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Forecast of Ionospheric TEC Maps Using ConvGRU
Deep Learning Over China

Jun Tang , Zhengyu Zhong , Mingfei Ding , Dengpan Yang , and Heng Liu

Abstract—In this article, we propose a convolutional gated re-
current unit (ConvGRU) deep learning method to forecast iono-
spheric total electron content (TEC) over China based on the
regional ionospheric maps (RIMs) from 2015 to 2018. First, we use
Global Navigation Satellite System observations from the Crustal
Movement Observation Network of China to generate the RIMs
of China (CRIMs). Second, we use the CRIMs of 2015–2017 as
the training set to predict the ionospheric TEC over China in
2018. Finally, comparative experiments are carried out with Con-
vLSTM, International Reference Ionosphere (IRI), and Center
for Orbit Determination in Europe’s (CODE’s) 1-day predicted
Global Ionospheric Map (C1PG) released by CODE. In addition,
we add geomagnetic indices (ap, Kp, and Dst) and solar activity
index (F10.7) as the training set to analyze the prediction accuracy
of the model (using -A if there are no indices, and -B if there
are indices). The results illustrate that the prediction accuracy
of ConvLSTM-B and ConvGRU-B models are improved on both
geomagnetic storm and quiet days, and the improvement is more
obvious on geomagnetic storm days. Furthermore, the root mean
square error (RMSE) of the ConvGRU-B model decreases by 28%,
22.4%, and 5.9% compared to that of the ConvGRU-A, IRI-2016,
and ConvLSTM-B models during geomagnetic storm days, respec-
tively. For the prediction accuracy of a certain grid point, the RMSE
of the ConvGRU-B model decreases by 23%, 32.6%, and 19.3%
during geomagnetic quiet days and 24.4%, 30.6%, and 15.7% dur-
ing geomagnetic storm days compared to that of the ConvGRU-A,
IRI-2016, and ConvLSTM-B models, respectively. For the forecast
accuracy of TEC in different seasons, the performance of the
ConvGRU-B model is also better than that of the ConvLSTM-B
model in 2018. These results show that the ConvGRU-B model has
competitive performance in RIMs prediction over China during
the geomagnetic quiet and storm days.

Index Terms—Convolutional gated recurrent unit (ConvGRU),
deep learning, forecast, ionosphere, total electron content (TEC).

I. INTRODUCTION

THE ionosphere is the upper part of the atmosphere at a
distance of about 60 to 1000 km from the Earth. Total
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electron content (TEC) is an important parameter to characterize
the spatial and temporal variability of the ionosphere. There are
several studies that considered broadcasting or empirical models
for ionospheric TEC forecasting, such as the Klobuchar model
[1], [2], International Reference Ionosphere (IRI) model [3],
NeQuick model [4], and BDGIM [5]. The prediction accuracy
of these models for one-day TEC is less than 70% [6]. Since
the establishment of the International Global Navigation Satel-
lite System (GNSS) Service ionospheric working group, many
analysis centers such as the Center for Orbit Determination in
Europe (CODE), the European Space Agency (ESA), the Jet
Propulsion Laboratory (JPL), and the Universitat Politècnica
de Catalunya (UPC) in Spanish have provided high-accuracy
Global Ionospheric Map (GIM). Also, the CODE, the ESA, and
the UPC provide ionospheric prediction products of one day
and two days in advance [7], [8]. Monitoring and forecasting
of the TEC can provide for the proper operation of real-time
navigation, positioning, and communication, as well as reduce
the negative impact of the ionosphere on people’s production and
life. Therefore, it is necessary for us to establish a high-precision
ionospheric TEC prediction model.

In recent years, more and more researches have used the deep
learning method, which can reflect TEC variations well and
has a better fitting effect on nonlinear data, to establish a TEC
prediction model [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. For global TEC forecasting, Lee
et al. [11] proposed a TEC forecast model based on a generative
adversarial network, and its forecast accuracy was higher than
the 1-day forecast product released by CODE. Xiong et al. [14]
proposed an encoder–decoder long short-term memory (LSTM)
extended neural network method, which showed a strong ability
to improve TEC predictions in different geographical locations,
seasons, and geomagnetic conditions. Chen et al. [15] combined
convolution calculation and LSTM with spectrum analysis,
which had a good performance in predicting the global iono-
spheric TEC from 2015 to 2019. Ren et al. [17] used LSTM with
different solar and geomagnetic activity parameters to predict
global TEC and found that the prediction accuracy outperformed
the conventional mathematical methods under different con-
ditions. Xia et al. [20] established an ED-ConvLSTM model
to forecast global ionospheric TEC and compared it with the
1-day forecast model of the Beijing University of Aeronautics
and Astronautics (BUAA) and IRI-2016 model. The forecast
accuracy was higher than that of BUAA and IRI-2016 models.
For regional TEC forecasting, Huang et al. [9] used a genetic al-
gorithm to optimize the traditional BPNN to forecast TEC at four
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stations in China, and the prediction effect was better than the
traditional BPNN model in low and medium solar activity years.
The CNN-LSTM combined model established by Ruwali et al.
[12] not only retained the time feature extraction capability of
the LSTM model but also obtained the spatial feature extraction
capability, which had a good forecast effect on the low latitude
region of India. Sivakrishna et al. [19] applied a bidirectional
LSTM algorithm to predict TEC data over the Indian region and
illustrated that the potential of bi-LSTM in time series process-
ing is enhanced by having both forward and backward connec-
tions. Liu et al. [23] presented a machine learning method based
on principal component analysis and least-square regression to
predict TEC over Europe. The above studies have shown that
the LSTM model performs well in forecasting ionospheric TEC.
The LSTM model effectively improves the problem of gradient
explosion and gradient disappearance existing in the traditional
recursive neural network when calculating and updating the
parameters in the backpropagation.

At present, there are two ways of integrating convolution
calculation and LSTM network: CNN-LSTM and ConvLSTM.
The former extracts spatial features by stacking CNN layers
and then feeds them into the LSTM network. Since the input
data of LSTM is 1-D, there are limitations in the prediction of
regional TEC. The latter is to replace all the fully connected
layers in the LSTM network with convolution calculations,
which further strengthens the ability of the model to extract
spatial features and is more suitable for regional TEC prediction.
The comparative experiments between the ConvLSTM model,
CNN-LSTM model, and LSTM are carried out by Gao and Yao
[24], which proved that the ConvLSTM model performs the best
in TEC forecasting. The GRU model, as an excellent variant of
the LSTM model, has a reduced gate structure compared to the
LSTM model, which greatly reduces the computational effort of
model training and can save a lot of arithmetic power. The model
inputs of traditional GRU and LSTM networks are usually 1-D
vectors, and the relative position relationships are easily lost
when a 2-D TEC matrix is input. In addition, there are fewer
studies to establish models for ionospheric TEC forecasting over
China based on GNSS observations of the Crustal Movement
Observation Network of China (CMONOC) and deep learning
methods.

However, there are still some issues with the methods men-
tioned above. The conventional DCGAN-based approach used
in the literature [11] is restricted by the model’s complex learning
mechanism and training process, which requires more time and
memory for training and is more susceptible to problems such as
gradient vanishing and pattern collapse. DCGAN is a complex
neural network that trains a generator and a discriminator to
approximate real prediction results. This learning and training
mode requires training an additional subnetwork compared to
other time-series forecasting models, resulting in the need for
more time and computational resources to fit the time-series
data in DCGAN-based forecasting models. In addition, it should
be noted that DCGAN and other similar networks may have
inherent flaws, such as gradient vanishing and model collapse.
Gradient vanishing is a phenomenon that occurs when deep
neural networks are trained using error backpropagation. It

refers to the fact that the gradient hardly causes any numerical
perturbation when propagating backward to the shallow layer,
which ultimately leads to slow convergence or convergence
failure of the neural network. DCGAN is known to suffer from
the problem of gradient vanishing, and interestingly, the better
the discriminator is trained, the worse the gradient vanishing
of the generator becomes. Pattern collapse is a phenomenon
where DCGAN is limited to generating images that are similar
to the training data, leading to a lack of diversity in the generated
images.

According to the literature [9], regional ionospheric forecast-
ing based on BP neural networks presents several issues. First,
BP neural networks are linear input–output networks that can
only model data in the temporal dimension and cannot fit data
in the spatial dimension well. This limitation is not favorable
for regional TEC prediction. Second, fully connected neural
networks have more parameters. As the number of parameters
increases during neural network training, the model becomes
more susceptible to overfitting. This can lead to longer training
times and increased space occupation.

The literature suggests that LSTM-like methods, such as those
used in [12], [14], [15], [17], and [19], are an improvement over
previous methods. However, these methods are not applicable to
the task of regional ionospheric TEC prediction due to their 1-D
input data. In addition, the traditional LSTM model often uses a
fully connected form, which results in more computational pa-
rameters, higher computational costs, and longer training time.
It is important to note that while CNN-LSTM can input image
data, its loose coupling with LSTM increases training costs.
ConvLSTM is a more cost-effective solution for handling spatial
data compared to CNN-LSTM. This is because ConvLSTM
replaces the fully connected layers in traditional LSTM with con-
volutional layers, reducing training costs. In addition, pruning
the internal structure of LSTM can further reduce training costs.
This article proposes a deep learning model called convolutional
gated recurrent unit (ConvGRU) to achieve faster training.

Compared to the DCGAN model used in the literature [11],
ConvGRU requires no separate training of the generator and
discriminator to complete the task, making it less susceptible
to issues such as gradient disappearance and pattern collapse.
In addition, training time has been reduced. Compared to the
BP neural network model proposed in the literature [8], [9],
ConvGRU can directly process 2-D spatial data by integrating
the internal work of CNN. Thanks to the simplification of the
ConvGRU structure, it adopts a CNN network instead of the
original fully connected network in the fully connected neu-
ral network. The current layer of the fully connected neural
network is replaced by a CNN network. Compared to the BP
neural network model proposed in the literature [9], ConvGRU
integrates the CNN internal work to handle 2-D spatial data.
The structure of ConvGRU is simplified, and it adopts the CNN
network to replace the original fully connected network. In the
original fully connected neural network, each neuron in the
current layer is connected to every neuron in the previous and
later layers. The model’s training requires the computation and
updating of the weights and biases of each connection, which is a
time-consuming process. The training of the model requires the
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computation and updating of weights and biases on each connec-
tion, which is computationally intensive and time-consuming.
The CNN model’s convolutional kernel mechanism simplifies
the model and shortens training time by only calculating and
updating kernel parameters during training. In contrast to the
LSTM classes mentioned earlier, ConvGRU can handle spatial
2-D data directly and simplifies the traditional LSTM model sig-
nificantly. It is much simpler than the LSTM, CNN-LSTM, and
GRU models. Like LSTM and GRU models, ConvGRU models
also use CNN networks to replace all fully connected networks
inside the original model. This allows the model to directly
process 2-D data and reduces the time and space complexity
of the model. The use of CNN networks in ConvGRU models
is a significant improvement over the original model. Compared
to ConvLSTM, ConvGRU has a more concise computational
formula due to having one less gate and memory cell, resulting
in fewer parameters. This reduces training time and improves
model time complexity compared to the improved ConvLSTM.
Section IV provides a quantitative time complexity analysis of
various models. The model is developed and evaluated based
on geomagnetic and solar activity indexes, and TEC grid data
obtained from modeling with CMONOC observations.

II. IONOSPHERIC TEC MODELING

In this section, we introduce the TEC for prediction model. We
use dual-frequency GNSS observation data from the CMONOC
stations to construct a high-precision ionospheric model over
China. In this study, the TEC is obtained from dual-frequency
GNSS observations using the uncombined precise point posi-
tioning (UPPP) method [25], [26]. The ionospheric delay esti-
mated by the UPPP method includes the unbiased ionospheric
delay and the differential code bias (DCB) from the receiver and
satellite [27]. The function can be written as

I = Iu +
1

1− γ2
(DCBr − DCBs) (1)

where I is the estimated ionospheric delay, Iu is the unbiased
ionospheric delay, γ2 = f2

1 /f
2
2 , and DCBr and DCBs are the

DCB from receiver and satellite, respectively.
Then, a fourth-order spherical harmonic model is applied to

construct the vertical TEC (VTEC) model of China. It can be
expressed as

VTEC(β, s) =

nmax∑
n=0

n∑
m=0

P̃nm(sinβ)·

(anm cos(ms) + bnm sin(ms)) (2)

where β denotes the geomagnetic latitude of the ionospheric
puncture point, nmax denotes the highest order of the spherical
harmonic function expansion, P̃nm represents the normalized
associated Legendre function of order n and degree m, s =
UT − λ − π represents the daily fixed longitude of the puncture
point, λ represents the geomagnetic longitude of the puncture
point, UT represents the universal time at the observation time,
and anm and bnm represent the spherical harmonic function
model parameter to be solved. The detailed modeling process

Fig. 1. Geographic locations of GNSS receivers from CMONOC.

can be found in [28] and [29]. It has been proved that the regional
ionospheric model based on this method has high accuracy [30].

III. CONSTRUCTION OF IONOSPHERIC TEC MAP PREDICTION

MODEL USING CONVGRU OVER CHINA

A. Data Preparation

To some extent, geomagnetic activity and solar activity can
reflect the variation trend of ionospheric TEC. In this article, the
commonly used geomagnetic activity indices ap, Kp, Dst, and
solar activity index F10.7 are selected as the input features of the
models when constructing the input datasets of the ConvLSTM
model and ConvGRU model. The GNSS observations from 250
CMONOC stations are used to establish the regional ionospheric
maps (RIMs) of China (CRIMs) based on the spherical harmonic
function model. Then, we use the deep learning method and the
CRIMs as the training set to predict the ionospheric TEC. The
longitude of the experimental region is from 70°E to 140°E, and
the latitude of the experimental region is from 15°N to 55°N. The
intervals in the longitude and latitude directions are 1°. Fig. 1
shows the locations of GNSS receivers from CMONOC.

The CRIMs from 2015 to 2018 are selected for the experiment.
We select 90% of the ionospheric TEC from 2015 to 2017 as
the training set of the model to train the model, 10% of the
ionospheric TEC as the verification set to adjust the hyperpa-
rameters of the model, and the TEC of 2018 as the model test
set to verify the prediction accuracy of the model. In addition,
we add the geomagnetic indices which are ap, Kp, and Dst, and
the solar activity index which is F10.7 as the training set to
analyze the forecasting precision of the model (using -A if there
are no indices and -B if there are indices). The sample inputs
of the two types of models are 12 TEC maps of a day and the
corresponding feature vectors, which can be expressed as a 5-D
tensor of (N, 12, 41, 71, C). The sample output is a 5-D tensor
of (N, 12, 41, 71, 1), where N denotes the total number of RIMs,
41 and 71 correspond to the dimensions of a TEC map, and C
denotes the number of input or output features, with dimension
1 when the sample contains only TEC data, and dimension 5
when geomagnetic activity and solar activity indices are added.



TANG et al.: FORECAST OF IONOSPHERIC TEC MAPS USING CONVGRU DEEP LEARNING OVER CHINA 3337

Fig. 2. Encoder–decoder ConvGRU network for forecasting.

Fig. 3. Flowchart of prediction based on ConvGRU model.

B. Construction of ConvGRU Prediction Model

The ConvGRU structure shown in Fig. 2 is used to establish
a regional TEC prediction model in China, which consists of an
encoding network and a decoding network. The initial state and
cell outputs of the decoding network are copied from the last state
of the encoding network [31]. The feature extraction capability
of the network can be enhanced by stacking ConvGRU layers,
which will improve the prediction capability of the model for
spatio-temporal sequence problems. Since the forecast results
of the model have the same dimensionality as the input, the final
forecast results can be generated by serially decoding all the
hidden states in the network and passing them through the 3-D
convolution layer. If the input is multichannel, 3-D convolution
can also transform the multichannel output into a single-channel
output.

As shown in Fig. 3, we demonstrate the overall process of
China’s regional TEC forecast constructed by the ConvGRU
model. During model training, 12 CRIMs of one day are selected
each time as the model input to the decoding network. The
hidden state at the last moment is obtained by learning the
correlation and image features between TEC maps at adjacent
moments. It includes the feature information of all 12 images and
the timing information. Then, the decoding network is processed
and the forecast TEC map for the next day is obtained by cycling
the output 12 times. A loss calculation, which is computed
during the training process for backpropagation, is performed
to compare the forecast results with the true values, and the
network parameters are updated using an optimizer so that the
model outputs a forecast that continuously approximates the true
values.

TABLE I
MODEL TIME COMPLEXITY AND SPACE COMPLEXITY (PER LAYER)

In this article, the final prediction model consists of four
layers of ConvGRU, and a regularization layer is added after
each layer of ConvGRU to increase the stability of the network.
Finally, a Conv3D layer is added to convert the output forecast
image into a single-channel output. The size of convolution
kernels in each ConvGRU layer is 3 × 3. The stacking of
multiple layers of a small convolutional kernel can reduce model
parameters and have the same sensitivity field as that of a
large convolutional kernel. In addition, it can also enhance the
nonlinear expression ability of the network. We determine the
number of convolutional kernels per layer by selecting several
common numbers of convolutional kernels and using the grid
search method. The specific steps are to build the model using
different combinations of the number of convolutional kernels
to carry out, solve for the root mean square error (RMSE) of the
verification set, and take the average of the five errors as the final
error of the number of convolutional kernels in the group. A set
of convolution kernels with the smallest final error is selected
to build a TEC forecasting model. Essentially, the prediction
of TEC is a regression problem, so “MSE” is chosen as the
loss function of the model. Selecting “Adam” for the optimizer
adapts the learning rate of the model as it is trained so that
the optimal solution is found faster. The maximum number of
iterations is set to 400, and when the loss of the validation set has
not decreased after 50 consecutive iterations, the iteration ends
early. The grid search method determines that the number of con-
volution kernels of each ConvGRU layer in the final ConvGRU
model network structure is 40. The parameters setting of the
ConvLSTM model is the same as the ConvGRU model to carry
out the comparative experiments. After constructing the model,
we counted the number of hyperparameters for both models.
The total parameters of the ConvLSTM model are 412 761 and
the ConvGRU model are 309 841. We can find that ConvGRU
has a smaller number of parameters that require less computing
power.

IV. EXPERIMENTS AND DISCUSSION

Table I shows the time and space complexity of different
models in this article. Time and space complexity are com-
monly used in algorithmic research to compare factors such
as model training time and memory usage. Generally, higher
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TABLE II
CLASSIFICATION OF GEOMAGNETIC STORMS

TABLE III
CLASSIFICATION OF SOLAR ACTICITY

time complexity means longer training time and higher space
complexity means more memory usage during training. Table I
shows that the DCGAN method has twice the time and space
complexity of ConvGRU. The time and space complexity of the
BP neural network are greatly influenced by the dimensionality
of the hidden layer, which is the second power of the dimension
of the hidden layer. Given the dimensionality of the input data
required for forecasting regional ionospheric TEC, both time
and space complexity are high. Although LSTM outperforms
BP neural networks in terms of spatial complexity, the fully
connected layers in LSTM still significantly increase the time
and spatial complexity of the model. The CNN-LSTM model,
which loosely couples CNN and LSTM, has a time and spatial
complexity that is the sum of CNN and LSTM, with LSTM
still in the form of fully connected layers. The GRU model is
similar to the CNN-LSTM model but with fewer gating units.
However, the fully connected form still results in higher time
and space complexity compared to ConvGRU. Compared to
previous models, the ConvLSTM model outperforms in terms
of time and space complexity. Although its space complexity is
not as high as the previous models, it still achieves significantly
better performance. However, it is equal to the ConvGRU model
in terms of space complexity, but its time complexity is still
higher than that of ConvGRU due to one more gate unit and
one more memory cell within ConvLSTM than ConvGRU. In
summary, ConvGRU performed well on both evaluation metrics,
excelling in terms of training duration and memory usage.

Many studies have shown that ionospheric TEC responds to
geomagnetic activity and solar activity. The forecasting preci-
sion of TEC on geomagnetic storm days or high solar activity
years is lower than that on geomagnetic quiet days or low solar
activity years. To a certain extent, the forecasting precision of
the forecast model for the TEC of the magnetic storm day can
reflect the reliability of the forecast model. Fig. 4 illustrates
the geomagnetic activity indices and solar activity index from
day of year (DOY) 231–240 in 2018. Fig. 4(a) shows the ap and
F10.7 index, and Fig. 4(b) shows the Dst and Kp index. Tables II
and III show the classification of magnetic storms and solar
activity [32], [33], [34], respectively. To classify the intensities

Fig. 4. Variations of geomagnetic and solar activity index (DOY 231–240).
(a) Ap index and F10.7 index. (b) Dst index and Kp index.

of storms, the minimum Dst index is used as a criterion. A day
is classified as a geomagnetic storm day if the Dst index is less
than −30 nT according to the criterion in Table II. There are
202 days of weak storms, 105 days of moderate storms, 16 days
of strong storms, and 3 days of severe storms in the training
set. In Fig. 4, geomagnetic indices ap, Kp, Dst, and solar flux
index F10.7 are used to check the variation of ionosphere from
DOY 231–240 in 2018. According to Tables II and III, it can
be seen that the Dst index of DOY 231–235 is greater than -30
nT, the ap index is less than 32 nT, and the Kp index is less than
4. Therefore, DOY 231–235 is geomagnetic quiet day. During
DOY 236–240, the maximum value of ap and Kp index is 154 nT
and 7.3 in DOY 238, respectively. The minimum value of Dst
index is -175 nT. Therefore, a large magnetic storm occurs in
DOY 236–240. During DOY 231–240, the F10.7 index is all
less than 75 sfu. Therefore, solar activity is weak during DOY
231–240, which has little influence on the ionospheric TEC. In
this article, DOY 231–235 and DOY 236–240 are selected to
analyze the prediction accuracy of geomagnetic quiet and storm
time, respectively.

In this study, we use the RMSE, mean absolute error (MAE),
and correlation to assess the performance of these models. These
functions can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAEloc =
1
T

∑T
t=1

∣∣∣TECreal
loc (t)− TECpred

loc (t)
∣∣∣

RMSEloc =

√
1
T

∑T
t=1 (TECreal

loc (t)− TECpred
loc (t))

2

RMSE = 1
Nloc

∑Nloc
loc=1 RMSEloc

MAE = 1
Nloc

∑Nloc
loc=1 MAEloc

ρ = 1
T

∑T
t=1

cov(TECreal(t),TECpred(t))
σTECreal(t)·σTECpred(t)

(3)
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Fig. 5. RMSE and MAE of different models during the geomagnetic quiet
time. (a) RMSE (left column). (b) MAE (right column).

where T represents the sample size, loc corresponds to a grid
point in China, and Nloc = 41× 71 = 2911. TECreal

loc (t) and
TECpred

loc (t) represent the CRIM TEC and the TEC forecast
values by different models, respectively, at the time t. TECreal(t)
and TECpred(t) represent the CRIM TEC sequence and the
sequence of TEC prediction values of all the grid points at time
t. ρ is the correlation coefficient. cov(TECreal(t),TECpred(t))
is the covariance between TECreal(t) and TECpred(t). σTECreal(t)

and ·σTECpred(t) are the standard deviations of TECreal(t) and
TECpred(t), respectively.

A. Geomagnetic Quiet Period

To assess the prediction accuracy of different models during
geomagnetic quiet time, RMSE (left column) and MAE (right
column) of TEC forecast values of the IRI-2016, ConvLSTM-
A, ConvGRU-A, ConvLSTM-B, and ConvGRU-B models are
shown in Fig. 5 during DOY 231–235. Table IV shows the
average RMSE, MAE, and correlation coefficient of the five
models during DOY 231–235. Fig. 5 and Table IV show that
the RMSE and MAE of the five models all give a decreasing
trend with increasing latitude, and the change of RMSE in the
longitude direction is not obvious. After the ConvLSTM and
ConvGRU models are added to these indices, the forecasting
precision of the model is improved. The RMSE is reduced
by 12.8% and 2.7%, respectively. MAE is reduced by 17.2%
and 3.6%, respectively. ρ of ConvLSTM-B model is reduced
by 0.014 compared to the ConvLSTM-A model, and ρ of
ConvGRU-B model is improved by 0.012 compared to the

TABLE IV
COMPARISON OF PREDICTION ERRORS BY DIFFERENT MODELS DURING THE

GEOMAGNETIC QUIET TIME

Fig. 6. CRIM TEC and predicted TEC by different models of different grid
points during the geomagnetic quiet time.

ConvGRU-A model. In addition, compared with the IRI model
and ConvLSTM model, the RMSE of ConvGRU-B is reduced
by 19% and 7.8%, the MAE is reduced by 27.5% and 9.6%, and
ρ is increased by 0.37 and 0.035, respectively. It can be seen
that the deep learning models outperform the IRI-2016 model
in predicting magnetically quiet days, regardless of whether the
geomagnetic and solar activity indices are introduced into the
ConvLSTM and ConvGRU models.ρ is significantly higher than
the IRI-2016 model. The performance of the ConvGRU-B model
is better than that of the other four models, but the performance
of the ConvGRU-A model is not significantly improved on
magnetic quiet days.

Also, we use the CODE’s 1-day predicted Global Ionospheric
Map (C1PG) released by the CODE to assess the performance
of the models. Fig. 6 illustrates the CRIM TEC and the 5-day
predicted TEC of the other four models in China during geomag-
netic quiet time. Table V shows the average RMSE of the 5-day
predicted TEC of the four models. From Fig. 6 and Table V, it
can be seen that the predicted TEC of the ConvGRU-B model is
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TABLE V
AVERAGE RMSE OF DIFFERENT GRID POINTS IN THE EXPERIMENTAL AREA

DURING THE GEOMAGNETIC QUIET TIME

TABLE VI
COMPARISON OF PREDICTION ERRORS BY DIFFERENT MODELS DURING THE

GEOMAGNETIC STORM TIME

closer to CRIM TEC. The predicted TEC of IRI-2016 at 25°N
and 35°N significantly deviates from CRIM TEC, but the RMSE
is the smallest among the four models at (45°N, 100°E) and
(45°N, 120°E). The RMSE of ConvGRU-B is lower than that
of the other three models. The RMSE of C1PG is higher than
that of the other three models at 45°N. The average RMSE
of these grid points of IRI-2016, C1PG, ConvLSTM-B, and
ConvGRU-B models is 2.39 TECU, 2.73 TECU, 2.28 TECU,
and 1.84 TECU, respectively. Compared with IRI-2016, C1PG,
and ConvLSTM-B models, the RMSE of the ConvGRU-B model
is decreased by 23%, 32.6%, and 19.3%, respectively. The
prediction accuracy of the ConvGRU-B model is the highest
among the four models when the TEC of these grid points is
predicted during geomagnetic quiet time.

B. Geomagnetic Storm Period

Fig. 7 shows the RMSE (left column) and MAE (right column)
of predicted TEC of the five models during DOY 236–240.
Table VI shows the average RMSE, MAE, and ρ. It can be
seen that the RMSE and MAE of the five models also show
a downward trend with the latitude change on the magnetic
storm day, and the variation in the longitude direction is not
obvious. This is consistent with the variation characteristics of
magnetic quiet days. RMSEloc and MAEloc of the IRI-2016
model are significantly higher than those of the other four models
in the low-latitude region. The maximum RMSEloc of IRI-2016,
ConvLSTM-A, ConvLSTM-B, ConvGRU-A, and ConvGRU-B
are 7.94 TECU, 6.82 TECU, 6.95 TECU, 7.14 TECU, and 5.98

Fig. 7. RMSE and MAE of different models during the geomagnetic storm
time. (a) RMSE (left column). (b) MAE (right column).

TECU during geomagnetic storm time, respectively. The max-
imum MAEloc of the ConvGRU-B model is 5.83 TECU, 5.03
TECU, 4.73 TECU, 4.07 TECU, and 3.7 TECU, respectively.
The maximum RMSEloc and MAEloc of the ConvGRU-B model
is significantly lower than those of the other four models. Also,
it can be found that RMSEloc and MAEloc of low latitude regions
can be significantly improved by adding the geomagnetic and
solar activity index in the models. In Table VI, the RMSE and
MAE of ConvLSTM-B are decreased by 26.4% and 31.9%
compared with ConvLSTM-A, respectively. RMSE and MAE
of ConvGRU-B decreased by 28% and 21.9% compared with
ConvGRU-A, respectively. ρ of the other four models is higher
than that of the IRI-2016 model, and ρ of ConvGRU model
is obviously higher than that of the ConvLSTM model. The
RMSE and MAE of ConvGRU-B are 22.4% and 32.3% lower
than those of the IRI-2016 model, and 5.9% and 6.2% lower
than those of ConvLSTM-B, respectively. In short, the addition
of geomagnetic activity and solar activity index can effectively
improve the prediction accuracy of geomagnetic storm time. The
forecast precision of ConvGRU-B is higher than that of the other
four models.

We also use the predicted TEC and CRIM TEC to do
the accuracy assessment. Fig. 8 shows CRIM and predicted
TEC by different models of different grid points during the
geomagnetic storm time. Table VII shows the average RMSE
of predicted TEC by four models during DOY 236–240. In
Fig. 8 and Table VII, RMSE of all four models decreases with
increasing latitude, and the variation with longitude is not
obvious. The predicted TEC values of the three grid points
of the IRI-2016 model at 25°N deviate significantly from the
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Fig. 8. CRIM-TEC and predicted TEC by different models of different grid
points during the geomagnetic storm time.

TABLE VII
AVERAGE RMSE OF DIFFERENT GRID POINTS IN THE EXPERIMENTAL AREA

DURING THE GEOMAGNETIC STORM TIME

CRIM TEC. The TEC prediction value of the C1PG model at
45°N deviates significantly from the CRIM TEC. Due to the
strong geomagnetic activity on DOY 238, the CRIM TEC of this
day is obviously higher than that of the other four days. During
a magnetic storm day, the average RMSE of the IRI-2016,
C1PG, ConvLSTM-B, and ConvGRU-B models at these grid
points are 2.91 TECU, 3.17 TECU, 2.61 TECU, and 2.2
TECU, respectively. Compared with the IRI-2016, C1PG, and
ConvLSTM-B models, the RMSE of the ConvGRU-B model is
reduced by 24.4%, 30.6%, and 15.7%, respectively. In general,
the RMSE of ConvGRU-B at these grid points is smaller than
that of the other four models, and the overall prediction accuracy
is significantly improved over the IRI-2016 model and C1PG
model. In addition, compared with the ConvLSTM-B model, it
has also been improved to a certain extent.

C. Prediction Accuracy of TEC in Different Seasons

In this section, we further verify the performance of the
ConvGRU model on the ionospheric TEC in different seasons

Fig. 9. Predicted value, true value, and corresponding residual value at 4:00
UT, 6:00 UT, 8:00 UT, 10:00 UT, and 12:00 UT on different days (the CRIM
and prediction’s color scale is based on color bar1, and the residual’s color scale
is based on color bar2). (a) Spring equinox (March 21st, 2018). (b) Summer
solstice (June 20th, 2018). (c) Autumnal equinox (September 23rd, 2018).
(d) Winter solstice (December 22nd, 2018).

in China and analyze the influence of the equatorial ionospheric
anomaly (EIA) on the forecast precision of the model. Fig. 9
shows the TEC diagrams from UT 4 to UT 12 on March 21,
June 22, September 22, and December 22, 2018. It includes the
time period from the appearance to the disappearance of EIA
in China. The first row of Fig. 9(a)–(d) represents the CRIM
TEC, the second row is the predicted TEC of the ConvGRU-B
model, and the third row is the residual between CRIM TEC
and predicted TEC. The calculation formula can be written as
Residual = TECt−TECp, where TECt represents the CRIM
TEC and TECp represents the predicted TEC. Table VIII shows
the RMSE, MAE, and ρ of ConvLSTM-B and ConvGRU-B
models in these days. It shows that EIA appears in the eastern part
of China at UT 4 and moves westward over time, and gradually
disappears at UT 12. The maximum CRIM TEC of the spring
equinox, summer solstice, autumnal equinox, and winter solstice
are 48.7 TECU, 28.9 TECU, 38.1 TECU, and 31.7 TECU,
respectively. This indicates that the maximum TEC at the spring



3342 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VIII
COMPARISON OF PREDICTION ERRORS BY THE TWO MODELS ON DIFFERENT

DAYS

Fig. 10. Cumulative frequencies of MAE of the two models on different days.
(a) Spring equinox (March 21st, 2018). (b) Summer solstice (June 20th, 2018).
(c) Autumnal equinox (September 23rd, 2018). (d) Winter solstice (December
22nd, 2018).

and autumn equinoxes is higher than that at the summer and win-
ter solstices, which is consistent with the “semi-annual anomaly”
phenomenon of the ionosphere. Comparing the predicted results
of the ConvGRU-B model with the CRIM TEC value, it can be
found that the ConvGRU-B model roughly captures the change
of EIA over time, and the area with large residuals basically
coincides with the position of EIA. The background TEC of the
spring equinox and autumnal equinox are higher than that of
the summer solstice and winter solstice leading to the residual
of the spring equinox and autumnal equinox higher than that of
the summer solstice and winter solstice. Furthermore, the Dst
index is less than -30 nT on September 22. A weak geomagnetic
storm occurs, which causes the fitting effect of the autumnal
equinox to be worse than that of the spring equinox. Fig. 10
shows the MAE accumulated frequency of ConvLSTM-B and
ConvGRU-B models throughout the whole day of the different
seasons. Table VIII gives the RMSE, MAE, and the two models
during the whole day. In Fig. 10 and Table VIII, it can be seen that

Fig. 11. RMSE and MAE of the two models in different months of 2018.

the percentage of the MAE of the ConvLSTM-B model within
the range of 0–1 TECU is 41%, 36.7%, 20.9%, and 40.7%,
respectively. The percentage of the MAE of the ConvGRU-B
model in the range of 0–1TECU is 51.6%, 49.6%, 31.1%, and
54.8%, respectively. The cumulative MAE frequency distribu-
tion of the ConvGRU-B model is obviously better than that of the
ConvLSTM-B model. As can be seen from Table VIII, the MAE
and RMSE of the ConvGRU-B model are smaller than that of the
ConvLSTM-B model, and the error of the autumnal equinox is
significantly higher than that of the other three seasons. The
error of the ConvGRU-B model is smaller than that of the
ConvLSTM-B model except for winter solstice. Based on the
previous analysis, the performance of the ConvGRU-B model
is also better than that of the ConvLSTM-B model in different
seasons.

D. Prediction Accuracy for the Whole Year 2018

Fig. 11 shows the comparison of the RMSE and MAE of the
TEC predicted results of the ConvLSTM-B and ConvGRU-B
models in 12 months in 2018. The RMSE and MAE of the
ConvGRU-B model are smaller than those of the ConvLSTM-B
model every month in 2018. Due to the geomagnetic storms,
the maximum RMSE and MAE of both models appear in
August. The RMSE and MAE of the ConvGRU-B model de-
crease by 0.63 TECU and 0.53 TECU at most compared to
the ConvLSTM-B model. The average RMSE and MAE of the
ConvLSTM-B model for 2018 are 2.69 TECU and 2.09 TECU,
respectively. The RMSE and MAE of the ConvGRU-B model are
2.24 TECU and 1.66 TECU, which are 16.7% and 20.6% lower
than those of the ConvLSTM-B model, respectively. According
to the above data, the performance of the ConvGRU-B model
is obviously better than that of the ConvLSTM-B model. It has
strong forecast stability.
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TABLE IX
RMSE(TECU) OF CONVLSTM-B MODEL AND CONVGRU-B MODEL UNDER

DIFFERENT GEOMAGNETIC ENVIRONMENTS

To further analyze the accuracy of the model proposed in
this article for TEC forecasting under different geomagnetic
conditions in 2018, a total of 41 days are classified as ge-
omagnetic storm days in 2018 according to the criteria in
Table II, of which contain 34 days of weak storms, 6 days of
moderate storms, and 1 day of large storm, leaving 324 days of
geomagnetic quiet days. Magnetic storm days account for 11.2%
of the year. Table IX shows the RMSE of the ConvLSTM-B
model and the ConvGRU-B model under different geomagnetic
environments. The RMSE of the ConvGRU-B model decreased
by 17.5%, 20.9%, 30.1%, and 31.8% during geomagnetic quiet
days, weak storm days, moderate storm days, and strong storm
days compared to that of the ConvLSTM-B model, respectively.
It can be seen that the forecast accuracy of the ConvGRU-B
model is improved compared with that of the ConvLSTM-B
model under different geomagnetic conditions.

V. CONCLUSION

In this article, we develop a ConvGRU deep learning method
to construct a short-term forecast model for the ionospheric
TEC in China based on geomagnetic indices, solar activity
index, and GNSS observation data from CMONOC. The results
demonstrate that the prediction accuracy of ConvLSTM-B and
ConvGRU-B models is improved on geomagnetic storms, quiet
days, and different seasons. The average RMSE and MAE of the
ConvGRU-B model are lower than those of the ConvLSTM-B
model each month, with the RMSE decreasing by up to 0.63
TECU in a single month and MAE decreasing by 0.53 TECU at
most. The annual average RMSE and MAE of the ConvGRU-B
model are 2.24 TECU and 1.66 TECU, respectively. Compared
to the ConvLSTM-B model, they are decreased by 16.7% and
20.6%, respectively. Furthermore, the RMSE of the ConvGRU-
B model decreased by 17.5%, 20.9%, 30.1%, and 31.8% during
geomagnetic quiet days, weak storm days, moderate storm days,
and strong storm days compared to that of the ConvLSTM-B
model respectively. In general, the ConvGRU-B model proposed
has higher prediction accuracy than the ConvLSTM-B model
and is better than the IRI-2016 and C1PG models. In the future,
we will further modify the structure of the ConvGRU unit
affected by the physical patterns of the ionosphere to enhance the
performance of the model in capturing spatio-temporal features.
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