
In flood prediction, multivariate prediction can comprehen-
sively consider the influence of various factors such as rainfall,
evapotranspiration, and runoff, including their interactions and
time-delay characteristics, to more accurately predict impor-
tant parameters such as flood occurrence time, frequency, and
intensity.

However, different sensors typically produce graphs with
different structures, and traditional T-GCN models cannot effec-
tively integrate and process data among all the sensors, resulting
in inaccurate predictions. In addition, different sensors may have
complex spatial and temporal relationships, and if physically
close but different sensors are assigned to the same subgraph,
it can diminish the accuracy and reliability of the prediction.
To address these issues, we propose the HD-TGCN model
based on the D-TGCM, which can perform topology learning
and sequence prediction on heterogeneous graphs. The overall
framework of the HD-TGCN model is shown in Fig. 4.

The sensor network within the watershed is defined as C
dynamic heterogeneous undirected graphs G = {G1, . . . ,GC}
based on the classification of different sensor types. Each dy-
namic undirected graph Gc is associated with a heterogeneous
spatiotemporal matrix X c corresponding to the collected data
by the sensor network. Subsequently, each group of dynamic
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Fig. 4. Framework of the HD-TGCN.

undirected graphs Gc and heterogeneous spatiotemporal ma-
trices X c are fed into the D-TGCM to extract dynamic spa-
tiotemporal features. As shown in Fig. 3, the D-TGCM is a
model integrating spatiotemporal graph convolution and GRU
designed to handle dynamic spatiotemporal data and extract
spatiotemporal features. After extracting spatiotemporal fea-
tures for each sensor network, the features are concatenated
and input into a fully connected (FC) layer for comprehensive
feature learning and processing, enabling the global extraction of
dynamic spatiotemporal features for the entire sensor network.
The computational complexity of our method is O(T 2

hMh+
N2). With this approach, the HD-TGCN effectively addresses
complex sensor network data, learns spatiotemporal relation-
ships among sequence data, and achieves accurate flood predic-
tion. Moreover, the model exhibits robust generalization ability
and effectively handles heterogeneous sensor network data.
Algorithm 2 characterizes the training steps for our model.

V. EXPERIMENTS

In this section, we first present an overview of the datasets,
evaluation metrics, baseline methods, and implementation de-
tails. Then, we show the experimental results to demonstrate the
proficiency of our proposed model.

A. Datasets

The Wuyuan dataset includes hydrological and meteorolog-
ical data collected by the Hydrological Monitoring System of
Small and Medium Rivers in Jiangxi Province, as well as remote
sensing data. The data are available in CSV format from Oracle
Database. Wuyuan is located between 117◦22′ to 118◦11′ E and
29◦01′ to 29◦35′ N, with a total land area of 2947.064 km2,
mainly consisting of low hills and mountains. Mountains and
hills account for more than 83% of the total area. Due to the slope
of the mountain rivers and the rapid rate of confluence, Wuyuan
is prone to flash floods. The monsoon period is from April to July,
with a monthly rainfall of 200 to 300 mm, accounting for 47.9%
of the annual rainfall. The water level reaches its peak in June
and July each year. Therefore, the data from the months of June
and July from 2020 to 2022 were selected in our experiments.
The data were preprocessed according to [16], aggregated with
a time interval of 5 min, which means that 12 sequence data

Algorithm 2: Training Algorithm of the HD-TGCN Frame-
work.
Input: Flood data X = [X1, . . . ,XNt

]; Heterogeneous
dynamic graph G = {G1,G2, . . .,GC}; Predictive
sequence length Tp;

Output: Parameters of HD-TGCN Prediction Model ω.
1: // Construct samples
2: ∅→ Γ
3: for int t=1 to Nt do
4: for int c=1 to C do
5: X̂ c ← [Xc

t−Th+1,X
c
t−Th+2, . . . ,X

c
t ];

6: end for
7: ŶNF ← [XNF

t+1,X
NF
t+2, . . . ,X

NF

t+Tp
];

8: // NF is the set of target nodes for prediction;
9: Γ← (X̂ c, ŶNF ,Gc);

10: end for
11: // Train model parameters
12: while Model not converged do
13: for int c=1 to C do
14: Lc = CREATELAPLACIAN(X̂ c);
15: for int t=1 to Th do
16: Yc

t , h
c
t = D-TGCM(X̂ c,Lc);

17: end for
18: YNF =

softmax( Concatenate (Y1,Y2, . . . ,YC));
19: end for
20: LTrain = loss(ŶNF ,YNF );
21: ω = ω − α∇ω Ltrain ;
22: end while

represent 1 h. There are 18 hydrological stations and 164 rainfall
stations distributed throughout the basin, and these two types of
sensor networks are defined as two heterogeneous undirected
graphs.

B. Evaluation Metrics and Baseline Methods

To evaluate the performance of our model, we utilize the
MAE and RMSE as evaluation metrics. Furthermore, we use
NSE, which is an assessment metric typically utilized to verify
hydrological model simulation results and ranges from −∞ to
1. A higher NSE value implies better model performance.

1) MAE

MAE =
1

T

T∑
t=1

∣∣Yt
real − Yt

pred

∣∣ . (30)

2) RMSE

RMSE =

√
1

T

∑T

t=1

(
Yt

real − Yt
pred

)2
. (31)

3) NSE

NSE = 1−
∑T

t=1

(Yt
real − Yt

pred

)2∑T
t=1

(Yt
real − Yreal

)2 . (32)
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TABLE I
PARAMETERS OF MODEL

Here,Yt
pred andYt

real mean the forecasted runoff and its ground

truth, respectively. Yreal represents the mean value of ground
truth during the forecast period T .

We compare our model with the following baseline methods.
The benchmark models are used to predict water level for the
next 15, 30, and 60 min.

1) ARIMA [2]: This model is a parametric model that uses
the autocorrelation and trend of the time series to predict
future values.

2) VAR [36]: This is a multivariate forecasting technique that
captures the linear relationship between variables and uses
their lagged values as prediction.

3) GRU [37]: This is a special RNN model.
4) LSTM [38]: This network is a well-known time-series

prediction model based on deep learning.
5) GCN [39]: This is a localized first-order approximation

of spectral graph convolutions.
6) T-GCN [34]: The T-GCN model is in combination with

the GCN and the GRU.
7) STGCN [40]: This network uses ChebNet in the spatial

dimension and 2-D convolutional networks in the temporal
dimension to model the spatial–temporal correlations in
graph data.

C. Implementation Details

Our proposed model is implemented on a NVIDIA RTX 3090
using Torch 1.12.1. We split the dataset chronologically in the
ratio of 8:2 to generate a nonoverlapped train and test set and
also split 30% samples from the train set as the validation set to
avoid overfitting. We train for 100 epochs using Adam [41] with
a learning rate of 0.001. Each baseline algorithm is executed five
times to enhance robustness. The model is trained with batch size
32, and the hidden unit of each layer is 64. The hyperparameters
of the model are listed in Table I.

D. Results

Table II presents the experimental results of our proposed
model and other baseline models on the Wuyuan dataset under
different forecasting horizons (i.e., 15, 30, and 60 min). The
bold values in the table indicate the best performance, while the

Fig. 5. (a) Comparison of spatiotemporal- and temporal-based models for
flood prediction. (b) Comparison of spatiotemporal- and spatial-based models
for flood prediction

underlined values indicate the second-best performance. From
Table II, we can see that our proposed model outperforms all
other baseline models in all the evaluation metrics for all the
forecasting horizons.

Furthermore, among all the deep-learning-based time-series
prediction models, including GRU, LSTM, T-GCN, and our pro-
posed HD-TGCN model, they all perform better than traditional
machine learning models, such as HA, ARIMA, and VAR. For
instance, when forecasting over a 15-min horizon, our model
outperformed the ARIMA model, presenting a 99.96% decrease
in the RMSE and a 99.97% decrease in the MAE, along with
a 3.2% improvement in NSE. Similarly, our model showed a
notable decrease of 99.99% and 99.97% in the RMSE and the
MAE, respectively, and a 14.48% improvement in NSE com-
pared to the VAR model. This is mainly because such machine
learning models assume that the time-series data are stationary
when mining the time-series features. However, flood sequence
data are often complex, nonstationary, and highly nonlinear,
which makes it difficult for traditional machine learning models
to accurately capture its inherent patterns. In contrast, deep-
learning-based models, such as GRU, LSTM, and our proposed
model, can better capture and extract the complex features of
nonstationary time-series data, which improve the performance
in forecasting flood.

To validate the importance of temporal and spatial fea-
tures for flood prediction, we conducted two comparisons as
follows.

1) Comparison between the spatiotemporal models, i.e., HD-
TGCN and D-TGCM, and the temporal-based models, i.e.,
GRU and LSTM: As shown in Fig. 5(a), the performance
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TABLE II
PREDICTION RESULTS OF OUR MODELS AND OTHER BASELINE METHODS ON THE WUYUAN DATASETS

of the spatiotemporal models is superior to that of the two
temporal-based models GRU and LSTM. This is because
these two temporal-based models do not model the spatial
features of flood sequence data. For instance, at a 30-min
forecast horizon, our proposed model reduces the RMSE
by 73.97% and 73.83% compared to LSTM and GRU
models, respectively, demonstrating the impact of spatial
features on flood prediction.

2) Comparison between the spatiotemporal models, i.e., HD-
TGCN, D-TGCM, T-GCN, and STGCN, and the spatial-
based model, i.e., GCN: As illustrated in Fig. 5(b), the
performance of the three spatiotemporal models is su-
perior to that of the GCN model for all the forecasting
horizons. For example, at a 15-min forecast horizon,
our proposed model reduces the MAE and the RMSE
by 97.81% and 96.77% compared to the GCN models,
respectively. This is because the GCN model can only
consider the spatial relationships between neighboring
nodes in graph data and cannot model the temporal interre-
lationships. Based on the above analysis, the models that
capture spatiotemporal features among nodes can more
accurately predict flood. Moreover, the HD-TGCN model
based on heterogeneous dynamic adjacency matrices has
better spatiotemporal modeling ability compared to other
baseline models.

As shown in Fig. 6, the performance of all the models de-
creases as the forecasting horizon increases. This is primarily
because long-term predictions involve increased uncertainty
as compared to short-term predictions, and errors accumulate
with increasing forecasting horizon. Nevertheless, our proposed
HD-TGCN model outperforms all other models across all the
forecasting horizons. This is because the HD-TGCN model com-
prehensively considers various hydrological and meteorological
features and uses dynamic adjacency matrices to fuse real-time
changing factors, enhancing the flexibility of model. Specifi-
cally, our model outperforms the second-best model T-GCN
by a considerable margin across all the forecasting horizons.
This indicates that our model is not only adept at short-term
predictions but also performs well in long-term predictions. Fig. 6. Performance changes of different methods as the forecasting horizon

increases.
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Fig. 7. (a)–(d) Visualization of dynamic adjacency matrices in four different
stages.

In order to further explore the impact of the dynamic adja-
cency matrix, we visualize the adjacency matrix for different
stages of the flood. As shown in Fig. 7, the heatmaps repre-
sent the adjacency matrices of four different stages. It can be
observed that the connectivity between stations varies across
different stages, which further confirms that the underlying sur-
face continuously changes during the flood occurrence, leading
to variations in flood frequency and peak flow.

The HD-TGCN is a novel network model that extends the
capabilities of the traditional GCN to handle dynamic and
heterogeneous graph data. To evaluate the performance of the
HD-TGCN, we conducted a series of ablation experiments to
analyze the impact of different components and settings of the
model. In our ablation experiments, we considered four different
models.

1) Dynamic GCN (D-TGCN): This is a GCN model extended
to handle dynamic graph data by considering time-varying
adjacency matrices.

2) Heterogeneous GCN (H-TGCN): This is a GCN model ex-
tended to handle heterogeneous graph data by considering
different types of nodes and edges.

3) HD-TGCN: This is the proposed model that combines the
advantages of the dynamic GCN and the heterogeneous
GCN.

To evaluate the performance of each model, we use RMSE,
NSE, and MAE as the evaluation indicator. As shown in Figs. 8
and 9, our experiments showed that the HD-TGCN outper-
formed all other models across all the evaluation metrics. Specif-
ically, the HD-TGCN achieved significantly prediction accuracy
compared to the dynamic GCN and the heterogeneous GCN.
This suggests that the HD-TGCN effectively captures the dy-
namic and heterogeneous nature of graph data, leading to better
predictive performance.

Furthermore, the HD-TGCN provided more interpretable re-
sults compared to other models, allowing for a better under-
standing of the topological structure and dynamics of the graph

Fig. 8. (a)–(d) Component analysis in the heterogeneous graph.

Fig. 9. (a)–(d) Component analysis in the dynamic graph.

TABLE III
IMPACT OF LEARNING RATE ON HD-TGCN PERFORMANCE

data. This is particularly important in real-world applications,
where insights into the behavior of complex systems are crucial
for making informed decisions. In conclusion, our ablation
experiments demonstrate that the HD-TGCN is a superior model
for handling dynamic and heterogeneous graph data compared to
traditional GCN models extended for dynamic or heterogeneous
settings alone. The HD-TGCN combines the advantages of both
the approaches, resulting in improved predictive performance
and better interpretability.

To analyze hyperparameter sensitivity, we conducted addi-
tional experiments to analyze the impact of different hyperpa-
rameters in the HD-TGCN, such as the number of hidden units
and learning rate. The learning rate is an important factor that
affects the speed of model training and convergence, while the
number of hidden units is directly related to the model’s ability
to capture spatiotemporal dependencies.

We first analyzed the impact of learning rate on model perfor-
mance. We chose three different learning rates of 0.01, 0.001,
and 0.0001 for our experiments. The experimental results are
shown in Table III.



JIANG et al.: HETEROGENEOUS DYNAMIC GCNS FOR ENHANCED SPATIOTEMPORAL FLOOD FORECASTING BY REMOTE SENSING 3119

Fig. 10. (a) and (b) Visualization results for prediction horizon of 15 min.

Fig. 11. (a) and (b) Visualization results for prediction horizon of 30 min.

Our experiments also showed that the learning rate has a
significant impact on the model’s convergence behavior. We
observed that a lower learning rate of 0.0001 resulted in slower
convergence but better generalization performance, whereas a
higher learning rate of 0.01 led to faster convergence but worse
generalization performance. Optimal performance was achieved
with a learning rate of 0.001, which provided a good balance
between convergence speed and generalization performance.

Next, we analyzed the effect of the number of hidden units
on the performance of the model. We chose three different

Fig. 12. (a) and (b) Visualization results for prediction horizon of 60 min.

TABLE IV
IMPACT OF HIDDEN UNITS ON HD-TGCN PERFORMANCE

numbers of hidden units, 32, 64, and 128, for our experiments.
The experimental results are shown in Table IV.

By adjusting the number of hidden units, we observed a direct
correlation with the model’s predictive capability. The experi-
ment revealed that increasing the number of hidden units from 32
to 64 improved the model’s RMSE, NSE, and MAE. However,
further increasing the number of hidden units to 128 did not
yield any significant improvement in performance, indicating a
saturation effect.

These ablation experiments demonstrate that the HD-TGCN
is sensitive to hyperparameter variations and that careful tuning
of these parameters is essential for achieving optimal perfor-
mance. Different hyperparameter settings can significantly af-
fect the training speed, stability, and generalization performance
of the model. Therefore, in practical applications, it is necessary
to adjust these hyperparameters according to specific tasks and
datasets to achieve optimal performance. In addition, for future
research, it is possible to further optimize the hyperparameter
selection strategy of the HD-TGCN to improve the performance
and robustness of the model.

To better comprehend the HD-TGCN model, we visualized
its prediction results for two stations in the Wuyuan dataset.
Figs. 10–12 display the visualization results for the two stations
for prediction horizons of 15, 30, and 60 min, respectively.
The HD-TGCN model demonstrates exceptional performance
in flood forecasting, irrespective of the prediction horizon. This
model effectively captures the spatiotemporal characteristics
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of floods and accurately predicts variations in water levels. In
addition, the HD-TGCN model can identify the initiation and
cessation of flood events, generating predictions that closely re-
semble real water level. These capabilities are crucial for precise
flood prediction and addressing other hydrological phenomena.

VI. CONCLUSION

In this article, we introduce the HD-TGCN, an effective
deep-learning-based neural network designed for flood forecast-
ing. The HD-TGCN employs innovative approaches to model
flood data dynamics along with both the temporal and spatial
dimensions, while factoring in the heterogeneity of flood data.
Specifically, we present a D-TGCM that incorporates an MHSA
mechanism to generate a dynamic adjacency matrix. This en-
ables the model to capture dynamic spatiotemporal features of
flood data by utilizing temporal graph convolution operations
based on the dynamic matrix. In addition, given the complexity
of flood formation arising from multiple interfering factors,
our novel approach incorporates multiple parallel D-TGCMs
to process heterogeneous graph data and fusion mechanisms
to capture complex flooding patterns effectively. Moreover, the
inclusion of remote sensing data enriches the feature represen-
tation, empowering the model to discern complex relationships
that traditional methods struggle to capture. In summary, our pro-
posed HD-TGCN model bridges the gap between spatiotemporal
prediction and heterogeneous data integration by incorporating
remote sensing information. Experimental results demonstrate
that the HD-TGCN significantly outperforms state-of-the-art
flood prediction models in terms of accuracy. Thus, our proposed
framework makes a significant contribution to flood forecasting
and holds enormous potential for mitigating the damage and loss
of life caused by future large-scale flood events. Our future work
will investigate the possibility of introducing the HD-TGCN
model into the transportation system for traffic prediction and
jam forecasting, with more lightweight models using edge in-
telligence [42], [43].
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