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XGBoost-Based Analysis of the Relationship
Between Urban 2-D/3-D Morphology and Seasonal

Gradient Land Surface Temperature
Xinyue Ma , Jun Yang , Rui Zhang , Wenbo Yu , Jiayi Ren , Xiangming Xiao , and Jianhong Xia

Abstract—The escalation of greenhouse gas emissions has led to
a continuous rise in land surface temperature (LST). Studies have
highlighted the substantial influence of urban morphology on LST;
however, the impact of different dimensional indicators and their
gradient effects remain unexplored. Selecting the urban area of
Shenyang as a case, we chose various indicators representing dif-
ferent dimensions. By employing XGBoost for regression analysis,
we aimed to explore the effects of urban 2-D and 3-D morphology
on seasonal LST and its gradient effect. The following results were
obtained: 1) the spatial pattern of LST in spring and winter in
Shenyang was higher in the suburbs than in the center; 2) the
correlation patterns of the indicators in spring and winter were
similar, except for the proportion of woodland and grass, digital
elevation model, and sky view factor, which exhibited opposing
trends in summer and autumn; 3) vegetation and construction had
the highest influence on LST in the 2-D index, followed by build-
ing forms and natural landscapes in the 3-D urban morphology;
and 4) the influence of each indicator varied significantly across
different gradients. Among all the indicators, the landscape index,
social development, building forms, and skyscape had the highest
impacts on urban areas. Vegetation and built-up areas had a greater
influence on suburban areas. The findings of this study can assist in
adjusting urban morphology and provide valuable recommenda-
tions for targeted improvements in thermal environments, thereby
contributing to urban sustainable development.

Index Terms—2-D/3-D urban morphology, gradient effect,
seasonal land surface temperature, XGboost.
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I. INTRODUCTION

S INCE the Second Industrial Revolution, cities have devel-
oped rapidly, leading to population growth, increased den-

sity, and improvements in quality of life [1], [2], [3], [4], [5]. To
fulfill residents’ living requirements, significant transformations
have occurred in urban morphologies, with a rapid increase
in impermeable surfaces, a continuous rise in the number of
high-rise structures, and the ongoing expansion of both 2-D
and 3-D urban volumes [6], [7], [8], [9], [10]. These urban
morphological shifts have heightened the ground’s solar energy
absorption capacity, elevating land surface temperature (LST)
[11], [12], [13], [14]. The Intergovernmental Panel on Climate
Change (IPCC) report indicates that greenhouse gas emissions
will lead to an unavoidable 1.5 °C temperature rise between
2020 and 2040, resulting in substantial harm to the environment
[15], [16], [17], [18]. Remote sensing technology has been
utilized to assess urban morphology and thermal environmental
changes [19], [20], [21], [22]. Through the combination of
remote sensing and GIS, dynamic information, such as urban
spatial distribution, impervious water ratio, and building forms,
can be obtained and processed, creating a scientific foundation
for urban planning and design [23], [24]. Therefore, utilizing
remote sensing information to optimize urban morphology in
different dimensions is vital for preventing the urban heat island
effect and ensuring sustainable development [25], [26].

No standardized definition or measurement method exists
for urban morphology [27]. Previous research has focused
on macroscale urban morphology, such as urban expansion
or compactness, and its impact on LST; however, analyzing
microscale urban morphology optimization is also a crucial
path of investigation [28], [29], [30]. Given the difficulty of
directly representing urban morphology, scholars often use re-
lated indicators to quantify urban morphological characteristics,
such as landscape patterns, surface roughness, building forms,
and socioeconomic development indices [31], [32], [33]. These
indices are frequently employed to investigate the influence
of urban morphology on LST, air quality, energy usage, and
related aspects [34], [35], [36]. However, research on different
dimensions of urban morphology is limited.

Research concerning urban morphology-LST relationships
has predominantly centered on their correlation. [25], [37], [38],
[39]. Guo et al. [40] investigated indices such as landscape pat-
terns, the proportion of construction land (PCL), the proportion
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of woodland and grass (PWG), and the normalized difference
built-up index (NDBI), identifying a strong correlation between
NDBI and LST. Liu et al. [27] explored the influence of different
terrains and urban morphologies on summer LST using indices
such as the normalized difference vegetation index (NDVI) and
digital elevation model (DEM) and observed variations in the
impact of different terrains on the urban heat island effect.
However, these studies solely evaluated the collective impact
of the indices on the city. Previous research has highlighted di-
vergent associations between urban morphology and LST across
diverse urban development gradients [42], [43]. Liang et al. [44]
found that variations in LST gradients may be attributed to urban
areas, population density, and nighttime lights. Moreover, Sun
et al. [45] suggested that a decrease in LST with outward urban
expansion was influenced more by landscape patterns. Although
these studies have demonstrated the practical impact of different
indices on gradient variations in LST, the different effects and
contributions of various indices across gradients have not been
explored [46]. Identifying the dynamic contributions of indices
across gradients is crucial for targeted LST regulation, enabling
maximum results with minimal inputs, and is essential for the
green and sustainable development of cities.

Adoption of the appropriate research methodology is also
crucial for such investigations. In current research, regression
methodologies predominantly encompass traditional models
and machine learning algorithms. While traditional regression
techniques, such as multiple linear regression and geographi-
cally weighted regression (GWR), adeptly model inter-variable
relationships, they are limited by issues including sensitivity
to outliers and neglect of spatial autocorrelation [47], [48].
Advances in computing have propelled machine learning to
the forefront of regression analysis, with methods like support
vector machines (SVM), random forest (RF), boosted regression
trees (BRT), and XGBoost gaining prominence [49], [50], [51].
XGBoost, a tree-based ensemble learning approach, leverages
multiple decision trees to minimize model bias and, compared
to SVM, significantly reduces training time due to its parallel
computation and optimized data structures [52], [53]. Unlike RF,
XGBoost incorporates regularization to curb overfitting, exhibit-
ing superior performance with complex datasets [54], [55]. BRT
serves as the conceptual precursor to XGBoost, which surpasses
its predecessor in fitting accuracy, computational efficiency, and
handling of missing or zero-inflated data [52]. It can also rank
the importance of features and quantify their impact, thereby
facilitating an understanding of the contributions of different
independent variables [56], [57].

We aimed to address the above gaps by using the main urban
area of Shenyang as a case study and selecting various indicators
from different dimensions to explore the effects of urban 2-D and
3-D morphologies on seasonal LST and their gradient effects.
This study focused on the following:

1) quantitative characterization of urban morphology by
selecting indicators from 2-D and 3-D perspectives;

2) investigation of the spatial pattern of seasonal LST;
3) exploitation of the XGBoost model to establish relation-

ships and quantify the impacts of the relevant indicators
on LST;

4) exploring the gradient effects of urban morphology on
LST.

II. STUDY AREA AND DATA SOURCES

A. Study Area

Shenyang, the capital of Liaoning Province, is positioned
between 41°48’11.75“ north latitude and 123°25’31.18” east
longitude. It has a humid continental climate. In 2019, the
lowest temperature in Shenyang during the winter was –25°C,
whereas the highest temperature in the summer reached 35°C,
demonstrating significant annual temperature variations. Ac-
cording to the Statistical Yearbook of Shenyang, the population
of Shenyang reached 8.32 million by the end of 2019, with
6.74 million residing in urban areas and nearly four million
living in central urban areas. Due to population concentration at
the 2-D level, Shenyang has witnessed a continuous concentric
expansion from its central urban region, resulting in an increase
in built-up area of 357 square kilometers between 2004 and
2020. [58], [59]. At the 3-D level, according to the annual report
in Shenyang, high-rise buildings are mainly concentrated in the
Heping and Shenhe districts. In contrast, the concentrations
of high-rise buildings in the Hunnan, Dadong, Huanggu, and
Tiexi districts are noticeably lower. Hence, the distinct seasons
and urban morphology made this area a good setting for your
study. The main urban areas of Shenyang, including the Heping,
Shenhe, Dadong, Huanggu, Tiexi, Sujiatun, Hunnan, Shenbei,
and Yuhong districts, were selected for this study, as shown in
Fig. 1.

B. Data Sources

This study included multiple data sources. NPP_VIIRS was
developed and produced by the Earth Observation Group (EOG)
to monitor the remote sensing data of nighttime lights on the
Earth’s surface. NPP_VIIRS data were used to extract the city’s
built-up area data, determine the city centroid and development
direction, and delineate urban gradients [60], [61]. Landsat 8
satellite imagery was employed to calculate the NDVI and NDBI
and retrieve the LST. Land-use data were used to compute
the PCL, PWG, and landscape patterns [62]. Building data
were obtained from Baidu Maps to extract information such
as building height, building density, and floor area ratio and
were combined with DEM data to calculate the sky view factor
(SVF). Population and average tree height data were obtained
from WorldPop and GLAD laboratories, respectively [63], [64].
The specific data and sources are summarized in Table I.

III. METHODOLOGY

Our methodology was comprised of the following five steps.
1) Calculation of seasonal LST in Shenyang.
2) Selection of relevant 2-D/3-D urban morphology indica-

tors and assessment of their correlations.
3) Built-up area extraction, city centroid determination, de-

velopment direction identification, and urban develop-
ment gradient establishment.

4) Verification of correlations between indicators and LST.
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Fig. 1. Location of the study area in China.

TABLE I
DATA SOURCE AND DESCRIPTION
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Fig. 2. Workflow of this study.

5) Utilization of XGBoost to examine the influence of dif-
ferent urban 2-D/3-D indicators on LST within gradients.
The research workflow is illustrated in Fig. 2.

A. LST Retrieval

There are three main methods for retrieving LST: 1) the
radiative transfer equation method; 2) single-channel algorithm;
and 3) split-window algorithm [65], [66], [67]. Qin et al. [68] de-
veloped a simple and highly accurate single-channel algorithm
based on a radiative transfer equation.

In Planck’s formula, the digital number (DN) value is con-
verted to radiation intensity (Lλ), and the corresponding radia-
tion brightness Ta is obtained. The formula is as follows:

Lλ = Gain × DN + Offse (1)

Ta = K2
ln(1+K1

Lλ
) (2)

where Lλ represents the radiance intensity value, Ta represents
the radiance brightness value, Gain and Offse represent the gain
and offset parameters, which can be obtained from the Landsat
header file, DN represents the grayscale value of the thermal
infrared band, K1=774.89 mW/(cm2�sr�μm), K2=1321.08 K.

The calculation formula for LST is as follows:

Ts =
(a(1−C−D)+Ta(b(1−C−D)+C+D)−DTb

C

− 273.15 (3)

C = ετ (4)

D = (1 − τ)[1 + (1 −)τ ] (5)

where Ts represents the LST, Ta represents the average atmo-
spheric temperature (K), Tb represents the brightness tempera-
ture (K), a= –67.355351, b= 0.458606, ε represents the surface
emissivity, and τ represents the atmospheric transmittance in the

thermal infrared band. The intermediate variables C and D were
also calculated.

B. Urban 2-D/3-D Morphology Indicators

Previous studies selected indicators such as PCL and PWG to
examine the relationship between urban morphology and LST.
Other indicators explored include landscape patterns, building
forms, and social economy [46], [33]. We performed LASSO
regression to ensure the accuracy of indicator selection in 2-
D/3-D urban morphology, which screened for factors more
closely related to LST. After screening, variance inflation factor
(VIF) computation ensured all VIF values were below 10, and
there were 14 final remaining 2-D/3-D indicators divided into
six categories. The 2-D indicators included landscape patterns
(patch density, Shannon’s diversity index, and contagion index),
vegetation and construction (NDVI, NDBI, PCL, and PWG), and
socioeconomic development (population). The 3-D indicators
included building form (building height, building density, and
floor area ratio), natural landscape (digital elevation model and
mean forest height), and skyscape (sky view factor). Specific
information on the indicators is provided in Table II.

All data underwent standard preprocessing, including pro-
jection and cropping. Specific enhancements included merging
gridlines in building data, denoising nighttime lighting data,
refining population data with annual census figures, and incor-
porating DEM height into the SVF calculation for improved
accuracy. All indicators were uniformly aggregated into a 30×30
m grid. Notably, after the adjustment of demographic data
resolution, a secondary refinement was conducted using census
data to ensure precision. Finally, data normalization facilitated
meaningful comparisons. Previous studies typically require that
all values be greater than zero; however, this article preserved
zero values that hold significance while eliminating nonsensical
zero values from certain indices such as LST, PD, SHDI, CON-
TAG, DEM, and SVF. Landscape pattern indices underwent
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TABLE II
2-D/3-D URBAN FORM INDICATORS AND DESCRIPTION

analysis via the Fragstats 4 platform, SVF was analyzed using
the Saga platform [69], and the remaining operations were
conducted using ArcGIS.

C. Urban Gradient Creation

The utilization of nighttime light data for urban built-up
area extraction is widely employed, with NPP_VIIRS data
possessing superior accuracy compared to DMSP-OLS data in
delineating the extent of urban built-up areas [70]. Researchers
have predominantly utilized thresholding, change detection, and
high-resolution remote sensing imagery-assisted methodologies
[71], [72]. According to the Ministry of Housing and Urban-
Rural Development’s 2019 data, Shenyang’s built-up area spans
563 km². In this study, we used a thresholding method to calcu-
late the brightness values of different areas in descending order.
When the cumulative area reached or exceeded the built-up
area, the selected region was identified as the built-up area.

Subsequently, the built-up area’s centroid was extracted, and a
standard deviation ellipse (SDE) was established. Based on the
centroid as the center point and the proportions and orientation
of the semiaxes of the ellipse, a gradient ellipse with a minor
axis of 2 km was constructed.

D. Correlation Analysis

Commonly used correlation analysis techniques include the
computation of Pearson, Kendall, and Spearman correlation
coefficients [73], [74]. The Pearson correlation coefficient is
suitable for continuous variables and assumes that the data
follow a normal distribution. For ranked data, the Kendall co-
efficient is favored. The Spearman correlation coefficient can
accommodate nonnormally distributed data and is less sensitive
to outliers. Therefore, in this study, the Spearman coefficient
was used to gauge correlation direction and strength. The SPSS
platform was used for computation.
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TABLE III
PARAMETERS OF XGBOOST

E. XGBoost Regression Analysis

Tree boosting is a machine learning method widely employed
in regression analysis, and XGBoost has shown excellent per-
formance in various machine learning applications [52], [75]. In
previous regression analyses, researchers have predominantly
utilized BRT to explore the factors influencing LST [76], [77].
XGBoost offers higher performance and efficiency than BRT,
especially on tabular data [78]. It provides regularization pa-
rameters to prevent overfitting and improve model robustness.
XGBoost can also directly handle missing values [56], [79].

Seasonal LST served as the dependent variable, while in-
dicators acted as independent variables. Then, XGBoost was
employed to examine the influence of 2-D/3-D urban morphol-
ogy on LST. The “XGBRegressor” model was selected, and
parameter refinement was conducted through “GridSearchCV.”
Details of specific parameters are outlined in Table III.

IV. RESULTS

A. Spatial Pattern of Seasonal LST

The single-window algorithm, created by Rozenstein et al.
[80], was employed here to derive Shenyang’s seasonal LST, il-
lustrated in Fig. 3. The temperature ranges were 1.98°C–46.85°C
(spring), 16.85°C–46.85°C (summer), –12.12°C–45.98°C (au-
tumn), and –30.79°C–28.07°C (winter). The LST increased

significantly during summer and decreased during winter, indi-
cating distinct seasonal variations. The temperature difference
in spring exceeded 40°C, while in autumn and winter, it ex-
ceeded 58°C. The temperature difference was relatively small
in summer (approximately 30°C).

In Shenyang’s central urban zone, spring and winter LST in
the suburbs exceeded the city center values. High-temperature
zones included the Shenbei New, Yuhong, Hunnan, and Sujiatun
districts, while cooler regions were situated in the Huanggu,
Shenhe, Dadong, Tiexi, and Heping districts. Conversely, high
temperatures were concentrated in central urban areas in sum-
mer, with suburbs displaying cooler temperatures. Hunnan Dis-
trict demonstrated an elevated summer LST compared to that of
the other districts. There was a distinct LST distribution in au-
tumn, with more dispersed high-temperature zones throughout
the study area and cooler spots mainly in Shenbei New District
and Hunnan District, characterized by forest and water body
dominance.

B. Indicators Contribution

This study validated the comprehensive impact of urban mor-
phology on LST, as depicted in Fig. 4. XGBoost regression and
Spearman correlation coefficients determined positive or neg-
ative effects. When the Spearman correlation shows a positive
correlation, the overall contribution is a positive contribution,
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Fig. 3. Seasonal spatial pattern of LST.

and vice versa. Regarding the overall correlation between indi-
cators and LST, all indicators displayed a significant correlation
with LST at the 0.01 level. Notably, 2-D urban morphology
exhibited a more substantial influence than 3-D. Vegetation
and construction demonstrated the highest impact among 2-D
indicators, while building form and natural landscapes wielded
the greatest influence among 3-D indicators.

In spring, all indicators had a weakening effect, except for
CONTAG, NDVI, and SVF, which promoted the LST. Specif-
ically, the strongest weakening effects were observed for PCL
(–0.12) and PWG (–0.38) among the 2-D indicators and FOR
(–0.17) and BD (–0.09) among the 3-D indicators. The positive
and negative impacts during winter were similar to those in
spring; however, the overall impact was lower than that in spring,
except for vegetation and construction. In summer, the trends
were generally opposite those observed in spring and winter. All
indicators had a promoting effect on LST, except for CONTAG,
NDVI, and PWG among the 2-D indicators and FOR and SVF
among the 3-D indicators. Notably, NDBI (0.42) and PCL (0.39)
had the greatest effects on LST. In autumn, the impact of PWG
was significantly higher than that of the other indicators (0.89),
followed by FOR (0.039). Overall, NDBI consistently had a

positive effect on LST, whereas PWG and FOR typically had
negative effects, contributing to a reduction in LST.

C. Correlation Between Indicators and LST

To examine the correlation between different indicators and
LST across the gradients, we employed Spearman’s correlation
coefficient. The distribution of urban gradients is illustrated in
Fig. 5, and the correlation results of different indicators across
the gradients are presented in Fig. 6. Regarding the gradient
correlation between indicators and LST, the significance level
was set at 0.01 for 98% of the indicators.

In the 2-D urban morphology, the landscape pattern indices
PD and SHDI showed consistent patterns. With increasing gra-
dients, the correlations transitioned from weakly negative to
positive during spring and winter. Beyond the 10 km gradient, the
correlations reversed to become negative and stronger, reaching
a maximum of 0.49. In summer and autumn, the correlations
weakened from strongly negative (–0.57) to positive correlations
between the 12 and 16 km gradients and strengthened with an in-
creasing gradient (0.5). CONTAG exhibited a strong correlation
within the 12–26 km gradient, with a predominantly positive
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Fig. 4. Contribution of indicators to LST. From left to right and from top
to bottom are spring, summer, autumn, and winter. Blue represents 2-D urban
morphology, and pink represents 3-D urban morphology.

Fig. 5. Urban area and urban gradient buffer zone.

correlation during spring and winter and negative correlations
during summer and autumn. NDVI and NDBI consistently
showed opposite correlations among the vegetation and con-
struction indicators, with NDVI exhibiting a positive correlation
in spring and winter, and NDBI exhibiting a negative correlation.
This pattern was reversed in the summer and autumn. Notably,
NDVI and NDBI strongly correlated with LST in summer,
reaching 0.79. PCL exhibited a negative correlation in spring and
winter and a positive correlation in summer and autumn. PWG
consistently showed negative correlations with LST across all
seasons, with increasing strength in correlation across gradients
ranging from –0.01 to –0.47. Regarding the social development
indicator in the 2-D morphology, POP exhibited a pattern similar

to that of PCL. This promoted LST increases during spring and
winter and decreases during summer and autumn.

Regarding 3-D urban morphology, the building form indi-
cators typically had a positive effect on LST closer to the
city center, especially during summer and autumn. Even at a
distance of 30 km from the center, they still stimulated an
increase in LST. As the distance increased in spring, autumn,
and winter, the building form indicators weakly increased the
LST. Interestingly, within 14 km from the center, the BH,
BD, and FAR indicators exhibited different correlations, with
BD consistently having the highest correlation across all four
seasons, reaching 0.49. Beyond the 14 km range, correlations
between building form indicators and LST gradually decreased
and became consistent, approaching zero. This was due to the
decrease in the number of buildings as the distance from the
center increased. Among the natural landscape indicators, DEM
showed a stronger correlation with LST beyond 22 km and
within 8 km from the center, with a maximum correlation of
0.61. FOR exhibited predominantly negative correlations with
LST, with the correlation increasing with distance from the
center during spring and winter, decreasing during summer,
and showing relatively consistent correlations during autumn.
This may be attributed to vegetation withering in autumn, which
affects correlation strength. In terms of SVF within the skyscape
indicators, the patterns were similar during spring and winter.
Strong positive correlations were observed within a 4–12 km
gradient. In summer, SVF exhibited a negative correlation within
this range. In autumn, the correlations were relatively uniform
across different gradients.

Overall, the correlations between the indicators and LST
were most pronounced during the summer. Autumn exhibited
similar patterns to summer but with lower correlations. Spring
and winter exhibited similar patterns, except for PWG, DEM,
and SVF, which demonstrated contrasting patterns to those in
summer and autumn.

D. Gradient Effect

Different gradients have significant variations in the impact of
the indicators on LST [46]. In our study, based on the city center
and development direction, 15 gradients were divided within a
radius of 2 km, ranging from 0 to 30 km. As shown in Fig. 5,
this study classified the gradients into three ranges: within 14
km, 14–24 km, and 24–30 km, representing urban, suburban,
and fringe areas, respectively. This study explored alterations
in indicator effects on LST within diverse gradients, with the
findings illustrated in Fig. 7.

In the urban area within a range of 14 km, where the built-up
area exceeds 50%, significant impacts were observed from land-
scape patterns and social development among the 2-D indicators
and building form and skyscape among the 3D indicators. As the
distance approached 14 km, the degree of influence gradually
decreased. The landscape pattern index, SHDI, exhibited the
largest variation in summer, decreasing from 0.49 to 0.02. A
higher LST is often observed in the city center during summer,
and increasing the fragmentation of landscapes and enhancing
land-use diversity can effectively reduce the LST. Among the
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Fig. 6. Correlation between urban form and LST. From left to right and from top to bottom are spring, summer, autumn, and winter.

vegetation and construction indicators, NDVI and NDBI also
showed a high influence in all seasons other than summer,
which showed the opposite pattern, where their impact within
the 14-km range was lower. The influence of the DEM within the
urban area was also relatively high but decreased with increasing
distance, similar to the FOR.

In suburban areas ranging from 14 to 24 km, where the built-up
area exceeds 10% but is less than or equal to 50%, the influence
of landscape patterns on the 2-D indicators remained relatively
low. Within the vegetation and construction indicators, PCL and
PWG reached peak influence, with PCL exhibiting a maximum
impact (0.62) in summer and PWG reaching 0.92 in autumn.
The influences of NDBI and NDVI also increased along the
suburban gradient during summer. Among the 3-D indicators,
the influence of building form was lower compared to that of
the urban area but still had some impact, with BH reaching a
maximum influence of 0.14. However, as the distance increased
towards the edge of the area, the degree of influence continued to
decrease. Within the natural landscape, FOR exerted a stronger
influence in the suburban area due to elevated tree count com-
pared to that of urban areas. The influence of DEM also showed
an upward trend. The skyscape exhibited a similar pattern to the

building form, with a decreasing degree of influence; however,
the decline in the impact of skyscapes was higher than that of
the building form indicators.

In the fringe area (beyond 24 km, where the built-up area
is less than or equal to 10%), the influence of PWG among
the 2-D indicators, the impact of NDBI and NDVI during the
summer season, and the influence of natural landscape on the
3D indicators were evident. Artificial surfaces were scarce in
the fringe area, and natural-related indicators, such as PWG
and FOR, were more abundant in this region, leading to a
higher degree of influence on LST. Human activities were less
pronounced in this area than in suburban areas, resulting in a
higher degree of influence. Additionally, because of the minimal
building presence in the fringe area, the impact of the building
forms tended toward zero.

Generally, the landscape pattern within the 2-D morphology
and the building form and skyscape within the 3-D morphol-
ogy exhibited unimodal patterns exhibited peak values con-
centrated in urban areas. Social development within the 2-D
morphology and natural landscape within the 3-D morphology
showed a bimodal pattern, with peaks concentrated in both urban
and fringe areas. NDBI, NDVI, and PCL exhibited unimodal
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Fig. 7. Gradient effect of each index in different seasons.
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TABLE IV
R2 AND MSE OF XGBOOST MODEL UNDER VARIOUS GRADIENTS IN FOUR SEASONS

patterns except for in summer, with the former two concentrated
in urban areas and the latter concentrated in suburban areas.
PWG demonstrated a bimodal pattern, with higher influences in
the suburban and fringe areas. In summer, NDBI, NDVI, and
PWG showed bimodal patterns, with peaks concentrated in the
suburban and fringe areas, whereas PCL exhibited a unimodal
pattern in the suburban area. Table IV presents the coefficients of
determination (R2) and mean square error (MSE) for each gra-
dient and seasonal LST. Summer exhibited the highest R2 value,
with consistently low MSE values across gradients, confirming
strong model reliability.

V. DISCUSSION

A. Effects of 2-D/3-D Indexes on Seasonal LST

Prior research predominantly concentrated on the impact of
urban morphology on LST within single seasons. This study
addresses this gap by examining Shenyang’s distinct seasons,
enhancing the available literature. From the perspective of dif-
ferent seasons, there was a higher similarity between spring and
winter, whereas summer and autumn exhibited some similari-
ties, aligning with the findings of Chen et al. [33], [52] Scholars
have noted that the surface temperature of snow-climate cities
in China exhibits a marked seasonality, with dominant factors

varying significantly between seasons [81]. Some researchers
categorize spring and autumn together as transitional seasons
[82]. When transitioning to summer or winter, a substantial
influence from the preceding season is retained. For exam-
ple, during the transitional season of spring, the melting snow
generates water that is absorbed by the soil, and it has been
proven that water can effectively reduce LST [83]. Therefore, as
the gradient increases, the expansion of nonartificial surfaces
enhances the land’s capacity to absorb water, which in turn
strengthens the correlation between indices such as PD, SHDI,
PWG, and FOR [84], [85]. During summer and autumn, the heat
island effect predominates, and the heat absorption capacity of
artificial surfaces intensifies [22].

Consequently, indices like PCL, NDBI, BH, and BD exhibit
a positive correlation with LST, as opposed to that observed
during winter and spring, with the NDBI showing the strongest
correlation, in alignment with the results of Peng et al. [82].
Notably, the regression analysis for summer presents a more
accurate fit compared to the other three seasons. Several factors
may account for this: First, the climate in summer is more
stable in snow-climate cities in China, with less fluctuation in
sunny day environmental variables and lower cloud quantities
in remote sensing images, resulting in more accurate retrieval of
LST. Summer, unlike other seasons, features a greater diversity
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and activity of indicators, aiding the model in capturing the
impacts of various indicators on LST. The heat island effect
results in higher temperatures in central urban areas compared
to the suburbs and the urban fringe, accentuating the thermal
contrast between the inner and outer city areas, which leads to
more effective regression modeling.

In terms of the selected indicators and their impact levels,
this study considered 14 indicators from both 2-D and 3-D
urban morphologies, covering various aspects such as landscape,
vegetation, construction, and buildings. This comprehensive
approach rectifies the research gap concerning the impacts of
the natural landscape on LST [36], [86]. The crux of our
methodology involved a meticulous screening of selected in-
dicators, which were classified into two main categories and
six subcategories. Significance was attributed to the zero values
of numerous indicators to justify their inclusion, such as BH,
BD, and FAR, which, at zero, indicate a lack of buildings,
thereby allowing other indicators to take precedence within the
region. Conversely, zero values for indicators such as landscape
pattern indexes, DEM, and SVF were systematically eliminated
from consideration. This operation also greatly improved the R2
calculated by the model and greatly reduced the MSE value.

Among the 2-D morphological indicators, vegetation and con-
struction significantly influenced LST, aligning with the results
of Guo et al. [46]. Artificial construction tends to absorb more
solar radiation and store heat, resulting in increased LST. Con-
versely, the transpiration process of vegetation acts as a cooling
system, leading to a decrease in LST. Therefore, the FOR in the
3-D index weakens the LST [87]. Within the landscape pattern,
the SHDI had a higher impact on LST than PD and CONTAG,
indicating that increasing land-use diversity and balance within
patches is favorable for cooling the land surface. Among the 3-D
indicators, the building form was also identified as an important
factor influencing LST. Yang et al. [88] found that BD had the
most significant impact on LST, whereas Chen et al. [33], [52],
[84] highlighted BH as the most important factor. However, this
study found that BD had a higher impact in spring than BH,
whereas BH had a greater influence during summer, autumn, and
winter. This difference may be attributed to seasonal variation.
SVF, on the other hand, was observed to lower LST in summer
while providing a warming effect in other seasons.

B. Gradient Change in 2-D/3-D Index Contribution

Prior research into the urban morphology-LST gradient pre-
dominantly centered on the urban–rural distinction, neglecting
continuous variations within this spectrum [89], [90]. In this
study, the center of urban development was identified, and 15
gradients were delineated, creating a coherent connection within
the main urban area of Shenyang. This allowed us to investigate
how urban morphology indicators varied with distance from the
city center. Concentric circular gradients were not adopted in
this study to better align them with urban development. Instead,
an SDE was chosen as the basis for proportional delineation,
capturing the primary contours and dominant directions of the
spatial distribution. Standard deviation ellipses provide good
visual and effective representations of regional spatial patterns
[91], [92].

Researchers typically employ regression models to validate
the correlation between indicators and LST. Machine learning
methods, such as RF, have also been utilized to quantify the im-
pact of indicators. However, these quantifications are primarily
expressed in absolute terms and cannot demonstrate the positive
or negative nature of these effects. In this study, we employed
XGBoost to calculate the impacts of different indicators and
combined them with Spearman’s correlation coefficients to val-
idate the directionality of their influences on LST.

We found that the impacts of landscape patterns and so-
cial development on 2-D morphology and building form and
skyscape on 3-D morphology on the LST decreased with dis-
tance. Conversely, vegetation-related indicators, such as PWG
and FOR, exhibited the opposite trend, with higher impacts
observed further from the city center. These findings align with
those of Liang et al. [37], [44] and Zhang et al. [33], [52], [84].
As urbanization expands outward from the city center, building
numbers and heights gradually diminish, reducing their LST
impact. Moving away from the center, heightened vegetation
coverage and decreased artificial surroundings have a greater
LST influence [93], [90].

C. XGBoost Model Selection

In selecting the model, we focused on two main factors:
first, the treatment of zero values in the data. As discussed in
Section V, Section B, the retention or exclusion of zero values
for different indicators is critical; XGBoost excels at managing
such data, which has significantly improved the model’s R2 and
substantially reduced the MSE. Second, the selection was due
to XGBoost’s computational efficiency and fitting performance.
Despite other mainstream methods exhibiting high effective-
ness, XGBoost outperformed them in our study, which involved
complex and large datasets.

Compared to BRT, both of which are machine learning meth-
ods based on Boosted Trees algorithms, XGBoost has short-
ened computation times and can handle larger datasets due to
algorithmic enhancements and systemic improvements. Against
RF, another supervised learning algorithm, XGBoost typically
achieves greater precision, particularly with extensive engineer-
ing datasets. With millions of records in our dataset, XGBoost
provided superior processing speed and predictive accuracy over
RF. We conduct our experiments with an Intel(R) Xeon(R)
W-2223 CPU @ 3.60GHz CPU, and under the same experi-
mental conditions, the processing times for three methods when
handling a dataset containing 172 186 records were as follows:
XGBoost (3.92 s) > BRT (12.00 s) > RF (28.41 s). To further
ascertain XGBoost’s performance, we selected 15 gradients in
the summer with the best performance as experimental samples,
and Table V shows the results of the experiment. The results,
presented in Table V, affirmed XGBoost’s superior efficacy.

D. Implications for Urban Planning

Studies indicate that both 2-D and 3-D urban morphologies
exert substantial influence on LST. Strategic urban morphology
planning can effectively mitigate LST and achieve a healthier
living environment. Urban planners can exercise control over
building height and density in areas closer to city centers to



MA et al.: XGBOOST-BASED ANALYSIS OF THE RELATIONSHIP BETWEEN URBAN 2-D/3-D MORPHOLOGY AND SEASONAL GRADIENT LST 4121

TABLE V
R2 AND MSE VALUES OF XGBOOST, BRT, AND RF

minimize the warming effect of building forms on LST. They can
also balance the distribution of landscapes within urban areas by
incorporating more vegetation- and landscape-related features
into central urban zones. These measures can reduce the LST.
Furthermore, increasing the number of trees can alleviate the
heat-promoting effects of buildings in central urban areas.

E. Limitations

This study examined the impact of urban 2-D/3-D indica-
tors on LST across diverse seasons and gradients, addressing
a prior research gap. Nonetheless, certain limitations of this
study warrant acknowledgment. First, the resolutions of the
selected indicators were inconsistent. Although the population
data were adjusted to ensure accuracy to the greatest extent
possible, further improvements are needed compared to data
with higher resolutions. Second, this study examined only four
seasons in one year without considering interannual variations.
A time-series analysis could yield more precise insights into
indicator influences on LST. Third, obtaining complete seasonal
remote sensing images for many cities, especially those with
lower latitudes, is challenging due to cloud cover and access
limitations. In the future, scholars can utilize more data or
alternative approaches to assess and analyze the LSTs of other
cities. Fourth, this study employed standard deviation ellipses to
define urban gradients, which better reflect the city’s center and
development direction. However, different cities may require
different gradient divisions based on their unique development
patterns, such as urban road networks.

VI. CONCLUSION

This study employed XGBoost to explore the positive and
negative impacts of 2-D and 3-D urban morphologies on LST
and their gradient effects. The conclusions are as follows.

1) There were significant differences in the LST across the
four seasons in Shenyang. During spring and winter, the
suburban areas exhibited a higher LST than the city center,
primarily concentrated in the Shenbei, Yu Hong, Hunnan,
and Sujiatun districts. In contrast, during summer, the
city center experienced a higher LST, concentrated in the
Huanggu, Shenhe, Dadong, Tiexi, and Heping districts.
The LST distribution in autumn was scattered and uni-
form.

2) According to the Spearman correlation calculation, all
indices in summer had strong correlations with LST, show-
ing the same regularity in summer and autumn and the
same regularity in spring and winter. Except for PWG,
DEM, and SVF, all indices showed opposing patterns
compared with those in summer and autumn.

3) Among the various indicators, the 2-D urban morphology
indicators of vegetation and construction exerted the great-
est influence on the LST, with PWG having the highest
impact in autumn (up to 0.89). The next most influential
factors were the BD of 3-D urban morphology indicators
and the FOR of natural landscapes.

4) We observed significant differences in the impacts of
different indicators across various gradients. In urban
areas, landscape patterns, social development, building
forms, natural landscapes, and skyscapes had the greatest
influence. In suburban areas, vegetation and construction
indicators had a notable impact, and building forms exhib-
ited a certain influence. In the fringe areas, vegetation and
construction, social development, and natural landscape
indicators demonstrated a relatively high influence.

In summary, our results highlight the influence of 2-D and
3-D urban morphologies on LST, providing valuable insights
into planning strategies to create cooler cities and promote
sustainable urban development.
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