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S°DCN: Spectral-Spatial Difference Convolution
Network for Hyperspectral Image Classification

Zitong Zhang

Chunlei Zhang ", Qiaoyu Ma

Abstract—A novel spectral-spatial difference convolution net-
work (S2DCN) is proposed for hyperspectral image (HSI) clas-
sification, which integrates the difference principle into the deep
learning framework. S2DCN employs a learnable gradient encod-
ing pattern to extract important detail features in spectral and
spatial domains, alleviating the information loss caused by the
oversmoothing effect in deep feature extraction. Specifically, the
feature extraction modules in S2DCN are designed, namely spec-
tral difference convolution (SeDC) module and spatial difference
convolution (SaDC) module. The SeDC module performs 1-D dif-
ference convolution in the spectral domain to capture peak-valley
information in sensitive narrow bands, enhance subtle spectral
differences, and preserve fine-grained features. The SaDC module
employs 2-D difference convolution in the spatial domain, inte-
grating fine-structural features while preserving the deep abstract
features extracted by vanilla convolutions. This further empowers
the capability of the model to extract discriminative features. A
series of experiments are performed on four publicly available HSI
datasets to demonstrate the effectiveness of S2DCN method, which
is compared with current state-of-the-art models. The experimental
results show that the proposed S2DCN outperforms competitors

and achieves optimal classification performance.
Index Terms—Deep learning, detail feature, difference
convolution, hyperspectral image (HSI) classification.

1. INTRODUCTION

YPERSPECTRAL images (HSIs) have hundreds of con-
H tiguous and narrow spectral bands, which collect abundant
spectral and spatial information for monitoring the surface of
the Earth [1], [2]. Each pixel in HSI contains spectral infor-
mation, representing reflectance or radiance intensity at specific
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wavelengths, as well as spatial information, denoting its position
within the image and its relational context with neighboring
pixels [3]. HSI classification is a pivotal phase in analyzing HSI
data, intending to extract ground object features from labeled
pixels and assign corresponding labels to individual pixels.
This technique finds extensive applications in diverse fields,
including land cover analysis [4], military target detection [5],
and agricultural monitoring [6].

Early research in HSI classification predominantly empha-
sized the utilization of spectral features, promoting the devel-
opment of several pixelwise classification algorithms, such as
k-nearest neighbors [7], support vector machine [8], and logistic
regression [9]. However, these primary methods are constrained
in adaptive feature extraction and often overlook vital spatial
context information, resulting in unsatisfactory classification
results. In recent years, more and more studies have emphasized
the importance of the spatial relationships between adjacent
pixels in HSI for object recognition, highlighting the critical
role of spatial information in classifying HSI data [10]. Conse-
quently, approaches that combine spectral and spatial features
have shown substantial advantages in enhancing classification
performance [11].

With the rapid advancement in computer technology, deep
learning has achieved remarkable breakthroughs in computer
vision fields, such as image processing and object detection [12].
In this context, deep learning has also been successfully applied
to remote sensing data analysis [10]. Driven by data, deep
learning employs an end-to-end learning approach, allowing
it to extract and fuse spectral-spatial features adaptively, thus
significantly improving HSI classification accuracy. Currently,
various backbone networks that have proven effective in com-
puter vision have been successfully applied to HSI classification,
such as autoencoder [13], recurrent neural network [14], and
convolutional neural network (CNN) [15]. In particular, CNN
has become widely adopted in HSI classification due to its
excellent ability to model local context. It achieves feature
extraction from shallow to deep layers by stacking convolu-
tional kernels [16]. Recently, the emerging network architectures
based on self-attention mechanism, namely vision transformer
(ViT) [17], [18] and MLP-mixer (Mixer) [19] with a pure mul-
tilayer perceptron (MLP) structure, have achieved remarkable
results in vision tasks and have been successfully applied to HSI
classification [20], [21]. Consequently, the current deep learning
methods in HSI classification have formed three major backbone
network families represented by CNN, ViT, and Mixer [22].
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Deep learning methods combine feature aggregation with
layerwise mapping to extract spectral and spatial features from
HSI data and learn discriminative features for classification.
However, deep learning models, such as CNN, often suffer
from oversmoothing due to the stacking of convolutional kernels
and weighted averaging strategies. This limitation hampers the
ability of the model to capture local detail patterns [23]. On
the other hand, ViT and Mixer models, while enhancing the
modeling of global features in images, come with a large number
of parameters, resulting in redundant computations. These deep
models generate an oversmoothing effect through layerwise
feature extraction, leading to strong correlations among the
interfeatures, weakening the modeling capacity for local detail
structures, and losing valuable high-frequency information (i.e.,
sharply changing regions) in the spatial-spectral domain. Con-
sequently, it is prone to overfitting and affects the classification
performance [24].

Many studies have introduced attention mechanisms to im-
prove the classification performance and generalization ability
of the model, such as the channel attention mechanism, namely
the squeeze-and-excitation block [25] and the convolutional
block attention module that simultaneously incorporates both
channel attention and spatial attention [26], [27]. Introducing
attention mechanisms can make the model selectively focus on
salient parts instead of treating each part equally [2]. However,
the aforementioned attention-based models still rely on the
initial weight that depends on the correlation between pixels
in the image without explicitly modeling the spatial structural
relationship. As a result, they have a weak ability to extract
local patterns and preserve detail features, which may lead to the
loss of subtle spectral feature changes and spatial morphological
structural features. On the other hand, attention models based on
transformers increase the parameter size and complexity of the
model when calculating attention weights. The oversmoothing
issue caused by high-dimensional computation results in strong
correlations between extracted features, which may lead to the
loss of detail features in the spectral and spatial domains, thereby
reducing the discriminative ability of the model. Traditional
feature engineering methods can be utilized to overcome these
limitations and further extract local detail features. Local de-
scriptor operators, such as local binary pattern (LBP) [28],
histogram of oriented gradient (HOG) [29], and scale-invariant
feature transform (SIFT) [30] are widely used to extract texture,
edge, and other detail features from images. Among them, LBP
is a powerful method for representing local detail information
by calculating the difference in grayscale between neighboring
and central pixels. However, LBP suffers from issues such as
a single calculation method and fixed weight, which prevent it
from achieving higher accuracy.

Given the aforementioned challenges, a spectral-spatial dif-
ference convolution network (S?DCN) is proposed for HSI
classification. Inspired by the simple yet effective design in [31],
S2DCN incorporates the difference principle of LBP into a deep
learning framework, augmenting additional spectral and spatial
detail features. It combines deep learning with backpropaga-
tion for iterative weight optimization, enabling the learning of
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quantifiable local encoding patterns. The S2DCN model focuses
on harnessing the spectral and spatial details present in HSI
data with an attention-like weighted approach, which effectively
merges the ability of deep abstract feature representation in
vanilla convolution with the fine-grained feature perception in
central difference convolution (CDiff), strengthening the ability
of the model to extract and preserve detail features within
shallow layers. Specifically, we design two modules: the spectral
difference convolution (SeDC) module operating in the spectral
domain and the spatial difference convolution (SaDC) module
operating in the spatial domain. These two modules combine
vanilla convolution with CDiff using different weight coeffi-
cients, with the goal of ensuring the learning of deep abstract
features while incorporating the extraction of gradient-level
detail features. The S2DCN model can significantly enhance the
modeling ability of local structures and reduce the oversmooth-
ing effect while increasing intraclass compactness and interclass
distinctiveness of spectral-spatial features. Therefore, this can
improve classification performance. The main contributions of
this article can be summarized as follows.

1) A novel S?DCN is proposed to preserve gradient detail
information and extract spectral—spatial features. The dif-
ference principle is introduced into the deep learning ar-
chitecture for HSI classification tasks for the first time. By
employing the fusion strategy of vanilla convolution and
CDiff, S2DCN simultaneously considers the extraction of
high-level semantic and local detail features, thereby en-
hancing the discriminability of spectral-spatial features.

2) S?DCN innovatively makes the local gradient informa-
tion learnable by integrating difference information from
LBP into the deep learning framework, which leverages
the backpropagation algorithm to optimize the weights
associated with detail features, strengthening its ability
to extract local detail patterns in the spectral and spatial
domains.

3) Two modules are developed according to the characteris-
tics of HSI data. The SeDC module effectively captures
subtle spectral changes and enhances the spectrum’s local
mutation frequency range (peaks and valleys) through 1-D
difference convolution. The SaDC module aggregates dif-
ference information within the neighborhood through 2-D
difference convolution, enhancing the representation of
fine-grained structural features, such as morphology and
texture, and reducing information loss in the propagation
process.

4) Extensive experiments are performed on four benchmark
HSI datasets. The experimental results indicate the out-
standing classification performance of S?DCN. In addi-
tion, the ablation experiments are designed to showcase
the effectiveness of the proposed difference convolution
modules.

The rest of this article is organized as follows. Section II
introduces the related work of HSI classification and difference
convolution. Section III details the principle of the proposed
S2DCN. The experimental results and analysis are illustrated in
Section IV. Finally, Section V concludes this article.
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II. RELATED WORK

A. HSI Classification via Deep Learning

For HSI classification tasks, feature extraction is pivotal
in determining classifier performance. HSI data features are
predominantly distributed in the spectral and spatial domains.
Spectral features reflect variations in reflectance across
different bands, furnishing insights into the spectral attributes
of ground objects, such as their spectral shape and intensity.
Spatial features encompass texture structures, morphological
characteristics, interpixel spatial relationships, and spatial
statistical information, providing insights into the diverse
spatial distributions. Given the limited resolution of HSI data
acquisition, spectral mixing phenomena can introduce com-
plexity to the relationship between spectra and ground objects.
In such scenarios, relying solely on spectral information for HSI
classification often fails to achieve the desired outcomes. There-
fore, integrating spectral features with spatial features allows
for a comprehensive and effective representation of interclass
differences, facilitating accurate ground object identification.

Deep learning stands at the forefront of HSI classification,
with distinctive encoding patterns and a talent for learning in-
trinsic data characteristics, and robust feature extraction ability.
Recently, classic backbone networks from computer vision have
been adeptly utilized for HSI classification tasks. CNN-based
networks excel at modeling local information in the spectral
and spatial domains and representing intricate nonlinear fea-
tures [32], [33]. MLP-based models boast superior flexibility
and universality, making them particularly apt for managing the
inherent dense features of HSI data [34], [35]. Models rooted
in the ViT paradigm demonstrate a distinct edge in addressing
long-term dependencies in HSI data, capturing global features
effectively [36], [37].

However, current deep learning methods still have limitations
in extracting and preserving valuable detail features. During
the feature extraction stage, these models typically perform
convolution, linear mapping, or pooling operations on adjacent
pixel information, which leads to the abstraction of detail fea-
tures during the layerwise propagation, resulting in the over-
smoothing effect and reducing the classification performance. To
better extract and preserve local detail features, researchers have
proposed various methods. Introducing attention mechanisms
is a commonly used approach, such as self-attention, channel
attention, and spatial attention. Zhang et al. optimized the feature
extraction process based on CNN by constructing self-attention
modules in spectral and spatial domains and score-weighted fu-
sion [38]. This adaptive approach effectively combines local fea-
tures with long-term dependencies related to the target pixel for
better capturing detailed texture features. Paoletti et al. proposed
an automatic attention-based CNN based on channel attention,
which automatically designs and optimizes convolutional neural
structures for HSI processing. It utilizes convolutional archi-
tecture to extract discriminative spectral—spatial features [39].
Guo et al. introduced a spectral—spatial attention mechanism that
focuses on the redundancy and differences between frequency
bands through a proposed feature grouping strategy to obtain
more useful information [40]. In addition, researchers have
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enhanced the perception of local textures by adjusting the shape
and size of convolutional kernels [41]. However, when attention
mechanisms are applied to HSI data, they may overly focus on
highly correlated regions, suppressing spatial structure modeling
and resulting in biased and selective feature learning, leading
to the loss of critical information about ground objects. Fur-
thermore, attention mechanisms based on transformers increase
network complexity and computational requirements, making
it challenging to effectively handle features at different scales.
Therefore, improving the preservation of fine-grained features
in deep learning models remains a promising research direction.

B. Difference Convolution

In specific tasks such as object detection, edge detection, and
texture analysis in computer vision, detail information such as
object boundaries, texture details, and line structures are crucial.
These details are often encoded in the shallow explicit features
of an image, and classical local descriptors have been effective
methods for extracting detail features in the early stages. For
instance, LBP [29], HOG [42], SIFT [43], and mathematical
morphology methods [44] can effectively represent local fea-
tures. LBP is an effective method for extracting explicit gradient
features from images. It characterizes the edge context’s abrupt
changes and detail features through central difference operations
and can depict local gradient information, such as texture. HOG
represents detail texture and shape information by calculating
local gradient directions in the image, while SIFT extracts local
features by detecting key points and calculating their descriptors.
Mathematical morphology methods use morphological oper-
ations, such as erosion and dilation to process and represent
image details. In comparison, LBP focuses on describing local
texture information and is more sensitive to slight texture and
detail variations in the image, thus performing well in tasks that
require emphasis on image details. However, traditional local de-
scriptors heavily rely on handcrafted features, resulting in weak
generalization of the methods and limited by inherent encoding
patterns and shallow representation capabilities, leading to lower
accuracy. Therefore, researchers are increasingly devoting more
effort to utilizing deep learning to extract features and improve
classification accuracy.

In computer vision, where deep learning dominates, the
conventional approach directly aggregates local intensity-level
information (usually measured in grayscale) using vanilla
convolutions. Such an approach primarily relies on the feature
values of current position and the surrounding neighborhood,
which makes it susceptible to external disturbances and
challenging to represent fine-grained features. To address this
issue, Yu et al. first proposed the CDiff [45], which extracted
fine-grained information, such as edges and textures, by
performing CDiff on images. Experimental results demonstrated
that CDiff surpassed other enhanced convolution operators,
such as LBConv [46] and GaborConv [47], in feature extraction
capabilities. In later research, noting the redundancy of CDiff
and the challenges in network optimization due to the aggre-
gation of gradients in various directions, Yu et al. introduced
the cross-CDiff [48]. This method decouples CDiff into
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Fig. 1. Diagram of the proposed S?DCN for HSI classification.

two symmetrically crossed suboperators, horizontal-vertical
and diagonal, substantially reducing the parameters while
maintaining comparable performance to the CDiff.

CDiff enhances details related to gradients by introducing
the idea of difference operation, which calculates the disparity
between local pixels in animage. The extracted spatial difference
features are effective in capturing finer grained intrinsic features.
Meanwhile, CDiff successfully integrates the interpretable LBP
operator into the deep learning framework to improve perfor-
mance and achieve the learnability of gradient encoding patterns.
In addition, the extended versions of CDiff have demonstrated
excellent performance in various tasks, such as edge detec-
tion [49], video gesture recognition [50], face recognition [51],
and object detection [52]. Research results indicate that integrat-
ing difference information into deep learning can augment the
ability of the model to extract detail image features.

In HSI data, adjacent spatial pixels share certain structural re-
lationships. For instance, buildings typically possess polygonal
shapes, while vegetation demonstrates fractal-like appearances.
Given the dependency on these spatial structures, incorporating
detail features, such as edges, textures, and shapes, can further
improve the accuracy and robustness of models [10]. Therefore,
we propose the S2ZDCN to enhance classification performance.

III. PROPOSED METHOD
A. Overall Architecture of S DCN

In this section, an S2DCN method is developed to en-
hance the performance of HSI classification, which empha-
sizes the extraction of detail features from both spectral
and spatial domains. Fig. 1 displays the overall classification
workflow, S?2DCN comprises two feature extraction modules,
namely the SeDC module and SaDC module. To elaborate,
the one-dimensional difference convolution (1-D-Diff Conv)

layer in the SeDC module helps capture subtle changes in spec-
tral bands, improving the discriminability of spectral features.
On the other hand, the two-dimensional difference convolution
(2-D-Diff Conv) layer in the SaDC module can fully retain
explicit features that exist in the shallow layers of the network.
These features are crucial in describing the fine spatial structure
of ground objects, such as textures, edges, and shapes, thereby
improving the ability of the model to express the discrimina-
tive features of ground objects. While both SeDC and SaDC
modules employ the difference convolution layer, it is worth
noting that this layer effectively fuses features extracted by
vanilla convolution and CDiff via adjusting the weight coef-
ficient . This fusion approach helps to supplement new detail
features in the high-level abstract features extracted by vanilla
convolutions, enabling a more precise representation of invariant
features within ground objects. After feature extraction is carried
out alternately through spectral domain and spatial domain,
the extracted features are transported into the global average
pooling (GAP) layer, where the feature maps are converted into
fixed-length vectors. Finally, the feature vector is fed into the
classifier to obtain the final HSI classification result.

B. Difference Convolution in SeDC Module

The SeDC module primarily comprises a difference convo-
lution layer, a batch normalization (BN) layer, and a ReLU
activation function layer. Among these components, the 1-D-
Diff Conv operation within the difference convolution layer is
the pivotal step for feature extraction. 1-D-Diff Conv operation
excels at capturing subtle variations in spectral bands, enabling
the expression of more distinctive spectral characteristics across
various types of ground objects, which effectively mitigates
the oversmoothing effect of vanilla convolution. The following
section outlines the fundamental principle underlying 1-D-Diff
Conv in the spectral domain.
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CDiff in SeDC module. The dashed box on the right displays an example diagram of the LRF position index. Features obtained in the spectral domain

after 1-D CDiff considerably preserve subtle variations in the spectral curve, capturing local detail characteristics.

The original HSI data cube is defined as Z € R 1*WxC
where H and W refer to the height and width of HSI data,
respectively, C' is the number of spectral bands. We assume
that x5, .,,¢, € R represents the pixel located in the coth band
at the spatial position (hg,wp), where hg and wqy represent
the height and width index of the image, respectively, cg rep-
resents the spectral band index, and hg = 1,2,..., H, wg =
1,2,...,W,¢9 =1,2,...,C. Then, the spectrum vector at this
spatial position can be expressed as T, w,, . € R ¢, which
denotes the input data of the SeDC module as a 1-D sequence
data of length C.

The vanilla 1-D convolution consists of two main steps as
follows.

1) First, it conducts local neighborhood sampling on the

pixels within the input data.

2) Second, the pixels in the receptive field are aggregated by
updating the weight vector w through backpropagation
iterations.

For the spectral vectors, the vanilla 1-D convolution can be

expressed as follows:

{y(lo) = 2 w(ly) v
= 1)
cR 1x(cp—co)

UV = Thy,w, co:cp
where y(lp) represents the output feature vector, v is the local
sampling of the input spectral vector Tj, v, : € R XC from
coth to cpth bands, i.e., the local receptive field (LRF). Taking
the convolution kernel of 1 X 5 as an example, [y represents
the center position of the LRF, j € U, = {-2,-1,0,1,2}
enumerates all offsets within the local receptive field relative
to the center position.

As shown in (1), vanilla convolution extracts local features
through weighted summation. However, as the number of net-
work layers gradually increases, local detail information pro-
gressively aggregated, leading to an oversmoothing effect. To
enhance the representation ability of fine-grained spectral fea-
tures, we introduce the concept of the difference operation into
vanilla convolution. Fig. 2 illustrates a schematic diagram of
the 1-D CDiff, which applies CDiff operation to the LRF after
taking the neighborhood so that it aggregates central gradient
information to represent feature details. The CDiff in SeDC
module can be written as follows:

y(lo)= Y w(ly)- (v(l;) —v(l)) 2

JeUse

The CDiff operation can effectively capture the significant
mutation information in the spectral signal while fully retaining
key features in the subtle and sensitive bands. However, the
extraction of deep abstract features is also crucial for accurately
classifying HSI data with rich nonlinear characteristics. There-
fore, the combination of vanilla convolution and CDiff becomes
necessary to provide more robust feature modeling capabilities.
The generalized form of the combined 1-D-Diff Conv operator
is as follows:

ylo)=a- Y w(l)-(v(ly) —v(lo))

JeUse

central difference convolution

tl-a) > w(ly) vl 3)

JEU s

vanilla convolution

where « € [0,1] represents the weight coefficient used to
balance the contribution of high-level abstract features and
gradient-level detail information. A larger value of « places
greater importance on central gradient information. When o =
0, the difference convolution operator degenerates into a vanilla
convolution operator, which solely aggregates deep abstract
features. When v = 1, it becomes the CDiff operator, focusing
solely on central gradient information. It is worth noting that
w(l;) is shared between vanilla convolution and CDiff.

C. Difference Convolution in SaDC Module

The SaDC module mainly consist of a 2-D-Diff Conv layer, a
BN layer, and a ReLU activation function layer. In this section,
the emphasis is on elucidating the operational principles of the
difference convolution layer within spatial domain.

We define P, (ho, wo) € RY*N represents animage patch in
the coth band, consisting of the set of pixels within the neighbor-
hood of its center point (hg, wq ), with a spatial size of N x N as
the input to SaDC module. A zero-padding strategy is employed
for pixels outside the image boundaries when sampling the
neighborhoods. For the vanilla convolution operation of 2-D
images, the output feature map F can be expressed as

{F(dm) = > W(djk) Q(djx)
(4,k)€U sa 4)
Q =P, (ho,wo) € RNV

where W represents the convolution kernel, Q represents the
input patch. Taking the convolution kernel of 3 x 3 as an
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CDiff in SaDC module. The dashed box on the right displays an example diagram of the LRF position index. Features obtained in the spatial domain after

2-D CDiff can maintain higher feature resolution and preserve fine-structured information that may have been attenuated due to oversmoothing effect.

example, dp o represents the central position of the receptive
field, (.]7 k) €U, = {(_L _1)7 (_1’ O)v B (170)7 (17 1)}
enumerates the coordinate offsets of all positions in the receptive
field with respect to the central position, while d; ;, enumerates
all positions in the receptive field. Fig. 3 shows a schematic
diagram of the 2-D CDiff operation. The equation is expressed
as follows:

F(doo)= >, Wi(dix) (Qdjx) — Q(doo)). (5

(4,k)EU sa

The 2-D CDiff operation aims to extract detail gradient-
level information from the image while preserving the typical
textures, morphologies, and edge features of various ground
objects to the maximum extent possible. In image data, the
deep intensity-level information (i.e., grayscale information)
extracted by vanilla convolution and the fine-structured in-
formation obtained through CDiff are vital factors determin-
ing classification performance. In the proposed SaDC module,
the difference convolution operator combines the features ex-
tracted by vanilla convolution and CDiff to enhance the ex-
pressive capability of the model, and this can be written as
follows:

F(doo)=c- Y.  W(dx) (Qdjx)— Q(doy))

(4,k)€U 50

central difference convolution

> W(djk) Qdjx) (6)

(4,k)EU 54

+(1-a)-

vanilla convolution

where « € [0, 1] represents the weight coefficient employed
to balance the contribution of high-level abstract features and
shallow fine-structured features in the spatial domain.

D. Classifier

After feature extraction through the SeDC and SaDC mod-
ules from the original HSI data Z, the network fuses the ob-
tained spectral and spatial features and feeds them into the
GAP layer. Let G € RT1*W1ixC1 represent the input features
of the GAP layer, where H;, Wi, and C; correspond to the

height, width and number of channels of the input, respectively.
For a pixel g, w,,c, € R at position (h1,w1,c1) in G, where
hl = 1,2,...,H1, w1 = 1,2,...,W1,Cl = 172,...701. The
GAP operation can be written as follows:

1
g = GAP (g), gec = H1W1 Z Ghy w1 ,cq (7)

hi1,w1

where, g = [g1, g2, - - - ,gc,] € R*C1 denotes the fea-
ture vector.

Finally, classification phase is performed through linear map-
ping, and the predicted value § = [§1, 9o, - - ., J7] € RT is cal-

culated as follows:

7gC7"'

Cy
Je=> Omage+bi, t=1,2,....T ®)

m=1

where T represents the class of ground objects, 8,,, ; € R is the
weight, and b; € R is the bias.

LetY = [Y1,Ys,...,Yr] € RT represent a one-hot encoded
vector with T classes of ground objects, where Y; € {0,1}, ¢t =
1,2,...,T. The proposed S?’DCN model employs the softmax
function from (9) to calculate the likelihood probabilities of the
output units, and outputs the class with the highest probability
as the classification result. The model is trained by minimizing
the cross-entropy loss function (Lcg), as shown in (10)

X (9)
softmax (J;) = P - ©)
TS exp(3)
T
Leg = — Z Y log(softmax (g)). (10)
t=1

IV. EXPERIMENTS
A. HSI Datasets

Four publicly available HSI datasets were considered to verify
the proposed S2DCN, including the Indian Pines (IP) [53],
University of Pavia (UP), WHU-Hi-HongHu (HH), and WHU-
Hi-LongKou (LK) [54]. The datasets details are shown in Table I.

1) Indian Pines: 1P dataset was collected by the airborne
visible infrared imaging spectrometer sensor at the IP test site



ZHANG et al.: S2DCN: SPECTRAL-SPATIAL DIFFERENCE CONVOLUTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

3059

TABLE I
GROUNDTRUTH CLASSES FOR THE FOUR HSI DATASETS
Indian Pines (IP) University of Pavia (UP) WHU-Hi-HongHu (HH) 'WHU-Hi-LongKou (LK)
0 0
0 100 200 300 400
0 110 220 330 440

No. | Color Category Samples | Color Category Samples | Color Category Samples | Color Category Samples

1 [ ] Alfalfa 46 [l Asphalt 6631 [ ] Red roof 14041 [ ] Corn 34511
2 Corn-notill 1428 Meadows 18649 Road 3512 Cotton 8374
3 | Corn-min 830 [ | Gravel 209 | M Bare soil 21821 | M Sesame 3031
4 [ | Corn 237 . Trees 3064 [ ] Cotton 163285 | [  Broad-leaf soybean 63212
5 Grass/Pasture 483 Painted metal sheets 1345 Cotton firewood 6218 Narrow-leaf soybean 4151
6 Grass/Trees 730 Bare soil 5029 Rape 44557 Rice 11854
7 . Grass/pasture-mowed 28 . Bitumen 1330 . Chinese cabbage 24103 . Water 67056
s | W Hay-windrowed 478 [ | Self-Blocking Bricks 3682 | M Pakchoi 4054 | M  Roadsandhouses 7124
9 Oats 20 Shadows 947 Cabbage 10819 Mixed weed 5229
10 Soybean-notill 972 Tuber mustard 12394

n| | Soybean-min 2455 [ Brassica parachinensis 11015

2| W Soybean-clean 593 [ | Brassica chinensis 8954

13 W Wheat 205 [  Small Brassica chinensis 22507

14| W Woods 1265 [ ] Lactuca sativa 7356

15 Buidings-Grass-Tree-Drives 386 Celtuce 1002

16 Stone-steel towers 93 Film covered lettuce 7262

17 . Romaine lettuce 3010

18 [ | Carrot 3217

19 White radish 8712

20 Garlic sprout 3486

21 | Broad bean 1328

22 [ | Tree 4040

Total 10249 Total 42776 Total 386693 Total 204542

in the northwest of Indiana, USA, recording 20 m per pixel
and consisting of 145 x 145 pixels. The dataset provides 224
bands, which are usually reduced to 200 by removing water
absorption and noisy bands, with a sensitivity in the wavelength
range of 400-250 nm. The ground truth comprises 16 classes
representing different crops and vegetation types, with a total of
10 249 samples.

2) University of Pavia: UP dataset was captured by the re-
flective optics spectrographic imaging system (ROSIS) sensor
near the UP in Italy, with a spatial resolution of 1.3 m. This
dataset comprises 115 spectral bands, ranging from 430 to
860 nm, and has a total size of 610 x 340 pixels. It contains
103 valid bands after eliminating the 12 bands influenced by
atmospheric absorption and noise. There are nine land-cover
classes in UP, with a total of 42776 samples.

3) WHU-Hi-HongHu: HH dataset was acquired in Honghu
City, Hubei Province, China, using a 17-mm focal length Head-
wall Nanohyperspec imaging sensor equipped on a DJI Matrice
600 Pro UAV platform. There are 22 classes in HH dataset, to-
taling 386 693 samples, showcasing a diverse agricultural scene
with numerous crop classes. It also features various cultivars
of the same crop type, such as Chinese cabbage and cabbage,
as well as Brassica chinensis and small Brassica chinensis. The
imagery dimensions measure 940 x 475 pixels, encompassing

270 bands spanning from 400 to 1000 nm, and the spatial
resolution is about 0.043 m.

4) WHU-Hi-LongKou: LK dataset was obtained using an
8-mm focal length Headwall Nanohyperspec image sensor in
Longkou Town, Hubei province, China. This scene is a simple
agricultural scene with nine classes, totaling 204 542 samples.
The imagery size is 550 x 400 pixels, with a spatial resolu-
tion of about 0.463 m, and there are 270 bands from 400 to
1000 nm.

B. Experimental Settings

1) Implementation Details: The proposed S2DCN was im-
plemented on the PyTorch platform using a workstation with
Inter Core i7-11700 K CPU, 128 G RAM, and an NVIDIA
GeForce RTX3090 24 GB GPU. The AdamW optimizer was
adopted with a batch size of 128. The number of training epochs
was set to 300, and the learning rate was 0.0005. More details
of the proposed S2DCN with base parameter settings are listed
in Table II.

2) Evaluation Metrics and Comparison Models: Different
metrics have been considered for the the evaluation of results,
namely, overall accuracy (OA), average accuracy (AA), kappa
coefficient (k x 100), and the number of model parameters
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TABLE II
DETAILS OF THE PROPOSED S2DCN

Module Layer setting Input size Kernel size Output size
1-D-Diff Conv 15 x 15xC 7, strid = 1 15 x 15 x 24
SeDC_1 BatchNorm 15 x 15 x 24 — 15 x 15 x 24
ReLU 15 x 15 x 24 - 15 x 15 x 24
2-D-Diff Conv 15 x 15 x 24 3 x 3, strid = [1,1] 15 x 15 x 24
SaDC_1 BatchNorm 15 x 15 x 24 — 15 x 15 x 24
ReLU 15 x 15 x 24 - 15 x 15 x 24
1-D-Diff Conv 15 x 15 x 24 7, strid = 1 15 x 15 x 24
SeDC_2 BatchNorm 15 x 15 x 24 - 15 x 15 x 24
ReLU 15 x 15 x 24 - 15 x 15 x 24
2-D-Diff Conv 15 x 15 x 24 3 x 3, strid = [1,1] 15 x 15 x 24
SaDC_2 BatchNorm 15 x 15 x 24 - 15 x 15 x 24
ReLU 15 x 15 x 24 - 15 x 15 x 24
1-D-Diff Conv 15 x 15 x 24 7, strid = 1 15 x 15 x 24
SeDC_3 BatchNorm 15 x 15 x 24 — 15 x 15 x 24
ReLU 15 x 15 x 24 - 15 x 15 x 24
2-D-Diff Conv 15 x 15 x 24 3 x 3, strid = [1,1] 15 x 15 x 128
SaDC_3 BatchNorm 15 x 15 x 128 - 15 x 15 x 128
ReLU 15 x 15 x 128 - 15 x 15 x 128
GAP Global Average Pooling 15 x 15 x 128 15 x 15, strid = [15,15] 128
- Linear projection 128 - T
Classifier softmax T — T
* C and T are the numbers of input channels and land-cover classes, respectively.
TABLE III
CLASSIFICATION RESULTS OF COMPARISON METHODS ON IP DATASET AT 3% TRAINING RATIO
No. ResNet ViT Mixer NesT Cycle PiDiNet S?DCN
1 98.15+2.15 100.0+0.00 98.24+1.44 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00
2 95.86+0.37 91.09+0.40 90.27+0.44 91.81£0.36 91.38+0.31 95.92+1.13 95.43+0.34
3 79.78+1.25 81.50+0.65 92.93+0.60 84.86+0.52 89.01+0.36 86.34+1.75 95.58+0.40
4 83.43+1.86 92.38+1.52 87.47+0.94 95.07+0.78 88.82+1.33 96.36+1.66 95.62+0.81
5 90.69+0.92 88.25+0.85 85.77£1.00 92.22+0.96 88.91+0.91 91.51£2.05 94.15+0.71
6 98.34+0.42 97.56+0.26 96.24+0.35 96.28+0.50 94.47+0.47 95.94+1.16 98.64+0.34
7 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00
8 99.97+0.08 100.0+0.00 98.41+0.43 100.0+0.00 100.0+0.00 99.50+0.54 100.0+0.00
9 99.38+1.98 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00 100.0+0.00
10 93.16+0.76 89.04+0.46 94.57+0.45 87.81+0.76 91.07+0.65 89.15+2.43 97.48+0.24
11 95.39+0.28 91.92+0.15 95.08+0.20 92.32+0.28 94.52+0.31 95.58+0.65 98.75+0.08
12 69.62+1.22 72.31£0.80 77.23+0.83 71.33+£0.47 81.84+0.57 84.76+3.16 83.53+0.58
13 89.88+1.59 87.76+1.39 95.18+0.69 97.80+0.49 100.0+0.00 93.98+3.16 95.45+0.72
14 97.42+0.36 97.92+0.28 92.39+0.26 96.96+0.08 94.82+0.12 97.40+0.38 99.60+0.08
15 92.48+0.71 82.55+0.98 85.93+0.89 82.28+1.05 82.98+1.26 94.47+1.61 88.96+1.16
16 99.18+0.96 96.58+0.66 100.0+0.00 94.30£1.19 98.57+0.04 89.24+5.92 96.58+0.66
OA (%) 92.53+0.13 90.59+0.06 92.18+0.07 91.09+0.10 92.23+0.11 93.80+0.36 96.45+0.09
AA (%) 92.67+0.24 91.80+0.13 93.11+0.10 92.69+0.10 93.52+0.07 94.38+0.40 96.24+0.10
K %100 91.48+0.15 89.26+0.07 91.10£0.08 89.84+0.12 91.14+0.13 92.94+0.40 95.95+0.10
Params (M) 11.29 0.68 26.21 40.34 2.74 4.06 0.33

The best results are shown in bold.

(Params). To alleviate the randomness in the experimental re-
sults, each dataset was subjected to ten repetitions of the experi-
ments, utilizing the mean and standard deviation of the first three
evaluation metrics for quantitative analysis. The six comparison
methods based on deep learning are ResNet [55], ViT [17],
Mixer [19], nested transformer (NesT) [56], CycleMLP (Cy-
cle) [57], and pixel difference network (PiDiNet) [58].

C. Comparison With State-of-the-Art Methods

In comparative experiments, the input patch size is set to
15x 15, and 3% of samples are randomly selected from each
class for training. Tables III-VI display the evaluation metrics

and class-specific accuracies of the proposed S2DCN and the
comparative methods on four datasets. The results highlighted
in bold in the tables represent the best classification performance.
Itis evident that S2DCN outperforms other SOTA deep learning
methods in terms of OA, AA, k x 100, and Params. Figs. 4-7
depict the classification maps of all the methods for visualiza-
tion.

Table IIT shows the classification results of all experimental
methods on IP dataset. S2DCN has the best classification per-
formance in 10 out of 16 classes and achieves the highest OA
of 96.45%, demonstrating significant advantages. The PiDiNet
exhibits suboptimal performance with an OA of 93.80%, which
utilizes the pixel difference convolution (PDC) operation to
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Fig. 4. Classification maps obtained by the different methods for the IP dataset at 3% training ratio. The overall classification accuracies are given in the
parentheses. (a) Ground truth. (b) ResNet (92.73%). (c) ViT (90.63%). (d) Mixer (92.23%). (e) NesT (91.19%). (f) Cycle (92.28%). (g) PiDiNet (93.88%). (h)
S?DCN (96.52%).

() (b) (©) ()] (e) ®

Fig. 5. Classification maps obtained by the different methods for the UP dataset at 3% training ratio. The overall classification accuracies are given in the
parentheses. (a) Ground truth. (b) ResNet (99.70%). (c) ViT (98.91%). (d) Mixer (99.40%). (e) NesT (99.20%). (f) Cycle (99.43%). (g) PiDiNet (98.64%). (h)
S?DCN (99.72%).

(a)

Fig. 6. Classification maps obtained by the different methods for the HH dataset at 3% training ratio. The overall classification accuracies are given in the
parentheses. (a) Ground truth. (b) ResNet (99.48%). (c) ViT (99.32%). (d) Mixer (99.15%). (e) NesT (99.40%). (f) Cycle (99.10%). (g) PiDiNet (99.30%). (h)
SZDCN (99.65%).
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TABLE IV
CLASSIFICATION RESULTS OF COMPARISON METHODS ON UP DATASET AT 3% TRAINING RATIO

No. ResNet ViT Mixer NesT Cycle PiDiNet S?DCN
1 99.96+0.12 98.53+0.34 98.70+0.36 99.09+0.23 99.24+0.29 98.18+0.31 99.88+0.21
2 99.98+0.03 99.81+0.06 99.86+0.05 99.95+0.04 99.93+0.06 99.93+0.02 99.98+0.03
3 99.63+0.24 98.51+1.89 97.71+0.71 99.40+0.60 98.64+0.36 93.61+0.82 99.70+0.26
4 97.80+0.62 96.11+0.46 98.42+0.26 94.80+1.22 96.86+0.95 97.44+0.47 98.25+0.64
5 99.54+0.29 99.58+0.69 99.64+0.34 99.01+0.62 99.65+0.23 100.0+0.00 99.97+0.09
6 99.99+0.02 99.74+0.13 99.99+0.02 99.99+0.02 99.95+0.15 99.00+0.22 99.99+0.02
7 99.99+0.04 99.83+0.36 99.25+0.58 99.96+0.13 99.80+0.63 94.90+0.90 99.96+0.13
8 99.39+0.19 97.67+0.45 99.39+0.39 98.99+0.39 99.59+0.19 98.63+0.43 99.14+0.27
9 97.54+0.64 91.20+2.55 98.43+0.42 93.40+0.92 95.66+0.90 92.35+1.27 97.79+0.73
OA (%) 99.69+0.05 98.90+0.08 99.39+0.04 99.18+0.06 99.41+0.05 98.63+0.11 99.71+0.04
AA (%) 99.31+0.13 97.89+0.21 99.04+0.10 98.29+0.12 98.81+0.14 97.12+0.22 99.41+0.12
K %100 99.59+0.07 98.54+0.10 99.19+0.05 98.91+0.08 99.22+0.07 98.18+0.14 99.61+0.05

Params (M) 11.23 0.65 25.76 39.89 2.71 3.75 0.18
The best results are shown in bold.
TABLE V
CLASSIFICATION RESULTS OF COMPARISON METHODS ON HH DATASET AT 3% TRAINING RATIO

No. ResNet ViT Mixer NesT Cycle PiDiNet S?DCN
1 99.11+0.19 98.96+0.14 98.90+0.16 99.04+0.18 98.85+0.18 98.96+0.10 99.50+0.12
2 97.25+2.62 92.04+1.07 94.34+3.82 95.39+2.07 93.19+1.12 96.31£0.30 97.84+0.76
3 98.34+0.48 99.17+0.15 97.33+0.74 98.60+0.34 98.67+0.18 99.06+0.07 99.01+0.26
4 99.92+0.01 99.83+0.04 99.91+0.04 99.94+0.01 99.88+0.03 99.92+0.01 99.99+0.02
5 98.61+0.27 99.11+0.89 98.00+0.21 98.83+0.18 98.24+0.34 97.83+0.32 99.57+0.18
6 99.87+0.14 99.80+0.06 99.79+0.11 99.85+0.12 99.79+0.07 99.85+0.03 99.92+0.09
7 99.23+0.09 98.96+0.08 99.17+0.12 99.40+0.13 98.63+0.14 98.98+0.11 99.30+0.16
8 98.77+0.28 98.24+0.47 98.67+0.23 99.01+0.36 96.43+0.76 96.40+0.41 99.32+0.28
9 99.76+0.10 99.23+0.19 99.67+0.14 99.81+0.06 99.78+0.31 99.78+0.07 99.91+0.04
10 99.22+0.11 99.20+0.24 98.01+0.53 99.43+0.27 98.47+0.18 98.42+0.21 98.76+0.38
11 98.98+0.16 98.83+0.13 98.32+0.19 98.74+0.23 98.16+0.26 98.97+0.14 99.42+0.17
12 99.12+0.36 98.90+0.18 98.46+0.11 98.83+0.18 97.77+0.13 97.84+0.30 99.10+0.17
13 98.67+0.32 97.96+0.44 98.14+0.29 98.39+0.0 98.44+0.38 98.08+0.14 99.07+0.12
14 99.49+0.25 99.41+0.49 98.47+0.29 98.61+0.31 97.88+0.27 99.18+0.14 99.10+0.21
15 96.63+0.77 97.98+1.04 94.87+1.20 97.82+0.78 92.10+2.26 99.07+0.84 98.07+0.64
16 99.84+0.13 99.17+0.13 97.28+0.74 99.64+0.11 98.40+0.36 99.70£0.06 99.62+0.14
17 98.86+0.60 99.02+0.41 98.29+1.47 99.10+0.46 96.38+0.63 99.29+0.18 98.97+0.34
18 98.10+0.51 94.69+0.78 97.54+0.38 97.96+0.88 95.19+0.94 96.96+0.55 98.87+0.55
19 98.51+0.28 98.87+0.15 98.32+0.23 99.07+0.18 97.60+0.44 97.67+0.24 99.48+0.16
20 99.49+0.54 98.83+0.36 98.97+0.39 98.62+0.36 98.89+0.49 97.91+0.63 99.43+0.32
21 98.52+0.65 98.33+0.71 95.18+1.82 99.10+0.66 95.45+1.47 96.22+0.74 97.78+0.99
22 99.30+0.22 99.61+0.24 99.37+0.33 99.66+0.15 98.99+0.22 99.04+0.30 99.81+0.21
OA (%) 99.46+0.02 99.30+0.03 99.13+0.03 99.45+0.02 99.09+0.03 99.29+0.02 99.63+0.01
AA (%) 98.89+0.10 98.46+0.11 98.05+0.16 98.86+0.12 97.60+0.18 98.43+0.10 99.17+0.05
K %100 99.32+0.03 99.11+0.03 98.91+0.04 99.30+0.03 98.86+0.03 99.10+0.03 99.53+0.02

Params (M) 11.33 0.70 26.54 40.66 2.76 4.28 0.43

The best results are shown in bold.

capture gradient information. In the process of PDC operation,
the original pixels in the local feature map patch covered by the
convolution kernels are replaced by pixel differences. Although
the addition of rich gradient information makes the performance
of PiDiNet better, our method combines vanilla convolution with
difference convolution to extract more comprehensive features,
so it is obviously superior to it. The worst performing method
is ViT, which requires a larger amount of training data. It is
prone to overfitting and generalization ability decline in the
case of limited training samples. The classification maps for
comparative methods on IP dataset are shown in Fig. 4. The
classification results of S2DCN show more explicit bound-
aries than other competitors, with fewer occurrences of the
salt-and-pepper phenomenon, thus conforming to the actual
distribution of land covers. In the enlarged part displayed in
the red box [see Fig. 4(a)], the classification performance of
classes no.3 (corn-min), no.4 (corn), and no.12 (soybean-clean)
is unsatisfactory among comparative methods, particularly at the

boundaries where severe misclassification occurs. In contrast,
the classification map generated by S’DCN demonstrates supe-
rior intraclass spatial consistency. For the class with the largest
number of samples, the no.11 (soybean-min) class, other models
exhibit more pixels misclassified as the class no.2 (corn-notill) at
the boundaries, showing a salt-and-pepper phenomenon. While
S2DCN has the least misclassified pixels, indicating that the dif-
ference convolution operation effectively preserves edge details.

The ground objects in the UP dataset display a narrow strip-
like spatial distribution pattern, such as classes no.1 (asphalt),
no.5 (painted metal sheets), and no.8 (self-blocking bricks).
There are noise pixels that can be introduced and result in
misclassification when extracting morphological features from
these classes. Table IV shows the classification results of ex-
perimental methods on the UP dataset. All metrics of S2DCN
are the best among all contrasting methods, which shows that
it performs well in classifying ground objects with apparent
spatial morphological features. The robustness of S?2DCN is
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TABLE VI
CLASSIFICATION RESULTS OF COMPARISON METHODS ON LK DATASET AT 3% TRAINING RATIO

No. ResNet ViT Mixer NesT Cycle PiDiNet S2DCN
1 99.90+0.02 99.80+0.03 99.96+0.02 99.98+0.06 99.96+0.03 99.84+0.03 99.96+0.02
2 99.72+0.04 99.47+0.19 99.73+0.08 99.88+0.06 99.90+0.27 99.51£0.15 99.91+0.06
3 99.95+0.04 99.32+1.15 98.36+0.63 99.05+0.35 98.43+0.57 98.51+0.31 99.33+0.26
4 99.79+0.03 99.53+0.15 99.45+0.10 99.66+0.08 99.50+0.15 99.60+0.05 99.85+0.04
5 99.87+0.05 99.64+0.43 97.71+1.39 99.60+0.92 99.29+1.65 98.94+0.29 99.46+0.34
6 99.63+0.06 99.78+0.10 99.62+0.07 99.62+0.09 99.94+0.06 99.42+0.15 99.97+0.02
7 99.94+0.01 99.74+0.09 99.94+0.01 99.95+0.01 99.97+0.03 99.9740.01 99.96+0.02
8 97.16+0.16 97.29+0.42 97.09+0.21 97.48+0.65 97.84+0.41 97.39+0.25 98.07+0.31
9 95.82+0.13 96.73+0.93 97.20+£0.36 94.97+1.04 97.26+0.39 98.03+0.26 97.72+0.37
OA (%) 99.66+0.02 99.51+0.04 99.53+0.02 99.61+0.02 99.64+0.01 99.60+0.02 99.78+0.02
AA (%) 99.09+0.04 99.03+0.29 98.78+0.11 98.91+0.08 99.12+0.13 99.02+0.06 99.36+0.06
r %100 99.55+0.02 99.35+0.05 99.38+0.03 99.48+0.02 99.52+0.02 99.48+0.02 99.71£0.02
Params (M) 11.33 0.70 26.53 40.66 2.76 4.27 0.43

The best results are shown in bold.

(a) (b) (© (@

Fig. 7.
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Classification maps obtained by the different methods for the LK dataset at 3% training ratio. The overall classification accuracies are given in the

parentheses. (a) Ground truth. (b) ResNet (99.68%). (c) ViT (99.52%). (d) Mixer (99.54%). (e) NesT (99.62%). (f) Cycle (99.65%). (g) PiDiNet (99.61%). (h)

S?DCN (99.79%).

also excellent in terms of standard deviation. Fig. 5 shows the
visualization results of all methods on the UP dataset. In the
enlarged region displayed in the red box [see Fig. 5(a)], classes
no.5 and no.6 are easily misclassified as each other. While in
Fig. 5(h), S?DCN provides the highest consistency with the
actual distribution, exhibiting the fewest misclassified pixels.
The HH and LK datasets are typical agricultural scenes ac-
quired from different agricultural areas with various crop types
in Hubei Province, China. These two datasets possess high
spatial resolution and finer class division. Table V provides the
obtained results for the HH dataset. Following the same pattern
of classification enhancement this trend. The proposed S2DCN
reaches the best OA with 99.63%, also providing the highest
values for AA and « x 100. The standard deviation indicates
the stability of the model. Fig. 6 shows that S?DCN is excel
at classifying elongated block areas. In the enlarged area high-
lighted in the red box [see Fig. 6(a)], the classification maps of
the comparative methods often exhibit many misclassified pixels
existing along the boundaries. In contrast, the classification map
of S?DCN shows the fewest misclassified pixels, indicating
that the proposed S?DCN can preserve spatial texture and edge
information, significantly improving the classification accuracy.
Table VI shows the obtained classification results on the LK
dataset. The classification maps are presented in Fig. 7. As
shown in the enlarged parts, S’DCN demonstrates advantages
in classes n0.8 (roads and houses) and no.9 (mixed weed), which

are narrow-shaped ground objects, as well as at the boundary be-
tween classes no.4 (broad-leaf soybean) and no.5 (narrow-leaf
soybean). The classification map of S2DCN achieves impressive
visual effects in maintaining the correctness of the boundary area
and spatial consistency. It can be concluded that the proposed
S2DCN excels in extracting distinctive features of ground ob-
jects with various spatial distribution patterns, demonstrating its
strong robustness.

To validate the effectiveness of feature extraction capabil-
ity, the t-distributed stochastic neighbor embedding (t-SNE)
approach [59] is employed to visualize the features extracted
from the final layer of the different networks on the IP and LK
datasets, as illustrated in Figs. 8 and 9. Each dot represents one
pixel, and pixels with the same label share the same color. The
tight clustering of intraclass samples and the wide separation of
interclass samples indicate the superior feature extraction and
representation capabilities of the proposed S?DCN. It can be
observed that samples of the same categories gather together,
and intraclass variance is minimized in Figs. 8(f) and 9(f),
indicating the powerful feature extraction capabilities of the
proposed S?DCN.

D. Performance Under Different Training Ratio

To verify the generalization capability of S?DCN, different
numbers of training samples are randomly selected at training
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Fig. 8.

Feature distribution visualization by t-SNE for IP dataset. (a) ResNet. (b) ViT. (c) Mixer. (d) NesT. (e) Cycle. (f) PiDiNet. (g) S2DCN.

Fig. 9. Feature distribution visualization by t-SNE for LK dataset. (a) ResNet. (b) ViT. (c¢) Mixer. (d) NesT. (e) Cycle. (f) PiDiNet. (g) S2DCN.
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Fig. 10.  Classification results with 15x 15 patch size and different training ratio. (a) IP. (b) UP. (c) HH. (d) LK.

TABLE VII
CLASSIFICATION RESULTS OF COMPARISON METHODS ON UP, HH, AND LK DATASETS IN THE FEW-SHOT SCENARIO. (THE BEST RESULTS ARE SHOWN IN BOLD)

Dataset ResNet ViT Mixer NesT Cycle PiDiNet S2DCN
OA (%) 86.87 85.38 86.51 87.14 88.03 81.86 90.95
UP AA (%) 93.07 89.01 91.20 90.77 92.49 85.37 93.87
Kk %100 83.24 81.23 82.72 83.47 84.61 76.81 88.30
OA (%) 87.87 88.66 89.47 89.50 88.65 88.34 91.02
HH AA (%) 84.50 86.97 89.19 88.22 86.46 86.32 91.47
K %100 84.78 85.83 86.89 86.87 85.78 85.48 88.77
OA (%) 96.52 96.61 96.97 97.05 96.63 96.63 97.67
LK AA (%) 96.14 94.25 95.28 95.15 94.53 91.97 96.32
K %100 95.46 95.57 96.04 96.15 95.59 92.39 96.95

The best results are shown in bold.

ratios of 1%, 1.5%, 2%, 2.5%, and 3%. The OA results in
Fig. 10 show that the proposed S2DCN compares favorably
with other methods and allow two important observations to
be highlighted: 1) the proposed method achieves the optimal
OA values over four datasets for all experiment configurations,
even with small training ratios; 2) S2DCN exhibits the least
sensitivity to the training ratio, even at a training ratio of 1%,
it can still learn valuable detail features and deliver satisfactory
results. In contrast, the comparative methods are sensitive to the
training ratio, and there is a noticeable inflection point where the
network’s classification performance improves significantly as

the number of training samples increases. The above-mentioned
phenomenon indicates that the classification performance and
generalization capability of S?DCN is superior with a small
number of samples.

E. Performance in the Few-Shot Scenario

To further verify the performance of the proposed S?DCN,
we randomly select ten samples per class as training sets for
few-shot classification on UP, HH, and LK datasets. The ex-
perimental results in Table VII demonstrate that the proposed
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(b)

Fig. 11.

S2DCN outperforms other methods in the few-shot classifica-
tion, as it can still learn valuable detailed information even with
a limited number of training samples. However, the prediction
accuracy of the compared methods is generally unsatisfactory.
This phenomenon indicates that S2DCN can achieve better
classification performance even in the few-shot scenario.

F. Hyperparameter Sensitivity Analysis

The hyperparameter settings in deep learning models are
crucial for achieving excellent classification performance. We
select the hyperparameters that significantly impact the model
training process and classification performance to determine the
suitable settings for S’DCN.

1) Depth and Width of S*DCN: In terms of network architec-
ture, the selected hyperparameters are the number of difference
convolution modules (L) and the number of channels in a dif-
ference convolution module (C), which denote the depth and
width of S2DCN. Notably, the difference convolution modules
here refer to the SeDC and SaDC modules collectively. The
network depth affects the expressive power of difference fea-
tures, while the network width influences the effectiveness of
spectral-spatial feature extraction.

Specifically, the hyperparameters of the network architecture
are validated at the 3% training ratio on four datasets, as shown in
Fig. 11. Increasing L can significantly improve OA, suggesting
that increasing network depth enhances feature representation
and learning capabilities, which is sufficient for extracting non-
linear abstract features. The performance of the model gradually
improves until it reaches the peak, after which it tends to decline.
This decline may be attributed to degradation problems, such
as gradient instability caused by too deep a network. When C
increases, the classification performance of the model generally
exhibits a trend of initially increasing and then decreasing. There
is often a tradeoff between classification performance and model
complexity. Considering all factors, the hyperparameter L is set
to 3 and C is set to 24 for subsequent experiments.

2) Weight Coefficients in the SeDC and SaDC Modules: The
weight coefficient « is set to 0.6 in the SaDC module when
verifying the impact of a in the SeDC module. According to (3),
when « is set to 0, the difference convolution degenerates into
the vanilla convolution; when « is set to 1, it becomes the CDiff.
We investigate the influence of the contribution levels from
CDiff and vanilla convolution on classification performance to
determine the optimal values of « in four datasets.
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Performance of the SDCN with different C and L on the four HSI datasets. (a) IP. (b) UP. (c) HH. (d) LK.
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Fig. 12.  Influence of the « on classification performance (a) SeDC module.
(b) SaDC module.

Fig. 12(a) shows the influence of the weight coefficient o in
the SeDC module. It can be observed that the o applicable to
the four datasets are different. Utilizing difference convolution
can capture and enhance subtle differences in spectral curves.
The inclusion of suitable difference information can effectively
enhance spectral details and provide fine-grained features about
the objects, thereby significantly improving classification accu-
racy. The impact of « variations on classification performance
is not particularly significant for the IP dataset with relatively
low spectral resolution and the LK dataset with high spectral
resolution but most block-like regions ground object distributed.
When a = 0, only the vanilla convolution is employed to ex-
tract spectral features. As the variation of « value increases,
adding gradient information extracted by difference convolution
enhances the classification performance. When the difference
information is increased to a certain extent, the classification
performance will gradually decline until the difference infor-
mation is completely used.

In the IP dataset, the highest accuracy achieved is 96.79%
when avis setto 0.7, resulting in a 0.63% improvement compared
to only utilizing vanilla convolution for extracting spectral fea-
tures. The UP dataset consists of urban scenes with significant
spectral differences among ground objects. When « is set to
0.4, the highest accuracy achieved is 97.16%, representing a
2.86% improvement compared to vanilla convolution. In the
HH dataset, the employment of the SeDC module results in
the most significant improvement in OA values, reaching the
highest accuracy of 99.27% when « is set to 0.5, which is a
9.29% improvement compared to vanilla convolution. In the
LK dataset, the highest accuracy achieved is 99.61% when «
is set to 0.5, which represents a 0.97% improvement compared
to vanilla convolution.
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Fig. 13.  Effectiveness of difference convolution modules. (a) SeDC module.
(b) SaDC module.

When verifying the impact of the weight coefficient o on the
classification performance in the SaDC module, the o value in
the SeDC module is set to 0.6. As observed from Fig. 12(b),
the difference information, which contains essential details in
spatial features, improves the classification accuracy on the four
datasets compared to vanilla convolution. Among them, the most
significant effects are observed in the IP and UP datasets, with an
improvement of up to 0.81% in the IP dataset and up to 1.33%
in the UP dataset. The spatial resolution of IP dataset is the
lowest among the four datasets, resulting in a larger surface area
covered by a single pixel and extraction of larger-scale features.
For the UP dataset, the spatial distribution of land covers often
appears as narrow and elongated strips, making it susceptible to
noise interference during spatial feature extraction. Therefore,
using gradient-level information in difference convolution can
improve the accuracy of identifying edge regions. The optimal
weight coefficient o values in the SaDC module for the four
datasets are 0.2 in the IP dataset, 0.4 in the UP dataset, 0.7 in
the HH dataset, and 0.3 in the LK dataset, respectively.

G. Ablation Experiment

The effectiveness of the proposed SeDC and SaDC modules
are validated by comparing with popular convolution modules,
as shown in Fig. 13. The SeDC module is compared with
conventional 1D-CNN [60] and pointwise convolution (Conv
1x1) [61]. The ablation experimental results in spectral domain
are presented in Fig. 13(a).

The valuable insights can be derived as follows: the per-
formance of employing only vanilla convolution (o = 0) and
CDiff (a = 1)is unsatisfactory. This indicates that relying solely
on intensity- or gradient-level information leads to a one-sided
feature extraction, incapable of integrating high-level abstract
and shallow-level detail features from the spectral curves. The
accuracies of the proposed SeDC module are significantly higher
than that of using two other encoding patterns. Furthermore, the
SeDC module achieves the best classification results over all
four datasets, confirming the effectiveness and generalization
capability.

Fig. 13(b) shows the accuracies of the proposed SaDC module
compared to vanilla convolution (CNN) and CDiff. It is worth
mentioning that combining deep abstract features and shallow
fine-structured features can improve classification performance,
as using either of them alone would lead to information loss. The
ablation experimental results show the importance of difference
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Fig. 14.  Comparison of feature responses between difference convolution and
vanilla convolution in the spatial domain. The RGB color image synthesized
from the HH dataset is shown (band numbers are R: 113, G: 68, B: 23).
Vanilla convolution primarily focuses on representing deep semantic features
but lacks in capturing fine-grained intrinsic features. Difference convolution
can effectively compensate for the oversmoothing effect of vanilla convolution,
reflecting shallow-level details, such as edges, textures, and morphology that are
closer to reality.

information in spatial feature extraction and representation, thus
validating the effectiveness of the proposed SaDC module.

To further explore the effect of difference information, Fig. 14
visually compares difference convolution operations in the
SaDC module with vanilla convolution. The difference convolu-
tion is advantageous in preserving shallow-level features, such
as texture and morphological edges. Moreover, the difference
convolution exhibits superior capability in preserving the reso-
lution of features, effectively retaining important fine-structural
features, and alleviating the oversmoothing issue observed in
vanilla convolution. The comparison reveals that the difference
convolution in the SaDC module outperforms in reserving detail
features, making it suitable for HSI data with rich and dense
spatial features.

V. CONCLUSION

An effective end-to-end framework called S2DCN is pro-
posed for HSI classification tasks. S?DCN integrates difference
information into the deep learning architecture to enhance the
ability of extracting and retaining detail features. To better learn
the spectral and spatial information in the HSI, the SeDC and
SaDC modules are designed. The SeDC can strengthen subtle
spectral differences and extract more discriminative spectral
features. The SaDC module can effectively improve the detail
expression of important spatial information, including texture,
edges, and morphology. Extensive experiments are conducted
on four publicly HSI datasets to validate the proposed S?DCN.
The experimental results demonstrate that S?DCN outperforms
competitors quantitatively and visually. Moreover, the ablation
studies are carried out to further confirm the effectiveness of
difference convolution and the importance of detail features
in achieving high accuracy HSI classification. In the future,
we will explore a 3-D difference convolution architecture with
adaptive weight coefficient to realize dynamic joint extraction
of spectral—spatial features.
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