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Abstract—In recent years, numerous change detection method-
ologies have been proposed, with a predominant focus on binary
change detection. Furthermore, there exists a paucity of research
addressing semantic change detection in scenarios where solely
binary change labels are available. This article introduces a mul-
titask network for semantic change detection. First, 3-D ResUnet
model is employed to generate initial multitemporal land cover
results through postclassification comparison. Subsequently, the
multitask network, encompassing two subtasks—binary change
detection and multitemporal semantic segmentation—is proposed.
Specifically, the shared branch of the network employs 3-D residual
blocks to extract joint spectral-spatial features. In the subsequent
task-specific branch, a 3-D GAN is incorporated for the binary
change detection task to enhance the discrimination ability of latent
high-level features for changes. Novel adaptive self-paced learning
and certainty-weighted focal loss are proposed for multitemporal
semantic segmentation to mitigate adverse effects from noisy se-
mantic labels by considering sample complexity and reliability in
the network optimization process. Experiments conducted on the
Orbita Hyperspectral dataset in the Xiong’an New Area demon-
strate the superior performance of the proposed method, achieving
99.28% and 76.60% for overall accuracy and kappa, respectively.
This outperformance is notable when compared to other meth-
ods, such as Str4 and Bi-SRNet, showing an increase of 39.82%
and 54.17% for kappa. Moreover, comparative experiments on
SECOND further confirm the advantage of the proposed method,
achieving 54.62% for kappa and outperforming other comparative
methods, such as Bi-SRNet (47.61%).
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I. INTRODUCTION

CHANGE detection stands as a cornerstone application in
remote sensing technology. The rapid evolution of remote

sensing technology has empowered the acquisition of high-
spatial-resolution hyperspectral imagery (HSI), enabling us to
monitor Earth’s surface with unprecedented detail and precision.
Nevertheless, hyperspectral change detection remains an excep-
tionally challenging task owing to various intricate factors, such
as spectral variability, data redundancy, high dimensionality,
limited annotated data, noise, anomalies, and the complexities
inherent in real-word scenarios [1].

Over the preceding decades, the evolution of change detection
algorithms has closely paralleled the development of machine
learning and remote sensing technologies [2]. The initial phase
of the change detection development focused on comparing
pixel-level spectral or textual values using techniques, such as
image differencing [3], change vector analysis [4], principal
component analysis [5], and multivariate alteration detection
[6]. In the late 20th century, the launch of satellites with very
high spatial resolution enabled the capture of finer spatial details.
However, this progress often came at the expense of lower spec-
tral separability, given the inherent tradeoff between spatial and
spectral resolution, particularly considering the limitations in
imaging capabilities of that era. In response to reduced spectral
separability, spatial features (e.g., textures, deep features, object-
based features, and angular features) and machine learning
methods (e.g., support vector machines, random forests, neural
networks, K-means, deep learning models) were employed [7].

In recent years, the rapid evolution of remote sensors has
made it feasible to acquire high-spatial-resolution HSI. For high-
spatial-resolution HSI, both spectral and spatial information
are imperative and should be fully exploited. Among various
spatial features, deep features have been extensively studied and
applied in change detection tasks since these features, tailored
for the specific task, are learned directly from data rather than
being handcrafted. Consequently, deep learning has achieved
state-of-the-art performance in hyperspectral image change de-
tection. For instance, Wang et al. [8] introduced a general 2-D
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convolutional neural network (CNN) for hyperspectral image
change detection, capable of learning discriminative features at a
higher level. In another study, Li et al. [9] embedded a cross-band
feature extraction module into a spatial-spectral self-attention
module to jointly learn pixel-level spectral differences and spa-
tial correlations of adjacent pixels in HSI change detection. In
[10], bitemporal spectral-spatial feature maps were extracted
by 3-D convolution layers, and temporal information of these
features was learned via convolutional long short-term memory.

Despite the superior performance of deep learning in HSI
change detection, it requires a substantial volume of high-quality
labeled data, which is time-consuming and labor-intensive [11].
Consequently, we must address scenarios where limited la-
beled data are available. One promising solution in the liter-
ature involves training deep networks with weak supervision
information, such as incomplete, inaccurate, and inexact labels
[12], [13]. For instance, Liu et al. [14] proposed a semisupervised
change detection framework with a multilayer cascade screen-
ing strategy that leverages both spatial information and active
learning to select highly reliable unlabeled samples to augment
the training sets. Gong et al. [15] introduced a semisupervised
strategy combing traditional unsupervised and supervised al-
gorithms when labeled data is insufficient. Tong et al. [16]
proposed a method tailored to scenarios with limited training
samples in a single-time image, involving unsupervised binary
change detection, classification of pretime images, classification
of posttime images via transfer learning, and generation of
multiclass change map through postclassification comparison
(PCC).

On the other hand, change detection can be categorized as
binary change detection and semantic change detection, con-
tingent upon the final outputs [17]. Despite the rich spectral
and spatial information embedded in HSI, previous research has
predominantly focused on traditional binary change detection,
with limited emphasis on identifying change type, known as
semantic change detection. Semantic change detection can be
accomplished through PCC or direct multidate classification,
provided multitemporal ground reference data are available [1].
However, as mentioned earlier, the availability of such ground
reference data is either scarce or nonexistent. Furthermore,
open-source hyperspectral image change detection datasets for
semantic change detection are exceedingly scarce in terms of
data availability. In the domain of remote sensing, land cover
information is more easily acquired and accessed compared to
temporal information. Even at a global scale, there are sev-
eral existing land cover products, e.g., the global land-cover
product with fine classification system at 30- [18] and 10-m
finer resolution observation and monitoring of the global land
cover (FROM-GLC) [19]. However, the generated land cover
information is noisy and monotemporal. To date, there has been
relatively few research works into semantic change detection in
scenario where only noisy monotemporal land cover labels and
binary change labels are available, which is of great importance
to promote practical applications of change detection.

Therefore, the objective of this study is to present a seman-
tic change detection method based on a binary change detec-
tion dataset and a monotemporal land-cover map. Under this

scenario, we propose a novel multitask change detection network
based on adversarial learning and self-paced learning (MAS-
Net). Initially, using monotemporal land cover labels, a 3-D
Residual UNet (ResUNet) model is adopted to generate initial
multitemporal land cover results with certainty scores (cs) via
PCC. Subsequently, to exploit the potential of noisy land-cover
labels and true binary change labels, a multitask paradigm that
integrates binary change detection and multitemporal semantic
segmentation tasks is proposed. A 3-D generative adversarial
network (GAN) for binary change detection task and self-paced
learning for semantic change detection task are integrated into
this multitask paradigm. These designs guide the network in
learning classwise change information, even in the presence
of inaccurate pseudolabels. Comprehensive comparisons and
ablations studies have been carried out to demonstrate the ef-
fectiveness of the proposed method.

In summary, the novelties of this article can be concluded
as follows.

1) We present a novel MASNet tailored for semantic change
detection. This new method only uses binary change sam-
ples and a monotemporal land-cover map. To the best
of our knowledge, MASNet is the first end-to-end mul-
titask network designed for semantic change detection
leveraging a binary change detection dataset. This in-
novation holds substantial practical values in real-world
applications.

2) MASNet includes three modules: A 3-D encoder to extract
joint spectral-spatial features, a binary change detection
branch with a 3-D discriminator to improve the discrimina-
tion of change in high-level latent features, and a semantic
segmentation branch with novel adaptive self-paced learn-
ing (ASPL) and certainty-weighted focal loss. Under this
multitask framework, true binary change information and
noisy PCC results are learned in an end-to-end manner,
boosting the reported accuracy of semantic change detec-
tion. In addition, both sample complexity and reliability
are considered in the network optimization process.

The rest of this article is organized as follows. Section II
analyzes related work, including multitask change detection
and self-paced learning. In Section III, the proposed method
is described in detail. Section IV introduces the experimen-
tal datasets, implementation details, and comparative methods.
Subsequently, results and analysis are provided in Section V.
The discussions of results are presented in Section VI. Finally,
Section VII concludes this article.

II. RELATED WORK

A. Semantic Change Detection

The conventional semantic change detection methods involve
the application of PCC or direct classification techniques. In the
context of PCC, the key points are generating highly accurate
classification outputs for individual monotemporal images, con-
tingent upon the availability of multitemporal land cover or land
use samples. However, the accumulation of errors poses a signif-
icant challenge for PCC-based semantic change detection [20].
On the other hand, the direct classification methods treat change
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detection as a classification problem with semantic change types
as the desired output [21]. Nevertheless, the presence of extreme
sample imbalance within semantic change types presents a
formidable obstacle for direct classification methods [22].

A recent advancement in the field of semantic change de-
tection involves the adoption of multitask learning, which fa-
cilitates the synthesize of domain-specific information from re-
lated tasks, resulting in enhanced generalizability and improved
performance [23]. In the domain of semantic change detection,
multitask structures have gained prominence and are presently
considered the prevailing approach [24]. For instance, in a study
by Zhao et al. [25], a change detection model coupled with
domain adaption as an auxiliary task was proposed to mitigate
the impact of domain shifts and irrelevant changes. Similarly, in
a study focused on building change detection, the change detec-
tion loss function is constrained by auxiliary building detection
tasks, thereby leveraging intrinsically correlated features within
building footprints for the detection of fine-grained building
changes [26]. Moreover, in a change detection framework utiliz-
ing time-series images, an additional decoding branch was added
to conduct semantic segmentation on the available semantic
categories from different input dates [27]. Notably, Caye Daudt
et al. [28] introduced a multitask semantic change detection
method based on two fully CNNs. These CNNs were trained for
binary change detection and land-cover mapping, respectively,
and the land cover related features were incorporated into the
binary change detection task. Recent works, such as those in
[29], [30], [31], [32], also decoupled semantic change detection
as two tasks, namely classification and binary change detec-
tion, and have demonstrated the effectiveness of this paradigm.
Nonetheless, it is important to note that collecting labeled data
for semantic changes is typically more challenging compared to
binary change data. Consequently, the practical semantic change
detection applications are very limited. Therefore, the develop-
ment of an effective multitask semantic change detection method
tailored to binary change detection datasets is imperative.

B. Self-Paced Learning

Self-paced learning is a form of joint learning that exerts
control over the training process by gradually incorporating
increasingly complex samples, starting from the simplest ones
[33]. Self-paced learning is useful in various types of computer
vision and pattern recognition tasks, including long-term track-
ing [34], natural language processing [35], image classification
[36]. A theoretical study proved that self-paced learning is
robust to noisy samples and can address local optimum problem
[37]. Its application has extended to the domain of change
detection. For example, Li et al. [38] incorporated self-paced
learning into a convolutional network to address change detec-
tion in heterogeneous images. Shang et al. [39] proposed an
unsupervised algorithm aiming at change detection in synthetic
aperture radar images based on self-paced learning. In addition,
many variations of self-paced learning have been proposed and
applied in change detection. Gong et al. [40] proposed a group
self-paced learning for unsupervised change detection, wherein
sample complexity is determined based on loss values, and group

information is integrated to prevent the inclusion of training
samples coming from the homogeneous regions [33]. Li et al.
[41] presented a cost-sensitive self-paced learning for change de-
tection using time-series images, where the cost-sensitive strat-
egy involved assigning different cost values to false-negative
and false-positive errors. In these methods, sample complexity
based on loss values is utilized as a criterion deciding whether
each sample is selected or not. However, this strategy is not
applicable well in samples without true labels since label errors
are not considered in the training process. Therefore, sample
reliability is incorporated in the self-paced learning process to
deal with noisy samples.

III. METHODOLOGY

The proposed approach aims to generate a semantic change
detection result using bitemporal images IM(t1) and IM(t2), a
monotemporal land-cover map Y, and binary change samples. It
consists of two main components: a multitemporal classification
network to extract pseudomultitemporal semantic labels and a
multitask segmentor for binary change detection and multitem-
poral semantic segmentation.

A. Multitemporal Classification Network

The ResUNet is a relatively straightforward yet highly ef-
fective encoder–decoder structure commonly used for semantic
segmentation tasks. Incorporating residual blocks within the
ResUNet architecture promotes training stability by addressing
the issue of vanishing gradients in deep convolutional networks
[42]. Moreover, the inclusion of residual connections plays a
crucial role in preserving spatial resolution and retaining high-
frequency information from prior layers [43]. Consequently, this
network architecture serves as the fundamental framework for
multitemporal classification.

However, when dealing with HSI, the conventional 2-D ver-
sion of the ResUNet fails to fully exploit the inherent interdepen-
dencies present between spatial dimensions and spectrum bands.
This limitation arises from the fact that HSI is presented as a 3-D
hypercube, characterized by both spatial and spectral continuity
[44]. In this research article, we propose the utilization of a
3-D ResUNet to fully harness the joint spectral-spatial features
present in high-resolution hyperspectral images. By doing so,
we aim to overcome the limitations of the traditional 2-D Re-
sUNet in effectively capturing the complex relationships within
HSI data.

Furthermore, to mitigate the potential impact of varying
imaging conditions of bitemporal images (e.g., differences in
illumination condition and season effects), as well as the tem-
poral gap between IM(t1)/IM(t2) and Y, PCC is employed.
Specifically, bitemporal images are classified separately, and the
resulting classifications are subsequently compared to generate
pseudomultitemporal semantic labels [45]. Unfortunately, PCC
is susceptible to the inherent issue of errors accumulation. To
address this concern, we introduce the concept of confidence
(c) for pseudomultitemporal samples, which is computed by
multiplying the cs associated with bitemporal classifications.
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Fig. 1. Multitask segmentor for binary change detection and multitemporal semantic segmentation.

This measure of confidence is then utilized to assign weights to
individual samples.

The cs for pixel j in IM(ti) (i = 1, 2) classification are
calculated as follows:

cs (IM (ti) , j) =
K−1∑
k=1

(
p̄ik (j)− p̄ik+1 (j)

)× 1

k
, i = 1, 2

(1)

c (j) = cs (IM (t1) , j)× cs (IM (t2) , j) (2)

where p̄i1(j), . . . , p̄
i
k(j), . . . , p̄

i
K(j) represents the multiclass

probabilistic output arranged in descending order. c ranges
between zero and one. The higher the c, the more reliable the
corresponding multitemporal semantic label is.

B. Multitask Segmentor

Multitask learning has the advantage of leveraging interre-
lated subtasks, leading to improved performance and general-
izability compared to individual-task models [23]. Within this
investigation, we employ a multitask paradigm that integrates
binary change detection (CD_bin) and multitemporal semantic
segmentation (CD_sem) tasks using an encoder–decoder seg-
mentor architecture, as visually depicted in Fig. 1. The shared en-
coder module captures latent feature representations pertaining
to change information, while the two decoder modules extract
higher level features specifically relevant to binary or semantic
change detection, respectively. The encoder module comprises
a series of 3-D residual blocks, with each block containing
two 3×3×3 convolutional layers. The skip connections in the
ordinary 2-D residual networks are replaced by a 3×3×3 con-
volutional layer as well. In addition, batch normalization and
rectified linear unit (ReLU) functions are applied. The multitask
network concludes with a fully connected layer activated using
sigmoid/softmax activation function for binary change detection
and multitemporal semantic segmentation.

In order to concurrently model true binary change labels
and pseudomultitemporal semantic labels within a multitask
learning framework, we integrate adversarial learning and ASPL
methodologies. These learning strategies are implemented with
the aim of mitigating the adverse effects stemming from noisy

Fig. 2. Proposed discriminator network.

pseudolabels, ultimately guiding the model towards the pre-
cise extraction of salient change features. Specifically, for the
binary change detection task, we incorporate adversarial learn-
ing, wherein the shared encoder within the segmentor struc-
ture serves as the generator component for a 3-D GAN. The
primary objective of this generator is to map concatenated
multitemporal image pairs, i.e., concatenated IM(t1) and IM(t2)
(referred to as X), and X masked with generated binary change
detection result (referred to as X′) to the latent change features
(Z and Z,′ respectively). Subsequently, Z and Z′ are fed into a
discriminator, consisting of a sequence of seven 3-D convolution
layers activated by the ReLU function, as illustrated in Fig. 2.
The discriminator serves to transform the latent change features,
Z and Z′, each possessing dimensions of 8 × 8 × 2 × 128, into a
4 × 4 array as outputs (denoted as YG). Within this array, the in-
dividual elements YGij signifies whether the subpatch (i, j) of the
image pairs is real or fake. Through the interactive process of ad-
versarial learning, as the generator progressively learns the latent
features and consequently enables the segmentor to accurately
discriminate between changed and unchanged pixels, the task of
the discriminator to differentiate between the masked changed
pairs and real unchanged ones becomes increasingly intricate.

In the context of the multitemporal semantic segmentation
task, we integrate the proposed ASPL to dynamically select a
collection of reliable and challenging samples. This strategy is
deemed notably efficacious in eliminating the adverse influence
of noisy samples, while simultaneously exploiting discriminant
information of samples near decision boundaries. The original
hard version of ASPL, as proposed by Guo et al. [46], has been
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Fig. 3. OHS dataset. (a) Image acquired on October 10, 2018. (b) Image acquired on April 4, 2020. (c) Reference image.

deprecated within the scope of our study due to its suscepti-
bility to the presence of noisy samples. Consequently, we have
proposed a modified ASPL as expounded in the following:

vi =

{
c (i) , if Li > λ

1, otherwise
(3)

λ = μ
(
Lt

)
+

t

T
σ
(
Lt

)
(4)

where c(i) is the certainty score for pixel i. Values of c(i) smaller
than the threshold of 0.5 are set as 0. vi denotes pixelwise sample
weights in the loss function calculation.μ(Lt) andσ(Lt) represent
average and standard deviation of losses during the tth epoch, re-
spectively. Here, T stands for the total number of epochs. It is piv-
otal to underscore that the dynamically calculated threshold λ,
as outlined in (4), essentially informs the selection criteria for
samples based on their loss magnitudes. This calibrated thresh-
old is tailored to adaptively accommodate the evolution of loss
dynamics across epochs, ensuring the selection of informative
samples while effectively mitigating the deleterious effects of
noise. Furthermore, to tackle the extreme class imbalance issues
in the semantic change detection network, multiclass focal loss
[47] is employed. Since semantic change samples are noisy,
we proposed a novel sample-weighted focal loss. There, the
loss function for multitemporal semantic segmentation branch
is defined as follows:

Lwf = − 1

N

N∑
i=1

W (1− Pi)
γTi log (Pi) vi (5)

where Ti and Pi are one-hot class label and predicted probability
value for pixel i, respectively. W represents the class weight
vector, and the values are set inversely proportional to class
frequencies. N is the number of samples per-batch. Finally,
the multiclass focal loss is multiplied by pixelwise certainty
score vi. In this way, both sample reliability (denoted as vi) and
complexity (indicated by dynamically calculated threshold λ)
are considered in the network optimization process.

TABLE I
PIXELS AND PERCENTS FOR THE DIFFERENT SEMANTIC CHANGE TYPES

IV. EXPERIMENTS

A. Dataset

The evaluation of MASNet’s performance utilized the Orbita
Hyperspectral (OHS) dataset. OHS satellites offer 256 spectral
bands (400–1000 nm) with a 10 m spatial resolution. Due to
constraints in data compression and storage, we opted for the
default selection of 32 bands. The dataset illustrates an urban–
rural region in the Xiong’an New Area, China, with the size of
4322 × 4709 pixels (2035 km2), within which both changes
related to land-cover transitions and seasonal effects can be
observed. The Xiong’an New Area is a state-level new area
established on April 1, 2017. After its establishment, land cover
has undergone significant land cover change, making it an
ideal study area for change detection. Fig. 3 visually depicts
bitemporal true color composite images and the corresponding
semantic change map. Furthermore, the statistics on different
change types is presented in Table I. Notably, it is observed
that a substantial 98.28% of unchanged pixels exist, whereas
the remaining four changed categories exhibit extreme imbal-
ances (0.09%–1.21%). This dataset can be aptly characterized
as extremely unbalanced for semantic change detection, espe-
cially in scenarios with limited semantic labels during model
training. In the preprocessing phase, bitemporal images were
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directly cropped into patches with the size of 128 × 128 pixels.
In addition, a monotemporal classification map is required to
provide land cover information. According to the comparison
of three 10-m land cover products [48], FROM-GLC in 2017
[19] was chosen for its reported highest accuracy.

B. Implementation Details

Our model is implemented on the TensorFlow framework,
leveraging the computational power of a single NVIDIA RTX
4090 GPU. For optimization, we employed the Adam optimizer
with a learning rate 1e-4 and decay rate set at 1e-5 to minimize
the loss function. Due to computational constraints imposed by
the GPU, a batch size of 8 and a total of 200 epochs were set to
facilitate model convergence.

To comprehensively evaluate the proposed methods, we uti-
lized two widely adopted metrics: overall accuracy (OA) and
kappa coefficient. These metrics are defined as follows:

OA =
TP + TN

TP + FN + FP + TN
(6)

Pe =
(TN + FN) (TN + FP) + (FP + TP) (FN + TP)

(TP + TN + FP + FN)2
(7)

KC =
OA − Pe

1− Pe
(8)

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

C. Comparative Methods

To substantiate the superiority of MASNet, we conducted
comparative analyses with five state-of-the-art semantic change
detection methods. These methods are introduced briefly as
follows.

1) Direct comparison of bitemporal land-cover maps (Str1)
[28]: In this approach, an encoder–decoder architecture
with skip connections is trained to generate bitemporal
land-cover maps. Subsequently, these bitemporal land-
cover maps are directly compared to derive semantic
change types.

2) Direct semantic change detection (Str2) [28]: For direct
semantic change detection, a semantic segmentation net-
work, structured similarly to the first approach, is utilized.
However, it takes bitemporal image pairs as input to gen-
erate semantic change types.

3) Separate binary and semantic change detection (Str3)
[28]: In this approach, two networks are employed: one
for binary change detection and another for land-cover
mapping. These networks are trained independently to
produce a change map and bitemporal land-cover maps.
Subsequently, when a pixel is identified as changed in
the change map, change types are assigned based on the
bitemporal land-cover maps.

4) Integrated change detection and land-cover mapping net-
work (Str4) [28]: In the integrated version, the bitemporal
encoder features within the land-cover mapping branch

TABLE II
QUANTITATIVE RESULTS OF MASNET AND FIVE COMPARATIVE SEMANTIC

CHANGE DETECTION METHODS

and the encoder features within the binary change detec-
tion branch are fused through a difference skip connection.
These fused features are then fed into the decoder of the
binary change detection network.

5) Bitemporal semantic reasoning (Bi-SRNet) [49]: A triple-
branch convolution neural network containing two tem-
poral branches and a change branch was presented.
Semantic reasoning blocks are proposed to reason both
single-temporal and cross-temporal semantic correlations
and introduced in the Bi-SRNet.

V. RESULTS AND ANALYSIS

A. Performance Evaluation

The quantitative results of our experiments are presented
in Table II. Bold values indicate the best accuracies, and the
second-best are underlined. Notably, methods Str1 and Str2,
relying solely on noisy semantic labels, exhibited the poorest
performance. In contrast, Str3 and Str4, which incorporated
manual binary change labels in sperate and integrated manners,
demonstrated significantly superior performance, as indicated
by considerably higher kappa values. Among the five compar-
ative methods, Str4 performed the best due to its utilization
of multitask learning and semantic-temporal feature fusion.
Bi-SRNet performed the second best among the comparative
methods in terms of kappa, and had the second lowest OA
value, i.e., 95.79%. Our proposed MASNet, which additionally
incorporates joint spectral-spatial feature representation, ASPL,
and adversarial learning, surpasses Str4 significantly, achieving
a remarkable increase of 39.82% for kappa.

The change detection results of the OHS dataset are pre-
sented in Fig. 4. This graphical representation elucidates that
the proposed method obtains commendable change detection
performance. Four representative scenes marked by purple boxes
are selected for detailed visualization. In Scenes #1 and #4, there
are cropland changes with linear and patch-like shape, respec-
tively. On the other hand, Scenes #2 and #3 encompass various
change types, including cropland change, vegetation change, and
impervious surface change. The changed regions within these
scenes exhibit notable variations in size and shape. The figure
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Fig. 4. Change detection results over the OHS dataset. (a) Entire region. (b) Scene #1. (c) Scene #2. (d) Scene #3. (e) Scene #4. The purple boxes in (a) are four
representative scenes to demonstrate the visual details. GT denotes ground truth.

shows that the change detection results have good agreement in
change boundaries and types with the ground truth. In addition,
the change detection results of the compared methods over these
four scenes are shown in Fig. 5. In general, the comparative
results demonstrate that only MASNet accurately identifies
changed regions and distinguishes change types, yielding the
fewest false positives and false negatives. In contrast, other
methods generally fall short. Str1, Str2, and Str3 tend to produce
scattered and small patches in large change regions. In addition,
Str1 misclassifies certain edge pixels of unchanged regions as
changed. Str4, while exhibiting relatively complete contours,
misidentifies pixels within contours as unchanged, assigning
incorrect semantic change types. Scene #3 further illustrates that
detecting small-scale changes and minority classes (e.g., vegeta-
tion change) poses a more formidable challenge. Bi-SRNet tends
to overdraw semantic features of different temporal images. In
sceneries with noisy semantic labels, it will result in poor results.

B. Ablation Study

In order to systematically assess the individual contributions
of each component within our proposed method, we undertake
an ablation study. In specific, we deconstruct our method into
distinct combinations of its components and rigorously evaluate
their impact. The various configurations used in the ablation
study are delineated as follows.

1) Baseline Method: As the starting point, we took the mul-
titemporal classification network as our baseline method. This

TABLE III
ABLATION STUDY FOR THE DIFFERENT LEARNING STRATEGIES

method primarily focuses on extracting pseudomultitemporal
semantic labels through PCC. As presented in Table III, the base-
line method attains the highest OA at 99.72%. However, it yields
the lowest values for kappa, i.e., 3.68%. This observation can
be attributed to two primary factors: 1) the extreme imbalance
within the semantic change detection dataset, featuring a scarcity
of changed samples and varying proportions of different changed
types, and 2) the susceptibility of PCC to error accumulation
contending with noisy multitemporal semantic labels, leading
to challenges in distinguishing between semantic change types.

2) Importance of Different Learning Strategies: To verify
the efficacy of different learning strategies within the MASNet,
we progressively introduced multitask (M), adversarial (A), and
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Fig. 5. Visualization of semantic change detection results of MASNet and
five comparative methods over the four representative scenes. (a) Scene #1.
(b) Scene #2. (c) Scene #3. (d) Scene #4. GT denotes ground truth.

self-paced (S) learning components. The results are delineated
in Table III.

As illustrated in Table III, the incorporation of multitask
learning, compared to the baseline, yields a noteworthy gain
of 70.63% for kappa. This underscored that multitask learn-
ing significantly improves semantic change detection perfor-
mance by leveraging true binary change labels and concurrently

TABLE IV
ABLATION STUDY FOR 3-D CONVOLUTION. “CONV.” IS AN ABBREVIATION OF

CONVOLUTION

training multiple tasks. The subsequent incorporation of adver-
sarial learning within the multitask network results in a modest
1.29% increase in kappa, demonstrating that improved feature
representation of change can be achieved via 3-D GAN. The
inclusion of self-paced learning within the multitask network
leads to a decline of 0.77% in kappa due to negative impact
of noisy labels in the self-paced network optimization without
guidance of change features. The joint utilization of adversarial
learning and self-paced learning within the multitask network,
i.e., MASNet, surpasses all others by achieving the best re-
sults in kappa with improvements of 2.29%, compared to the
multitask network. The joint utilization of adversarial learning
and self-paced learning within the multitask network strikes a
harmonious balance between the exploitation of noisy semantic
labels and true binary change labels, thereby enhancing semantic
change detection performance.

3) Importance of 3-D Convolution: To ascertain the signif-
icance of 3-D convolution, we conducted an ablation study by
substituting the 3-D convolution filters in the MASNet with
traditional 2-D filters. Table IV provides the results highlighting
the importance of 3-D convolution. It is evident that the inclusion
of 3-D convolution yields improvements in OA and kappa by
0.28% and 12.54%, respectively. This finding substantiates the
effectiveness of joint spectral-spatial feature representation for
hyperspectral change detection.

VI. DISCUSSIONS

A. Semantic Change Analysis

To meet the imperative of alleviating noncapital functions and
reducing the urban expansion rate in Beijing, the Xiong’an New
Area was established in 2017 [50]. Urban planning in the initial
phase (2017–2020) involved creating an external transportation
network and initiating infrastructure and public service facilities
construction within the “starting zone” [51]. Our study period
(2018–2020) coincided with the first phase of urban planning.
Consequently, semantic change analysis in this study offers
insights into the characteristics of this phase-one development.

Based on the change detection results in Fig. 4, we can
observe that most changes occurred on the northwest side of the
Baiyangdian Wetland, i.e., starting zone, and the major change
types are cropland and impervious surface loss in this region.
Meanwhile, there are also significant changes in the south part
of the study area, characterized by the loss of cropland due to
road construction and impervious surface changes because of
urban renewal. These findings are consistent with the underlying
urban planning objectives. Furthermore, in accordance with the
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TABLE V
QUANTITATIVE RESULTS OF MASNET AND FIVE COMPARATIVE SEMANTIC

CHANGE DETECTION METHODS ON THE SECOND

change analysis of the Xiong’an New Area by Luo et al. [52]
cropland and impervious surface decreased from 2017 to 2020.
This phenomenon implies that the development of Xiong’an
New Area occupied farmland, and the demand for urban capacity
was met through a combination of urban expansion and urban
renewal. It is noteworthy that, in contrast to the historically
quantity-oriented urbanization observed in many Chinese cities,
three rigid redlines of ecological preservation, prime farmland,
and urban development were delineated in the Xiong’an New
Area to protect ecological space and ensure food security [53].
Therefore, semantic change analysis undertaken in the Xiong’an
New Area merits attention within the existing body of research.
Continuous monitoring of land cover, ecological quality, and
cropland quantity and quality in the Xiong’an New Area is
necessary in the further work.

B. Additional Dataset

To further evaluate the proposed method, another seman-
tic change detection dataset was added. However, it should
be noted that semantic change detection datasets are rare, let
alone hyperspectral one. In this regard, we utilized an open-
source semantic change detection datasets, SECOND [54]. Cur-
rently, this dataset provides 2968 pairs of bitemporal images of
size 512 × 512 pixels with RGB bands. It has six land cover
types, i.e., water, ground, low vegetation, tree, building, and
playground. The labels are manually labeled with high accuracy.
To make the SECOND applicable to scenarios where only true
binary change labels and noisy land cover labels are available,
we used the classification outputs as land cover labels and the
compared bitemporal results as semantic change labels. In the
experiment, the 2968 image pairs were divided into 2375 and
593 pairs for training and testing.

Based on this dataset, on one hand, the performance of the
proposed method can be further evaluated and compared; on the
other hand, the applicability of the method in large-scale mul-
tispectral high-resolution images can be tested. The generated
semantic change labels yielded an OA and kappa of 47.10%
and 17.17%, respectively. Table V reports the semantic change
detection performance of our MASNet and two comparative
methods, i.e., Str4 and Bi-SRNet, on the SECOND. The pro-
posed method achieves the highest accuracy with OA of 83.87%
and kappa of 54.62%. In addition, Fig. 6 visually displays the
semantic change detection results of these three approaches on
the SECOND. It can be seen that our method demonstrates

Fig. 6. Visualization of semantic change detection results of Str4, Bi-SRNet,
and MASNet, over the four representative scenes in the SECOND. (a) Scene #1.
(b) Scene #2. (c) Scene #3. (d) Scene #4. GT denotes ground truth.

greater consistency with ground truth maps compared to the
two alternatives. In specific, our method can detect small targets
in complex scenarios and provide more precise boundaries. Str4
produces serious errors, such as misclassifying shadows as water
changes and erroneously identifying changes, especially in low
vegetation, owing to different spectral features in bitemporal
RGB images. While Bi-SRNet can identify most changes but
fail to capture the small-scale ones. In conclusion, our method
shows better performance compared with previous approaches
in scenarios with noisy labels, which agrees with the quantitative
result. More importantly, our method designed for hyperspectral
semantic change detection tasks can also deal with large-scale
RGB images.

C. Comparison of Multispectral and Hyperspectral Bands

We evaluated the efficacy of change detection using both mul-
tispectral (RGB + NIR) and hyperspectral (all 32) bands. The
specific bands for RGB+NIR were #13 (R), #6 (G), #2 (B), and



2786 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VI
COMPUTATIONAL COMPLEXITY COMPARISON IN TERMS OF MODEL

PARAMETERS (PARAMS.) AND FLOPS

#25 (NIR) within the 32-band configuration. Compared to kappa
of 76.60% for change detection using all bands, the use of only
four bands decreased to 62.98%. The hyperspectral bands seem
to perform better in change detection than four-bands images,
which signify that rich spectral information are important in
distinguishing between different change types.

D. Model Computational Complexity

For a comprehensive comparison of model computational
complexity, number of parameters (Params.) and floating points
of operations (FLOPs) are calculated and reported in Table VI.
The size of the images used for complexity comparison is
128 × 128 pixels. One can observe that Str1 and Str2 have
smaller Params. and FLOPs, but exhibit poor performance in
change detection. Our proposed method MASNet has the largest
FLOPs (190 G) but the second largest Params. (15.96 M) after
Bi-SRNet (23.38 M). It needs to be acknowledged that our
method has higher computational complexity due to the use of
3-D convolutions in the network.

E. Advantages and Limitations

In this study, we made full use of true binary change samples
and monotemporal land-cover map to extract semantic change
types. The proposed approach offers two attractive advantages.
First, owing to the free availability of 10-m land cover dataset,
the semantic change detection approach proposed in this study
can be easily migrated to other binary change detection datasets.
Second, error accumulation in PCC is quantitatively assessed
via multitemporal sample certainty. Subsequently, the change
detection network is established to exploit certainty-weighted
semantic change guided by the binary change detection task.
It is proven that our method has significantly improve the per-
formance compared to the conventional PCC. Therefore, this
workflow provides a practical and effective way to overcome
the limitations of PCC.

Nevertheless, it is imperative to acknowledge certain limi-
tations inherent in our methodology. First and foremost, the
accuracy of our change detection results depends on the quality
of land-cover map. Despite the partial mitigation of the influence
of noisy samples through sample weighting, pseudolabel refine-
ment techniques are encouraged to improve the change detection

performance in further works. Second, it is crucial to recognize
that the proposed method is incapable of identifying change
types that deviate from the predefined class categories within
existing land-cover maps. Finally, it is crucial to underscore
that our method is unsuitable for very-high-resolution semantic
change detection since land-cover map with the same spatial
resolution can be hardly acquired. Nevertheless, finer scale
change detection with relatively coarse labels is an interesting
research direction.

VII. CONCLUSION

In this study, we proposed a multitask network called MASNet
for semantic change detection in high-resolution hyperspectral
imagery. Our methodology is developed to operate within sce-
narios where only noisy monotemporal land cover labels and true
binary change labels are available. This dataset configuration
holds significant practical values as the availability of seman-
tic change detection datasets remains limited. Our proposed
MASNet leverages ASPL, adversarial training, and multitask
learning to enhance change detection accuracy. In specific, 3-D
ResUnet serves for joint spectral-spatial feature extraction from
hyperspectral imagery, serving as the baseline network for our
multitask framework. For the binary change detection branch,
3-D GAN is integrated to enhance the discrimination ability
of high-level spectral-spatial features in detecting changes. To
mitigate the adverse effects of noisy labels within the multi-
temporal semantic segmentation branch, a novel soft version
of self-paced learning is proposed to consider both sample
reliability and complexity in the network optimization. Experi-
mental results demonstrate its effectiveness over representative
semantic change detection networks, and the comprehensive
ablation study indicate that components in the proposed network
are combined together to improve the change detection accuracy.
Based on the change detection results in the Xiong’an New Area,
it is revealed that major changes are cropland and impervious
surface change, and some urban expansion was achieved by
occupying croplands. Finally, the advantages and limitations of
our method are analyzed in detail. Future research will further
improve the change detection results by pseudolabel refinement
techniques and extend the proposed approach for finer scale
change detection with relatively coarse labels.
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