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A New Extraction Method of Surface Water Based on
Dense Time-Sequence Images

Hanyuan Liu , Yue Shi, Qinnan Chang, Rufat Guluzade , Xin Pan , Nan Xu , Penghua Hu ,
Xuechun Kong , and Yingbao Yang

Abstract—Fluctuations in the surface water are indicators of
climatic and biological environmental variations. The water index
method is the predominant approach for water extraction owing to
its simplicity of operation and high efficiency. Recognizing the lim-
itations of individual water indices in extracting water over dense
time-sequences, this study introduces a combined water index
(CWI) frequency method to improve the water extraction results.
The research findings indicate the following: 1) CWI demonstrates
superior extraction accuracy for various types of water when com-
pared with other water indices, underscoring its higher precision
and broader applicability. 2) By integrating CWI with the water
frequency method, we propose an effective approach for dynam-
ically monitoring water. This method accurately reflects changes
in water under different conditions within dense time-sequence
images. 3) Our results highlight the method’s ability to precisely
monitor dynamic water changes, efficiently extract various water
types from Sentinel-2 data, and its potential for large-scale surface
water mapping applications.

Index Terms—Combined water index (CWI), dense time-
sequence images, dynamic changes of water, surface water, water
frequency.

I. INTRODUCTION

SURFACE water has immense significance for both the sus-
tenance and development of all living beings. In addition,

it plays a pivotal role in regional ecological environment assess-
ment [1], [2], [3], [4], judicious planning of water resources,
and facilitating human life and social activities [5], [6], [7], [8],
[9]. Traditional water monitoring methods are labor-intensive,
time-consuming, and often lack real-time capabilities. Remote
sensing technology, with its attributes of large-scale coverage,
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high precision, and real-time imaging, is widely applied in water
extraction [10], [11], [12], [13].

The prevailing approaches for extracting water from remote
sensing images include classification and water index methods.
Methods based on classifiers were employed to extract features
derived from the physical and geographical attributes of the
images. Water and nonwater regions were differentiated based
on the criteria of minimal internal variance and maximal in-
terclass variance. These variables were subsequently utilized
to classify areas as either water or nonwater based on their
proximity to the statistical center. Decision-tree models [14],
support vector machine (SVM) models [15], and object-oriented
methods [16] have been widely used for classification. The
core principle of the decision tree classification method is to
consolidate the essential conditions for refining the initial data,
thereby enabling precise pixel classification through the decision
tree [17]. This approach exhibits the notable flexibility and
operates with high efficiency. SVMs are capable of achieving im-
proved classification results with fewer samples [18]. However,
they exhibit limitations in terms of accurately delineating river
boundaries and identifying small water. The object-oriented
method employs various algorithms to efficiently extract the
target image information from objects containing pixels of vary-
ing sizes and homogeneity [16]. This approach mitigates the
impact of factors such as ground object shadows and enables
the high-precision extraction of small water pixels. Neverthe-
less, classification methods require substantial prior knowl-
edge, leading to complex models that are sensitive to the influ-
ence of intricate background environments on the classification
outcomes.

Water feature information can be derived from a vast dataset
using deep learning, and water extraction is achieved by con-
structing a suitable network structure. Currently, various deep
learning algorithms have been applied to research on water ex-
traction [19], [20]. A two-stage method based on deep learning,
capable of extracting narrower or smaller rivers, was proposed
by Fei et al. [21]. Wang et al. [22] presented a water extrac-
tion method that combines deep learning with Google Earth
Engine (GEE) platforms, designed for investigating large-scale,
long-term urban moisture changes amid urbanization. Isikdogan
et al. [23] introduced a fully neural network utilizing only
Landsat bands, eliminating the need for additional auxiliary
data. However, it is noteworthy that the continuity of water is
often compromised during deep learning extraction, leading to
delayed results and the inability to promptly rectify inaccuracies.
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The water index method is an approach for collecting water
information based on the original single-band threshold method
and the combined operation of the bands [24]. The princi-
ple of the water index method is to use water information to
construct operations in bands with strong and weak reflection
characteristics in the spectrum. The characteristic difference
between the bands was further intensified to improve water
information and suppress nonwater information [25]. The water
index method has the advantages of a simple format and easy
application; therefore, it is widely used in research on optical
image extraction of water. Scholars have designed various wa-
ter indices based on the multispectral bands. The normalized
difference water index (NDWI) was proposed by McFEETERS
in 1996, which was a significant breakthrough in water resource
extraction [26]. However, when using NDWI for water extrac-
tion, water pixels are usually mixed with the land noise of the
built-up area, resulting in an overestimation of the water area.
Therefore, Xu [27] constructed a modified NDWI (MNDWI)
that can enhance the water information of water areas with
built-up areas as the background. Although MNDWI enhances
the difference between water pixels and built-up background
pixels, it cannot separate water from mountains and hill shades
[24]. To eliminate the influence of hill shadows, Ronglong et al.
[28] used short-wave infrared and red bands of TM images to
create a revised NDWI (RNDWI) for water extraction. RNDWI
weakens the influence of mixed pixel factors and hill shadows
and can accurately extract land and water boundaries.

The above-mentioned water indices only consider informa-
tion from two bands, resulting in relatively low applicability
of the water indices. Feyisa et al. [29] designed an automated
water extraction index (AWEI) that was divided into two parts:
AWEIsh and AWEInsh. By applying different coefficients to the
five spectral bands for addition and subtraction, AWEI has higher
accuracy and a more stable threshold for water extraction under
various environmental noises. Li et al. [30] fully considered
the local spatial information of the image, weighted the water
indices according to the spatial information, and constructed the
background difference water index, which improved the stability
of water extraction under different backgrounds.

The spatiotemporal changes in surface water resources have
a profound impact on ecosystem preservation and sustainable
economic development and are closely linked to water scarcity
concerns. The current investigation into long-term surface water
dynamics not only examines the instantaneous state of water but
also underscores the need for an in-depth comprehension of the
spatiotemporal evolution rules governing changes in water. The
primary focus of this research lies in the utilization of optical and
synthetic aperture radar image data to formulate continuous ex-
traction methodologies for long-term surface water assessment.
This involves an analysis of seasonal, interannual, and long-term
trend variations in water, revealing dynamic characteristics over
distinct periods. In addition, the examination extends to alter-
ations in water area and the mechanisms influenced by diverse
factors, such as climate and human activities. Scholars have
extensively employed multisource data fusion and multiscale
analysis techniques to comprehensively integrate remote sensing
data, ground observations, hydrological model simulations, and

other multisource data. This holistic approach serves to enhance
the precision of water monitoring and global research coverage,
thereby offering multifaceted support for water resource man-
agement across various scales [31], [32], [33].

Large-scale surface water has complex backgrounds and var-
ious types of shorelines [34]. The use of a single water index
has significant limitations as it cannot accurately extract wa-
ter. In this study, we present a combined water index (CWI)
model designed for the accurate extraction of water across
diverse environmental conditions. The CWI model enhances
the universality and accuracy of water extraction methods. In
addition, we employed the CWI model in conjunction with
water frequency methods to develop a technique for calculating
the average water area within dense time-sequence datasets.
The computation of the average water area holds significant
importance for water environment and resources management.
By monitoring the average area of water, valuable insights into
the health of the water ecosystem and the equilibrium between
water supply and demand can be gained. This, in turn, facilitates
the formulation of more effective water resources management
strategies, contributing to the protection of water resources and
biodiversity, and ensuring the sustainable utilization of water
resources.

II. STUDY AREA AND DATA

A. Study Area

Jiangsu Province is located in the eastern coastal area of
mainland China, with a longitude of 116°21’–121°56’E and a
latitude of 30°45’–35°08’N (Fig. 1). There are 1495 rivers in
Jiangsu, with a drainage area of 50 km2 or more, and a total
length of more than 40 000 km. It is worth mentioning that two of
China’s five largest freshwater lakes are located there, with Lake
Taihu covering 2250 km2 and Lake Hongze covering 2069 km2.
Jiangsu Province has a total of 908 reservoirs, including 6 large,
42 medium, and 860 small reservoirs.

Jiangsu Province is endowed with ample water resources and
diverse water types. In this study, water in urban area (area A),
vegetation area (area B), and mountainous area (area C) are
chosen (Fig. 2) to test the usefulness of the CWI for water
extraction in large-scale, complex, and changing environments.

B. Dataset

Sentinel-2 is an advanced high-resolution multispectral imag-
ing satellite equipped with a multispectral imager featuring 13
spectral bands. These bands span across visible light, near-
infrared, and short-wave infrared regions, each offering different
spatial resolutions [35]. Sentinel-2 is frequently employed for
capturing imagery pertinent to parameters such as vegetation,
soil composition, water coverage, inland waterways, and coastal
regions. Therefore, Sentinel-2 is extensively employed in water
extraction research.

Based on the changing characteristics of water in different
seasons in Jiangsu Province, images with the smallest cloud
cover in February, May, July, and November were selected as
the experimental data (Table I).
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Fig. 1. Basic information of Jiangsu Province.

Fig. 2. Basic information of the experiment area. (a) Urban area. (b) Vegetation area. (c) Mountainous area.

TABLE I
EXPERIMENTAL DATA INFORMATION

To realize water extraction from intensive time-sequence im-
ages, the experiment selected image data with an annual cloud
cover of less than 10% from 2019 to 2022. The annual image
coverage is shown in Fig. 3. The source of the Sentinel-2 image

Fig. 3. Annual image quantity.

in this study is the Sentinel-2 L2A product on the GEE platform.
The Sentinel-2 L2A product undergoes atmospheric correction,
utilizing the Sen2Cor processor for this purpose. Specifically
designed for the Sentinel-2 environment, the Sen2Cor proces-
sor addresses atmospheric effects present in the Sentinel-2 1C
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Fig. 4. Flow chart to extract water.

TABLE II
WATER INDEX RELATED INFORMATION (ρ STANDS FOR REFLECTIVITY, SUBSCRIPT IS THE NAME OF THE BAND)

top-of-atmosphere product, ultimately generating a Class 2A
bottom-of-atmosphere reflectance product [36].

III. METHODOLOGY

The process of this research is shown in Fig. 4, which com-
prises four primary components: image preprocessing, model
construction, threshold selection, and water extraction. The fol-
lowing sections provide detailed explanations of the latter three
components.

A. Building the Water Extraction Framework

Various water indices have specific applications. Therefore,
researchers using only one water index cannot remove back-
ground interference from various ground objects. Table II lists
the calculation formulas and applicable ranges for the various
types of water indices. The CWI framework is developed based
on the main ground object interference factors and applicability
of various water indices in the process of water extraction. The

primary objective is to broaden the scope of application of water
extraction methods, enabling the accurate water extraction even
in complex environments.

Fig. 5 shows the calculation method of CWI. According
to the applicable range outlined in Table II for various water
indices, the CWI is divided into three distinct parts. The first
segment employs NDWI to identify the majority of water pixels.
In the second part, the focus is on mitigating the influence
of buildings and vegetation. Despite NDWI’s effectiveness in
identifying water, there is a tendency for a few water pixels to
be misclassified as dark buildings and subsequently overlooked.
To address this, MNDWI is introduced to alleviate building
interference. In addition, when the enhanced vegetation index
value of a pixel is below 0.1, it signifies an opportunity to
eliminate vegetation interference [37]. This step allows for the
complete extraction of water in densely built areas. In the third
part, efforts are made to eliminate the effects of mud, roads,
and shadows. The AWEInsh index, in combination with the
RNDWI index, facilitates the distinction between silt and water.
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Fig. 5. Water extraction framework based on water and vegetation indices.
(Otsu is the threshold determination method in this article, which is explained
in detail in Section III-B).

Notably, areas with mixed pixels in the water, as extracted using
NDWI, can benefit from AWEInsh to eliminate interference from
dark buildings and roads, particularly in regions less affected
by shadows. AWEIsh, on the other hand, proves effective in
eliminating shadow interference in areas where shadows pose a
more significant challenge. Building upon these steps, RNDWI
is employed to screen and extract the land-water interface area,
culminating in the final and comprehensive delineation of water.

B. Determining the Threshold

Threshold selection methods enhance the practicality of wa-
ter indices compared to using a fixed threshold value. Otsu
thresholding is a highly efficient and widely adopted threshold
determination method, particularly for water extraction.

The fundamental principle of Otsu thresholding is to explore
all possible thresholds and analyze and count the two types
of pixels resulting from the threshold segmentation. Through
statistical analysis, the threshold value between two types of
pixels can be identified swiftly [38], [39]. The principle of the
algorithm is as follows.

In image I (x, y), the thresholds are divided based on gray
levels 1, 2, 3, …, M. The probability of each gray level i is

Pi =
ni

N (1)

where N represents the total number of pixels, and Pi represents
the number of pixels with gray level i.

Assume that the image contains foreground pixels with a
proportion of ω0 and background pixels with a proportion of
ω1. In addition, the average gray levels for the foreground and
background are represented as μ0 and μ1, respectively. The
formula used is as follows:

ω0 =
T∑

i=1

Pi (2)

ω1 =
M∑

i=T+1

Pi (3)

μ0 =
T∑

i=1

iPi

ω0
(4)

μ1 =
M∑

i=T+1

iPi

ω1
. (5)

The average gray level is

μ = ω0 × μ0 + ω1 × μ1. (6)

The interclass variance (g) of the foreground and background
pixels is

g = ω0 × (μ− μ0)
2 + ω1 × (μ− μ1)

2. (7)

Therefore, the optimal threshold (T) is

T = argmax (g). (8)

C. Calculating Average Water Area

Water exhibits dynamic characteristics, and the synthetic re-
sults obtained from only one image or a composite image fail
to adequately capture the dynamic changes in water. Therefore,
the water frequency method is incorporated into this experiment
to capture the dynamic change characteristics.

The CWI frequency method is divided into two parts: water
pixel identification and water frequency calculation. Formula (9)
is used to identify water pixels based on the CWI framework,
representing nonwater and water with 0 and 1 values, respec-
tively. Formula (10) is employed to calculate the frequency of
each pixel in the dense time-series image identified as a water
pixel.

∑
NWater is the number of pixels identified as water, and∑

NTotal is the total number of observations.

CWI =

{
1,Water
0, Non−Water

(9)

FWater =

∑
NWater∑
NTotal

(10)

FWater represents the water frequency at each pixel loca-
tion. Water is categorized into four types based on the water
frequency: permanent water (FWater ≥ 0.75), seasonal water
(0.25 ≤ FWater < 0.75), temporary water (FWater < 0.25)
[40], [41], [42], and average water. In formula (11), the average
surface water area (Saverage) is calculated as the sum of the
water frequency multiplied by the pixel area of all effective water
corresponding to it (SFWater

).

Saverage =
∑

FWater ∗ SFWater
. (11)

D. Evaluating Accuracy of Water Extraction

In the experiments, we utilized the confusion matrix to com-
pute both the overall classification accuracy and the Kappa
coefficient [43]. The overall classification accuracy is the ratio
of the total number of correctly classified samples to the total
number of samples in the experimental area, and reflects the
accuracy of the overall extraction results. The Kappa coefficient
can measure classification accuracy and examine consistency
[44].
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TABLE III
OA AND KAPPA IN URBAN AREA

The accuracy assessment in this study mainly includes three
steps: 1) In each experimental area, randomly generate a set of
500 water sample points and another set of 500 nonwater sample
points; 2) Utilize Google Earth as a reference for the examination
and correction of randomly generated sample points; 3) Quan-
titatively evaluate the water extraction accuracy using both the
overall classification accuracy and the Kappa coefficient.

IV. RESULTS

In this study, the CWI method was applied to extract water
from urban area, vegetation area, and mountainous area during
various seasons. In addition, the water frequency in Jiangsu
Province was computed from 2019 to 2022. The subsequent
sections provide an analysis of water extraction results.

A. Water Extraction Results in Urban Area

Dark buildings and shadows are frequently mistaken for water
in urban areas. Lake Xuanwu, located in the center of Nanjing
with a high degree of urbanization and close proximity between
buildings and water, is selected as the experimental area for
this study. The extraction results are shown in Fig. 6. During
the same season, there is a lot of shadow noise, and numerous
structures, such as roads and buildings, are misclassified as water
by AWEIsh and AWEInsh. Other water indices can effectively
extract the majority of the water, albeit with detailed variations.
In the densely populated metropolitan region located to the south
of the experimental area, the NDWI extraction results for July
and November exhibit some noise (as shown in red circles). Dur-
ing May and July, RNDWI exhibited incorrect identification of
Lake Mochou, which is situated to the south of the experimental
area (as shown in green circles). In contrast, because MNDWI
increases the distinction between water and buildings, the impact
of buildings on the extraction outcomes is marginal. Given that
CWI incorporates the benefits of several water indices, it can
consistently achieve favorable extraction results across various
seasons and under varying water conditions.

Table III shows that the average overall accuracy (OA) for
CWI was 95.77%, with an average kappa coefficient of 0.91.
These averages are 0.44% and 0.01 higher, respectively, than
those of the MNDWI in terms of accuracy. The experimental
results indicate that CWI can suppress structures and shadows
more effectively than alternative water indices and that the
results of the extraction are almost completely consistent with

real water. Thus, CWI has emerged as an optimal method for
computing dense time-sequences water areas in urban settings.

B. Water Extraction Results in Vegetation Area

The experiment also focused on the selection of water within
vegetated areas to assess the anti-interference capabilities of
various approaches. The experimental area was located in the
west of Jiangsu Province, with dense vegetation and complex
water boundaries. The water extraction results for various water
indices in the vegetation area are shown in Fig. 7.

During the same season, vegetation can be effectively distin-
guished from water using a variety of water indices, resulting
in a clearly defined boundary between them. In May and July,
clear misclassifications were observed for NDWI and RNDWI
in the eastern barren area, and AWEIsh also exhibited misclas-
sifications in July at this location (as shown in red circles). In
July, water extraction by AWEInsh in the central part of the
experimental area was inefficient, and the quality of the water
classification was suboptimal (as shown in green circle). In
this area, the MNDWI yields comprehensive water extraction
results with minimal noise; however, its capacity to detect small
water is limited. In addition to its superior vegetation control
capabilities, CWI exhibited a greater capacity for detecting small
water within the southern portion of the experimental region and
outperformed other techniques in water extraction (as shown in
black circles).

The water extraction accuracy in vegetation area is shown in
Table IV. Within the vegetated region, CWI achieved the highest
average OA and an average kappa coefficient of 96.74% and
0.93, respectively, surpassing the second-ranked AWEInsh by
1.07% and 0.02, respectively. Across various seasons, CWI con-
sistently exhibits higher OA and Kappa coefficients than alter-
native approaches, substantiating its superiority as the preferred
method for estimating water areas within vegetated regions.

C. Water Extraction Results in Mountainous Area

The terrain in mountainous areas is characterized by its com-
plexity and numerous shaded areas. The waters of the southern
hilly region of Jiangsu Province were selected to evaluate the
extraction effectiveness of the diverse water indices. Fig. 8 shows
the water extraction results obtained using various methods in
mountainous area.
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Fig. 6. Water extraction results in urban area.
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Fig. 7. Water extraction results in vegetation area.
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Fig. 8. Water extraction results in mountainous area.
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TABLE IV
OA AND KAPPA IN VEGETATION AREA

TABLE V
OA AND KAPPA IN MOUNTAINOUS AREA

Owing to the unstable topography in the eastern segment of
the experimental area, several water indices are affected to some
extent. NDWI and RNDWI misclassified water, mountains, and
shadows in the eastern section of the experimental region in
May and July (as shown in red circles). In addition, AWEIsh
mistakenly classified mountain shadows as water in the southern
part of the experimental area in both February and November (as
shown in green circles). The AWEInsh extraction results exhibit
significant confusion and are unsuitable for water extraction in
mountainous terrains. CWI and MNDWI demonstrate interfer-
ence against terrain and shadows, with CWI exhibiting the ability
to accurately identify small bodies of water in the northern
region of the experimental area (as shown in black circles),
outperforming MNDWI in terms of extraction performance.

Table V shows the water extraction accuracy in mountainous
areas. The average OA of CWI was 95.61%, surpassing AWEIsh
by 0.95%. The average Kappa coefficient of CWI was 0.91,
which was 0.0188 higher than that of AWEIsh. In the four-month
water extraction experiment, the OA and Kappa coefficients of
MNDWI are 0.33% and 0.01 higher than CWI in July. In con-
trast, CWI consistently demonstrated the highest OA and Kappa
coefficients among all the methods in the remaining seasons.
Therefore, CWI was deemed more suitable for extracting dense
time-sequences water in mountainous areas.

D. Application of CWI Frequency Method in Jiangsu Province

The CWI frequency method was employed for water ex-
traction in Jiangsu Province after verifying the excellent per-
formance of CWI in different environmental backgrounds and
seasons. The average frequency distribution of the surface water
in Jiangsu Province from 2019 to 2022 is shown in Fig. 9. It is

evident from Fig. 9 that the regions in Jiangsu Province char-
acterized by high water frequency primarily encompass Lake
Taihu, Lake Gaoyou, Lake Hongze, and the Yangtze River. These
areas predominantly consist of permanent water. In addition,
permanent water is also observed in the southern and northern
regions of Jiangsu Province. Temporary and seasonal water are
predominantly situated in central Jiangsu Province.

To conduct a more in-depth analysis of the frequency changes
in water within Jiangsu Province, we have chosen Lake Taihu
and a part of the Yangtze River as representative water. We have
investigated the interannual fluctuation characteristics of these
areas, as illustrated in Fig. 10. The average, permanent, and
seasonal water areas of Lake Taihu and the Jiangsu section of
the Yangtze River over the four years are shown in Fig. 11.

As depicted in Fig. 10(a) for the Lake Taihu area, the overall
frequency of water exhibits an increasing trend from 2019 to
2022, indicating the progressive transition of seasonal water
into permanent ones. In 2019 and 2020, specific areas within
Lake Taihu (highlighted in the red box) depict low frequencies
of water, attributed to the presence of hydrophobic organisms
impacting water identification results. There are many livestock
and poultry breeding areas in the eastern part of Taihu Lake.
Livestock and poultry breeding will affect water quality and
quantity, which directly led to the low frequency of water in
this area during 2019 and 2020. As of 2022, the establishment
of livestock and poultry breeding areas is basically prohibited.
Water quality has gradually improved, and water frequency has
increased significantly. In the relevant information display, it is
observed that recent water environment improvement and pro-
tection measures in the Lake Taihu Basin have led to enhanced
water quality and quantity. This aligns with the trends presented
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Fig. 9. RGB image and water frequency map of Jiangsu Province.

Fig. 10. Interannual frequency changes in the Lake Taihu region and a part of the Yangtze River from 2019 to 2022.

in Fig. 10. In the Yangtze River region [Fig. 10(b)], the primary
channel of the Yangtze River is heavily silted, exhibiting intricate
configurations. Within specific segments of the main channel, a
reduction in water flow frequency is observed, coinciding with
a gradual expansion of the sandbar area, as highlighted in the
red box.

As depicted in Fig. 11(a), the seasonal water area in the
Lake Taihu area is comparatively small and exhibits a declining

trend over the years. Concurrently, the permanent water area
experiences a gradual increase, and the average water area
demonstrates a fluctuating pattern characterized by an initial
rise, decline, and subsequent increase. The relatively stable
and steadily rising average water area suggests stable climate
and ecological conditions in the Lake Taihu region, indicating
effective water environment protection and well-managed water
resources. Fig. 11(b) illustrates the water area in the Jiangsu
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Fig. 11. Water area information.

section of the Yangtze River. The difference in seasonal water
area in this section is minimal, with the permanent water area
displaying an overall effectiveness trend. However, the average
water area exhibits significant fluctuations, peaking at 12.01 km²
in 2020 and decreasing to 10.54 km² in 2022. Attention should
be directed towards refining the calculation management method
for the Yangtze River Jiangsu section to ensure the continued
health and sustainable use of water.

V. DISCUSSION

Through an investigation of various water indices, this study
introduces the CWI, which is then integrated with the water
frequency method for monitoring the dynamic changes in wa-
ter. The extraction results and accuracy table substantiate the
method’s precision and efficiency. Nevertheless, it is imperative
to engage in a more in-depth discussion on the performance of
the CWI frequency model.

A. Performance Analysis of CWI

Each water index possesses distinct advantages. NDWI offers
simplicity in operation [26], MNDWI enhances differentiation
between water and buildings [27], RNDWI eliminates shadow
influences [28], and AWEI augments the separability of wa-
ter and nonwater pixels [29]. Leveraging these strengths al-
lows CWI demonstrates proficient water extraction performance
across diverse backgrounds. The resilience and universality of
the model to noise, changes, or specific scenarios in the data
may be confirmed by extracting water from data across time,
seasons, and geographical locations and assessing the accuracy
of the extraction findings.

In Tables III–V, it is evident that in urban area, CWI exhibits
a maximum discrepancy in the OA of 1.76% and a maximum
variance in the Kappa coefficient of 0.03. In the vegetation
area, these values were 3.34% and 0.02, respectively, while in
mountainous area, they were 0.87% and 0.02, respectively. The
boxplot (Fig. 12) illustrates the total classification accuracy and
Kappa coefficient of the various water extraction techniques.
Observing the box plot distribution reveals that the CWI ex-
traction results exhibit greater stability in terms of accuracy
across various seasons and regions. This indicates that the CWI

consistently produces reliable water extraction results in diverse
environments with a relatively high level of accuracy. The me-
dians in the boxplots represent the central tendencies of the data
distribution. The higher medians of both OA and Kappa for CWI
signify that its average performance approached the ideal result
more closely.

In conclusion, CWI exhibited superior spatiotemporal sta-
bility, resulting in more distinct water boundaries and reduced
misextraction, as demonstrated through the statistical analysis
of OA and Kappa coefficients. Thus, CWI is a reliable choice for
water extraction across various seasons and geographic regions.

B. Applicability Analysis of CWI Frequency Method

To validate the effectiveness of the CWI in water extraction
within a dense time-sequences, we opted for a comparison with
the global surface water data product generated by Amy H.
Pickens et al. [45] in 2020.

For comparison, representative regions within Jiangsu
Province were selected as case studies to assess the water fre-
quency results yielded by both methods for 2019 (Figs. 13–15).
First, due to the lower spatial resolution of Landsat images
compared to Sentinel-2 images, discernible noise is evident at
the water boundary in Pickens’ study. Fig. 13 illustrates that
Pickens’ method generally exhibits low water frequency and
poor water continuity, indicating a limited water identification
capability. In contrast, our method excels in identifying most
of water. In Fig. 14, the water frequency results in the eastern
coastal area of Jiangsu Province are presented. Pickens’ results
appear indistinct, failing to discern the coastline. In contrast,
our method distinctly captures changes in water frequency along
coastal areas and accurately delineates the coastline boundaries.
Fig. 15(a) and (b) represent the silt accumulation area, and
our method demonstrates an exceptional discrimination ability.
Furthermore, Fig. 15(c) highlights the capacity of the proposed
method to clearly depict the water frequency changes at the
end of the Yangtze River tributaries, in contrast to the relatively
blurred frequency changes observed using Pickens’ method.

Pickens employed all Landsat image bands in conjunction
with NDWI and MNDWI to classify remote sensing images,
enabling the distinction of clouds, snow, fog, land, shadows,
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Fig. 12. OA and Kappa coefficient box plot. (a) Urban area. (b) Vegetation area. (c) Mountainous area. (d) Overall result.

and water. Hence, Pickens’ method is restricted to utilizing
Landsat data for water extraction, leading to unimproved spatial
resolution in the extracted results. Conversely, our approach is
adaptable to various satellite data types, providing flexibility
in selection based on specific requirements. Moreover, it does
not account for variations in vegetation, buildings, and water,
leading to subpar water extraction results. However, Pickens
added too much feature information to the classification model,
causing noise to be mixed into the model, resulting in reduced
accuracy.

C. Study Limitations

The CWI frequency method offers numerous advantages for
water extraction and the analysis of dynamic changes in water.
However, certain aspects require further improvement.

The CWI model was constructed by incorporating five indices
capable of mitigating noise from sources such as buildings,
vegetation, and mountain shadows. However, it may be nec-
essary to select and adjust the water indices to meet specific
requirements. For instance, this model cannot identify turbid
water-containing substances, such as algae, suspended matter,
and colloidal particles [46], [47], resulting in a lower water
detection frequency in certain areas. Moreover, considering the
plethora of available water indices, further optimization of the
CWI model is warranted.

The evaluation of CWI performance in this experiment pri-
marily concentrated on the extraction performance of water
across diverse environmental backgrounds. However, there is a
notable absence of further verification regarding its performance
in extracting different types of water, such as lakes, slender
rivers, and reservoirs. Therefore, future research should include
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Fig. 13. Water frequency analysis in the Lake Taihu area. (a)–(c) Comparison of local details in the experimental area.

Fig. 14. Water frequency analysis in coastal area of Jiangsu Province. (a)–(c) Comparison of local details in the experimental area.

Fig. 15. Water frequency analysis in the Jiangsu section of the Yangtze River. (a)–(c) Comparison of local details in the experimental area.



LIU et al.: NEW EXTRACTION METHOD OF SURFACE WATER BASED ON DENSE TIME-SEQUENCE IMAGES 3165

experimental validation and model optimization across various
water types.

The accuracy of remote sensing water extraction is directly
influenced by the determination of the threshold. In this study,
the Otsu algorithm is employed for threshold determination.
However, it is noteworthy that the Otsu algorithm necessitates
extensive calculations, potentially leading to the loss of target
details and edge blurring. In instances where there is minimal
contrast in spectral grayscale values between the water and
background features in the study area, particularly when water
pixels occupy a larger area, the accuracy of the Otsu algorithm
may decrease. Furthermore, variations in water quality, exper-
imental areas, and remote sensing images can also impact the
threshold. Therefore, future research should focus on optimizing
the threshold determination method to enhance the accuracy of
water extraction.

VI. CONCLUSION

This study evaluated the applicability of various water in-
dices and introduced a CWI model. In addition, the extraction
performance of the CWI across diverse water backgrounds was
investigated. Furthermore, this research introduced a CWI fre-
quency method to assess dynamic water changes using the CWI
model.

The application of the CWI frequency method, implemented
on the GEE platform, yielded outstanding results in large-scale
water extraction. Notably, the utilization of CWI produces more
precise water boundaries, effectively mitigating the impact of
intricate backgrounds. Experimental results revealed that, on
average, the classification accuracy in urban, vegetation, and
mountainous area was 95.77%, 96.74%, and 95.61%, respec-
tively, while the average Kappa coefficient reached 0.91, 0.93,
and 0.91, respectively. The water extraction accuracy outper-
formed that of the other indices. The stability of water ex-
traction across diverse backgrounds and seasons underscores
CWI’s exceptional stability of CWI compared with alternative
water indices. Consequently, the CWI is capable of achieving
heightened precision in water monitoring across varying seasons
and complex backgrounds. In the future, CWI frequency method
can be applied for large-scale, high-precision, and long-term
water dynamic monitoring.
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