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Detail Enhanced Change Detection in VHR Images
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Abstract—The integration of the transformer and convolutional
neural network (CNN) has become a useful method for change
detection in remote sensing images. The main function of the
transformer is to capture the global features, while the CNN is
more for obtaining the local features. However, such an integration
is not efficient for change detection in the very-high-resolution
(VHR) remote sensing images with fine surface detail informa-
tion. Hence, to improve this traditional construction of the trans-
former and CNN, we propose a dense Swin-Transformer-V2 (DST)
and VGG16, coined as DST-VGG, for extracting the discrimina-
tory features for change detection. The difference between our
proposed network and other networks is that the output of the
VGG16 encoders will be used in the DST in which more Swin-V2
blocks are added for fine feature extraction. The learning model in
the VGG16 encoders employs a self-supervised method, which is
guided through the change in details. Our network not only inherits
the advantages of the integration of the transformer and CNN,
but also captures the features of change relationship through the
DST and catches the primitive features in both prechanged and
postchanged regions through the VGG16. In addition, we design a
mixed feature pyramid within the DST, which provides interlayer
interaction information and intralayer multiscale information for a
more complete feature learning within the new network. Further-
more, we impose a self-supervised strategy to guide the VGG16
provide the semantic change information from the output features
of the encoder. We compared our experimental results with those
of the state-of-the-art methods on four commonly used public VHR
remote sensing datasets. It shows that our network performs better,
in terms of F1, IoU, and OA, than those of the existing networks for
change detection.

Index Terms—Change detection, mixed feature pyramid (MFP),
self-supervised learning (SSL), Swin transformer V2, VGG16.
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I. INTRODUCTION

CHANGE detection is one of the earliest and important
remote sensing tasks, which have been studied by many

researchers for a long period of time [1], [2], [3], [4]. Change
detection is defined as the identification of changes in the
surface area found in images over time. It is used in many
scenarios, including disaster assessment [5], urban planning,
and land surface change [6], [7]. With the rapid development
of satellites and sensors, very-high-resolution (VHR) remote
sensing images have gradually become one of the mainstream
remote sensing images in research. These images have a very
high spatial resolution, ranging from 0.03 to 1 m per pixel,
and provide rich spatial information and fine surface details.
However, one of the main challenges faced by VHR images for
change detection is high intraclass variation and low interclass
variance of the targets being detected [8]. The pseudochanges
are the significant contributor to this challenge, which are caused
by different lighting or shadows. Therefore, it has been the focus
of research on how to design a stable network and provide
comprehensive and diverse feature information to distinguish
the pseudochanges in change detection as shown in Fig. 1.

Traditional change detection algorithms, according to differ-
ent detection units, can be divided into pixel-based algorithms
and object-based algorithms. The detection results of pixel-
based algorithms are obtained through feature extraction, and
then, threshold segmentation, which include methods based on
arithmetic operations (band difference [9] and spectral angle
mapper [10]), methods based on transformation (change vector
analysis [11], [12], principal component analysis [13], inde-
pendent component analysis [14]), postclassification change
detection [15], and slow feature analysis [16]). Object-based
algorithms segment the images, and then, compare the classifica-
tion results to get the change detection results [17]. Pixel-based
algorithms are trapped by the interference of small noise regions
and the choice of segmentation threshold. Meanwhile object-
based algorithms often get stuck in the accumulation of multiple
classification errors that affect the detection accuracy [1]. Both of
these traditional algorithms require prior knowledge and manual
design, and are easily affected by sensor noise.

With the availability of VHR remote sensing data, deep
learning has also shown outstanding detection ability in the
field of remote sensing. The CNN converts the input images
into the high-dimensional deep features, and combines the
targets and background to extract semantic information for
achieving the detection effect beyond many traditional methods.
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Fig. 1. Variety of pseudochanges become the challenges in change detection.
(a) Roof color changes. (b) Spectral changes on the surface. (c) House shadow
changes.

Daut et al. [18] provided the three most common baseline
networks for change detection. The architecture [19], which
combines the CNN and conditional random field refines the
edges of detection areas, but its training is slow. The CNN is
limited by the narrow receptive field of local information. The
transformer rises rapidly due to the capability of modeling global
information. However, with the transformer only, it does not
work well for change detection due to the lack of low-level
details [20]. Therefore, the key to this research is the ability
to build an efficient architecture through the combination of a
transformer and CNN.

In general, network architectures for change detection can
be divided into early fusion (EF) [18], [21], [22], [23] and late
fusion (LF) [18], [24], [25], [26], [27], [28], [29], [30] networks.
The EF network works by stitching two images together and
feeding them into the network as a single input. By concate-
nating two three-channel images into a six-channel image, both
Alcantarilla et al. [21] and Zhang et al. [22] fed the stack into full
convolutional neural network (FCN) and UNet++, respectively,
and output the change map after training the network. The disad-
vantage of this method is that the network lacks the deep features
of single images, resulting in fractured edges and broken struc-
tures in change map. In the LF network, the features are extracted
from the prechanged and postchanged images, respectively, by
using the dual-input structure, and are fused in the second half of
the network. The Siamese network, which is the most prominent
LF network consists of two subnets with shared weights. The
siamese network was first used for change detection in [24]. The
use of convolutional block attention module (CBAM) and deep
supervision for the siamese network, respectively, alleviates the
problem of heterogeneous features fusion and deep features
migration in the training process [25]. However, for the LF
network, the contradiction between the dual-stream input of
the encoder and the single output of the decoder often results
in the disappearance of gradient propagation and affects the
low-level features learning of two original images [25]. As a
consequence, it is another problem worth our exploration on how
to overcome the respective disadvantages of these two network

architectures and provide the complete and diverse features for
change detection.

In addition to the design of the overall network architectures
for change detection, researchers are also pushing forward the
elaboration of the functional modules in the network. The atten-
tion modules introduced in change detection include squeeze-
and-excitation attention (SE) [31], efficient channel attention
(ECA) [32], CBAM [33], and cross-attention [29]. As the ground
objects have different scales in the VHR images, it is essential
to extract diverse detail information for a network, which is still
robust for change detection. Multiscale features of deep learning
generally can be divided into three categories: multiscale fea-
tures between different layers, multiscale interaction features
between different layers, and multiscale features from different
convolution units. The first type of multiscale features was em-
bedded in the common U-Net network [18]. The second type of
multiscale features typically interacts and fuses using the trans-
former or CNN. The third type of multiscale features is provided
by a variety of convolution units, such as inception [34], dilated
convolution [35], res2net convolution (Res2Net-Conv) [36],
and selective kernel convolution (SK-Conv) [37]. We should
consider the integration and utilization of these three multi-
scale features. Other researchers have proposed by combining
with interaction feature [38], generative adversarial network
(GAN) [39], [40], or self-supervised learning (SSL) [41], [42],
[43] to obtain more discriminative features. These deep learning
technologies are aimed at solving the problem of high intraclass
variation and low interclass variance by mining the different
features of change detection data.

Motivated by the aforementioned concerns, this study pro-
poses a new end-to-end network, coined as DST-VGG, by com-
bining dense Swin-Transformer-V2 and VGG16. More Swin-V2
blocks are used to build the UNet++ type main network, and the
VGG16 encoder is used to build the CNN auxiliary network. The
DST-VGG overcomes the defect of only local information in the
CNN and the insufficient interpretation of low-level details in the
transformer in most integrated models. On the other hand, the
Swin-V2 main network belongs to the EF network, and the CNN
branch belongs to LF. This structure provides the prechanged
features, postchanged features, and change relation features
(namely, the six-channel concatenation from the prechanged
and postchanged images) for the accurate acquisition of change
detection results. The CBAM and deep supervision also pro-
mote the fusion of the heterogeneous features and the rapidly
stable convergence of the network, respectively. To have a
better integration of the transformer and CNN, we propose a
new multiscale module, mixed feature pyramid (MFP), which
provides interlayer multiscale interaction information and in-
tralayer multiscale information to supplement the UNet++ main
network, which only captures interlayer multiscale information.
We design a new decoder for the CNN branch with the VGG16
encoder and use the self-supervised strategy to train the encoder
for extracting features so that the CNN branch can provide
learnable and more discriminant semantic information. To sum
up, the main contributions of this study are fourfold.

1) We propose an end-to-end hybrid network DST-VGG that
possesses both advantages of the transformer and CNN
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and overcomes respective disadvantages of the EF and
LF network. This is a new deep learning paradigm of
the integration of dense global features and detail local
features for change detection in VHR images.

2) An MFP is proposed, for the first time, to provide in-
terlayer interaction information and intralayer multiscale
information. It is a plug-and-play module that has been
experimentally proven to be effective not only in our
proposed network but also with other change detection
networks.

3) We design a new decoder for the CNN branch with the
VGG16 encoder and impose the self-supervised strategy
to train the VGG16 for extracting the features to provide
more discriminative semantic information for the main
network.

4) Compared with the existing state-of-the-art networks for
change detection, our change detection scores and the
elaborate change maps are better on four common public
VHR datasets.

The rest of this article is organized as follows. Section II
gives the review of the related work. Section III elaborates
the proposed DST-VGG network. The experimental evaluations
and ablation studies are given in Section IV. Finally, Section V
concludes this article.

II. RELATED WORK

A. Transformer

Transformer is a popular deep learning method in natural
language processing due to its capability of modeling global
information [44]. The vision transformer (ViT) was proposed
in [45] to bring the spirit of self-attention to image classifica-
tion, but this huge model cannot be directly applied to other
detection tasks in computer vision. Swin transformer adopts
the inspiration of architectural hierarchy refinement and local
information interaction, which reduces the heavy computation
involved in modeling global information [46]. Liu et al. [47]
proposed Swin-V2 that stabilizes the training process caused by
the increase of model parameters and mitigates the resolution
difference between the upstream and downstream tasks to obtain
the advanced detection performance. At the same time, various
transformer models were rapidly developed for remote sensing
images processing [48], [49], [50], [51], [52], [53], [54].

Due to the lack of detection capability on low-level details
in the pure transformer model [20], [55], the transformer is
generally combined with the CNN for change detection in VHR
images. There exists some combination methods. Chen et al. [26]
proposed a bitemporal image transformer (BIT) that embeds the
transformer to the CNN to enhance the capability of modeling
contexts within the spatial-temporal domain. Based on the BIT,
the TransUNetCD [56] was proposed to augment low-level detail
information. However, it still has some defects because the serial
combination of the transformer with the CNN is insufficient for
generating discriminative features. The main reason for these
defects is that both transformer features and CNN features at
different stages are very important for change detection, while
the single transformer in the series architecture is not enough

to provide rich global information [26], [56]. In the parallel
associative approach, Feng et al. [57] used the transformer and
CNN, respectively, to extract the pair change features for feature
fusion, but they ignored the supplement of low-level details at
the decoder stage. Our study adopts a new parallel approach
with the global and detail features association to avoid the defect
of the aforementioned models and obtain the better detection
result.

B. Multiscale Information

Multiscale information is an important approach in image
processing. In deep learning, multiscale features can be divided
into three categories: multiscale features between different lay-
ers, multiscale interaction features between different layers, and
multiscale features from different convolution units. The first
category is often implicit in a variety of classical networks, such
as ResNet, FCN, and U-Net [58], [59], [60]. A feature pyramid
transformer (FPT) uses two different transformers to interfuse
the features between different layers to generate the second type
of multiscale features [61]. The third type of multiscale features
is provided by various convolution units, such as inception,
dilated convolution, Res2Net-Conv, and SK-Conv.

In VHR images change detection, Feng et al. [30] extracted the
multilevel intertemporal features through the double branches
of shared weights, and then, performed the information fusion
and features difference to obtain the robust change features.
The multiscale decoupled convolution was constructed by using
atrous convolutions with different dilation rates. The researchers
embedded several of these convolutions in different layers to
acquire the two types of multiscale features between and within
layers [62]. Inspired by the FPT, we propose an MFP that pro-
vides interlayer multiscale interaction information and intralayer
multiscale information to supplement the main network, which
only gives interlayer multiscale information.

C. Self-Supervised Learning (SSL)

Since the labeled data are labor intensive, SSL, in which a
large amount of unlabeled data can be used to train networks
and extract knowledge that are then transferred to downstream
tasks, has recently flourished as a deep learning technology.
Contrast learning is one of the representative SSL models [63], in
which the image sample pairs are generated through the network,
and the cost function is set to shorten the distance between
the two positive samples as far as possible, and expand the
distance between the positive and negative samples. The mask
autoencoder is another important branch of the SSL [64].

In change detection, Chen and Bruzzone [65] used the boot-
strap your own latent framework to pretrain the heterogeneous
remote sensing images, and then, transferred it to the down-
stream change detection task. The use of the ViT encoder and
random masking as the data enhancement technique further
advances the SSL architecture [66]. The SSL has been shown to
provide the discriminative semantic information when combined
with the supervised technique to train the network [41]. Different
from their work in [41], we design a new encoder–decoder archi-
tecture with VGG16 as the encoder, and apply the SSL to this
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Fig. 2. Overall architecture of the DST-VGG. The output features of the VGG16 encoders are used in the DST (namely the main network) in which more Swin-V2
blocks are added for extracting discriminative features. In particular, the output features that have the same length and width as the input images are crucial for
change detection in VHR images. The MFP provides diverse multiscale information. The SSL is imposed to guide the VGG16 to provide the semantic change
information for the output features of the encoders.

branch architecture in providing the self-supervised semantic
features for the main network.

III. PROPOSED METHOD

In this section, we first introduce the DST-VGG architecture.
Then, the Swin-V2 block, MFP module, CNN branch network,
and SSL strategy are described in the order. The loss function
of the model is then defined.

A. Proposed DST-VGG

The overall architecture of the DST-VGG is shown in Fig. 2.
In conjunction with Algorithm 1, we elaborate on the details of
the network. First of all, we initialize the parameters i and j to
satisfy the following conditions:

1 ≤ i ≤ 4, i ∈ N

0 ≤ j ≤ 3, j ∈ N

when j = 0, i ∈ {1, 2, 3, 4}
when j = 1, i ∈ {1, 2, 3}
when j = 2, i ∈ {1, 2}
when j = 3, i ∈ {1} (1)

where N is the set of natural numbers, i is the number of layers
of DST or VGG16, and j is the number of columns of the DST.

The CNN branch network consists of VGG16 as the encoder and
our designed decoder. Then, we obtain the encoder features of
the CNN branch network to compensate for the lack of low-level
details and single image convolution features of the DST

V i
1 , V

i
2 = CNNSSL(I1, I2) (2)

where CNNSSL() refers to CNN branch network trained using
the SSL strategy, and V i

1 , V
i
2 and I1, I2 represent the encoder

feature pair and the original image pair, respectively, in this
article. On another path in parallel, the features in the first
column of the DST are generated

C0,0, S
′
i,j=0 = SwinV2backbone(DConv(Cat(I1, I2)))

(3)
where SwinV2backbone(), DConv(), and Cat() refer to
Swin-V2 backbone [47], double convolution module (DConv),
and the concatenation in the channel dimension, respectively; C
denotes the feature from DConv; and S ′ denotes the feature in
column 1 from Swin-V2 backbone. The features estimated by
MFP that provides interlayer multiscale interaction information
and intralayer multiscale information are given as follows:

S1,0, S2,0, S3,0 = MFP(S ′
1,0, S

′
2,0, S

′
3,0);S4,0 = S ′

4,0

(4)
where S refers to the feature that comes from MFP or Swin-V2
block.
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Algorithm 1: Inference of DST-VGG Model for Change
Detection

At this point, the rest of Swin-V2 and feature fusion features
in rows 1 to 4 of main network can be generated

Si,1 = SwinV2(Conv(Cat(Si,0,Up(FFi+1,0)))) (5)

Si,2 = SwinV2(Conv(Cat(Si,0, Si,1,Up(FFi+1,1))))
(6)

Si,3 = SwinV2(Conv(Cat(Si,0, Si,1, Si,2,

Up(FFi+1,2)))) (7)

FFi,j = FFM(Si,j , V
i
1 , V

i
2) (8)

where FFM() represents feature fusion module, FF repre-
sents the feature fusion features,SwinV2() represents Swin-V2
block, and Conv() and Up() are used to adjust the spatial and
channel resolutions of the features. Then, other DConv features
are acquired as follows:

C0,1 = DConv(Cat(C0,0, FF1,0))

C0,2 = DConv(Cat(C0,0, C0,1, FF1,1))

C0,3 = DConv(Cat(C0,0, C0,1, C0,2, FF1,2))

C0,4 = DConv(Cat(C0,0, C0,1, C0,2, C0,3, FF1,3)). (9)

Finally, we generate change map CM via CBAM [33] and
sigmoid function

CM=Sig(Conv1×1(CBAM(Cat(C0,1, C0,2, C0,3, C0,4))))
(10)

where Sig() and Conv1×1() are sigmoid function and 1× 1
convolution, respectively. It should also be noted that dense
connectivity allows the network to extract more diverse features.
Deep supervision solves deep network feature shifting during

Fig. 3. Swin-V2 block. The improvements of Swin-V2 compared to Swin-V1
are marked in red. The notations and operations of Swin-V2 block are explained
in Section III-B in detail.

training. The combination of these two techniques allows the
quick and stable training and convergence of the network to
take place. The FFM concatenates, nonlinearizes, and uses the
CBAM to process the heterogeneous features for effective fu-
sion. DConv is the union of convolution, batch normalization
(BN), and ReLU function.

To summarize, the detection performance of the DST-VGG,
which is a parallel hybrid architecture, can be attributed to the
following reasons: the DST consisting of more Swin-V2 blocks
is responsible for extracting the change relationship features.
The CNN branch network complements the DST by providing
the prechanged and postchanged detail features necessary for
accurate detection. In particular, the detail features are preserved
in the same size as the input images. Moreover, the incorporation
of the multiscale features and SSL semantic features further
enhances the overall feature learning of the network. These
combined factors contribute to the DST-VGG for achieving the
state-of-the-art detection performance.

B. Swin-V2 Block

Swin-type transformers reduce the number of model parame-
ters while modeling global information through shifted window
and hierarchical mechanism [46]. Swin-V2 [47] further employs
the postnormalization and scaled cosine attention techniques to
improve the stability of the large vision model. At the same
time, the log-spaced continuous position bias method is used
to alleviate the problem of transferring the model trained on
low-resolution images to high-resolution images. So, we use
Swin-V2 as the base block to build the DST. This is illustrated
in Fig. 3. Swin-V2 splits the image into the patches, and then,
models the patches to generate the features. Its input and out-
put are represented by Sl−1 and Sl+1, respectively. We place
layer normalization (LN) after multihead self-attention (MSA)
and multilayer perceptron (MLP) to improve the stability of
the network. The MSA includes window MSA (WMSA) and
shifted window MSA (SWMSA): the former extracts the image
features in the windows to reduce the computational cost, and
the latter maintains the interaction of global information by
sliding windows. The MLP is used to enhance the nonlinear
capability of the block. The residual connection ensures the
effective dissemination of information in the deep network. The
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specific cooperation of these components is as follows:

Ŝl = WMSA(LN(Sl−1)) + Sl−1

Sl = MLP(LN(Ŝl)) + Ŝl

Ŝl+1 = SWMSA(LN(Sl)) + Sl

Sl+1 = MLP(LN(Ŝl+1)) + Ŝl+1 (11)

where S and Ŝ are the image features, and l is the number of
Swin-V2 block layers.

Attention is the core of the entire block. The image features
are first mapped into the three vectors: query (Q), key (K),
and value (V). Then, we use Sim function [namely (14)] to
calculate the correlation weight matrix coefficients of Q and
K, and normalize these weight matrix by Softmax. Finally, the
dot product between the weight coefficients and V is obtained to
form the self-attention features

Attention(Q,K, V ) = Softmax(Sim(Q,K))V (12)

where Q, K, and V are N×d matrices, and N and d severally
represent the number of patches and the dimension of single head
self-attention. Instead of applying a single head self-attention,
the MSA of Swin-V2 computes each head self-attention sepa-
rately and concatenates these head self-attentions that represent
different subspaces

MSA(Q,K, V ) = Cat(head1, . . ., headH)WO

where headp = Attention(QWQ
p ,KWK

p , V WV
p )

(13)

where WQ
p ∈ RD×dk , WK

p ∈ RD×dk , WV
p ∈ RD×dv , and

WO ∈ Rhdv×D are parameter matrices, and h and D, respec-
tively, represent the number of self-attention heads and the
dimension of embedding layers. We set dk = dv = D/h.

Swin-V2 computes the attention logit of a pixel pair m and n
by a scaled cosine function

Sim(qm, kn) = cos(qm, kn)/r +Bmn (14)

where Bmn is the relative position bias between pixel m and n,
and r is a learnable scalar, nonshared across heads and layers.
Furthermore, Swin-V2 uses the log-spaced coordinates instead
of the original linear-spaced ones to facilitate the transferring of
the model between different resolution images. The log-spaced
coordinates are then used as the input of Φ to generate the bias
values

Δ̂x = sign(x) · log(1 + |Δx|)
Δ̂y = sign(y) · log(1 + |Δy|) (15)

B(Δx,Δy) = Φ(Δx,Δy) (16)

where Φ is the two-layer MLP with an ReLU activation, while
Δx and Δy are linear-scaled coordinates and Δ̂x and Δ̂y are
the log-spaced coordinates. Read Swin-V2 [47] for more details
of this block.

C. Mixed Feature Pyramid (MFP)

The FPT utilizes different transformers to provide the self-
attention features of different layers and the interaction features

between layers [61]. Self-transformer provides the self-attention
features of three layers. Rendering transformer provides a down-
top interaction feature between layers, and grounding trans-
former (GT) provides a top-down interaction feature. Inspired by
the FPT and the requirements of the existing task, we construct
a new multiscale module, MFP, by improving the FPT.

Since the basic blocks of current networks have evolved from
convolutions to transformers, we remove the self-transformer.
Moreover, we delete rendering transformer because it does not
play a critical role on VHR images change detection experimen-
tally. Thus, we only impose the GT to provide the interaction
information between layers. However, in addition to multiscale
features of different layers and multiscale interaction features
between layers, multiscale information also includes multiscale
features modeling within layers. So, we use the SK-Conv [37]
and Res2Net-Conv [36] to provide the multiscale features inside
different layers, respectively. Of course, other multiscale convo-
lutions, for example, inception, dilated convolution, can be used
here. We use the SK-Conv and Res2Net-Conv as an example to
experimentally validate our proposed concepts. The MFP, FPT,
SK-Conv, and Res2Net-Conv are shown in Fig. 4.

The SK-Conv and Res2Net-Conv are severally used to mine
the intralayer multiscale information of the input features am,
bm, and cm. At the same time, the GT is utilized to provide the
multiscale interaction features between different layers. These
features are then rearranged according to different spatial reso-
lutions. After residual blocks are added to the different layers,
feature fusion is performed. Subsequently, using convolution,
CBAM, and dropout in turn, we get the output features with
intralayer multiscale information and multiscale interaction in-
formation between layers. The roles of the CBAM and dropout
are to enhance the effective fusion of different features and
prevent overfitting, respectively. The MFP is a plug-and-play
module. It has also been shown effective in a variety of change
detection models in our experiments.

We present the three extractors used for the multiscale
features. The core operation of the GT is

GT(Qg,Kg, Vg) = Softmax(QgK
T
g )Vg (17)

where Qg , Kg , and Vg are the nonlinear transformations of Xg ,
and KT

g is the transposition matrix of Kg . We define that Xg ,

X̄g , and X̃g are the input feature, intermediate variable, and
output feature of GT, respectively. Take the layer am and bm in
Fig. 4 as an example to explain the complete operation of GT

X̄a
g = Up(BN(Conv(Xa

g )))

X̄b
g = BN(Conv(Xb

g))

X̃ab
g = GT(Cat(X̄a

g , X̄
b
g)) (18)

where BN() stands for batch normalization, and the other
symbols are represented as aforementioned. Both SK-Conv
and Res2Net-Conv are the multiscale convolutions. SK-Conv
obtains the features Us and Vs by a 3×3 convolution and a 5×5
convolution, respectively. A joint SE attention is then applied
for Us and Vs to obtain Ūs and V̄s. In the end, Ūs plus V̄s

gives the SK-Conv feature X̃s. The multiscale component of
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Fig. 4. (a) MFP, (b) FPT, (c) SK-Conv, and (d) Res2Net-Conv. Compared with the FPT, we remove self-transformer and rendering transformer in the MFP. We
use GT, SK-Conv, and Res2Net-Conv to construct the MFP that provides interlayer interaction information and intralayer multiscale information.

Res2Net-Conv can be expressed as

yzr =

⎧⎨
⎩
xz
r z = 1

Conv(xz
r) z = 2

Conv(xz
r + yz−1

r ) 2 < z ≤ 4.
(19)

As shown in Fig. 4, we pass the input Xr through 1×1 convolu-
tion (19), and 1×1 convolution in turn, to get the Res2Net-Conv
feature X̃r.

D. CNN Branch Network and SSL Strategy

We design a new decoder and impose the SSL strategy [41]
to optimize the low-level features of the VGG16 encoder. The
detailed implementation is depicted in Fig. 5. We compose
the decoder base block with convolution, BN, and ReLU. The
five base blocks are arranged in order of the increasing spatial
resolutions. The decoder features and the corresponding encoder
features then are fused using upsampling and addition. Further-
more, the 1×1 convolution is used to output the probability map
of change detection.

For the SSL strategy, we generate the pseudolabels based on
the probability maps through the CNN branch network

PL1,u =

{
0 PM1,u < 0.5
1 PM1,u ≥ 0.5

PL2,u =

{
0 PM2,u < 0.5
1 PM2,u ≥ 0.5

(20)

where u refers to each pixel of the probability maps or pseu-
dolabels, and PM1,u and PM2,u are the two probability maps
that are the outputs from the branch network. Since PM1,u and
PM2,u are normalized to [0,1] by sigmoid, we can obtain the
pseudolabels PL1,u and PL2,u via (20). After that, we deter-
mine the changed and unchanged regions based on the labels
from the change detection datasets. In the unchanged regions,
we use the pseudolabels generated by the one branch to supervise
the other branch. In the changed regions, we use the opposite
results of the pseudolabels from the one branch, to supervise the
other branch. The goal is to keep the unchanged features as close
as possible and the changed features as far away as possible. The
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Fig. 5. CNN branch network and SSL strategy.

SSL-CD loss is defined as follows:

LSSL1 = F(PM1,u,PL2,u |u ∈ Uα )

+ F(PM1,u, 1− PL2,u |u ∈ Cα )

LSSL2 = F(PM2,u,PL1,u |u ∈ Uα )

+ F(PM2,u, 1− PL1,u |u ∈ Cα ) (21)

where Uα and Cα represent, respectively, the unchanged and
changed regions, LSSL1 and LSSL2 are the two SSL-CD loss, and
F() is a metric function. We choose LBCE as F(). Therefore, the
encoder features provided by the CNN branch network are rich
in semantic information and have more discrimination ability
for change detection.

E. Loss Function

Bitemporal change detection is fundamentally a binary classi-
fication task, so binary cross entropy (BCE) loss is usually used
as in the following:

LBCE = −(t log(t̂) + (1− t) log(1− t̂)) (22)

where t and t̂ denote the predicted change confidence and the
label in the corresponding position, respectively. For change
detection tasks, however, the changed regions are far less than the
unchanged regions, so there is a serious class imbalance problem
in change detection. For example, the ratio of changed pixels to
unchanged pixels in the season-varying change detection dataset
(SVCD) is 0.046. To mitigate this problem, Dice loss is often
used

LDice = 1− 2t̂t+ σ

t̂+ t+ σ
. (23)

Here, adding σ avoids the case where the denominator is zero,
and t and t̂ are similarly defined as in (22).

The loss function used in our model is a combination of BCE
and Dice loss. Moreover, to address the features shift during
the training of the deep network, we use the deep supervision
strategy. Specifically, the deep supervision strategy uses the
same labels as those used for the network outputs. The labels
are replicated in four copies for the four deep supervision inter-
faces. DConvs C0,1, C0,2, C0,3, and C0,4 output the probability

maps through convolution and sigmoid function. At last, we use∑4
m=1 L

m
BCE + λ1L

m
Dice to measure and optimize these probabil-

ity maps by the deep supervision labels. The total loss function
is expressed as follows:

LTotal =

5∑
m=1

Lm
BCE + λ1L

m
Dice + λ2LSSL1 + λ2LSSL2 (24)

where
∑5

m=1 L
m
BCE + λ1L

m
Dice represents the output loss and the

four deep supervision losses of the DST, LSSL1 and LSSL2 are
the self-supervised losses of the CNN branch network, and λ1

and λ2 are the weight coefficients. We set λ1 and λ2 to 0.5 and
0.25, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we briefly describe our experimental configu-
ration and elaborate our experimental results analysis, ablation
study, and network visualization in turn.

A. Experimental Configurations

1) Datasets: Our model is tested on the four publicly avail-
able change detection datasets, achieving the state-of-the-art
results. Due to GPU memory limitations, we crop the images
into the nonoverlapping patches of size 256 × 256 for the four
datasets.

1) Learning, vision, and remote sensing change detection
dataset (LEVIR-CD) [67] is a publicly available change
detection resource for large buildings. It comprises 637
pairs of high-resolution (0.5 m) remote sensing images,
each measuring 1024 × 1024 pixels. We crop these im-
ages, and then, obtain 7120/1024/2048 pairs as the train-
ing/validation/test data.

2) SVCD [68] contains 11 pairs of multispectral images ob-
tained from Google Earth with spatial resolutions ranging
from 0.03 to 1 m. Following the dataset partitioning, we
apply the data augmentation methods, image rotation, and
image flipping, to the training set. As a result, we obtain
a total of 60 000/3000/3000 training/validation/test pairs.

3) Wuhan university change detection dataset (WHU-
CD) [69] focuses on the buildings change detection. It
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features a pair of high-resolution (0.2 m) aerial images,
each measuring 32 507 × 15 354 pixels. Since there is not
a general data partitioning scheme for WHU-CD, we cut
these images into the nonoverlapping segments of size
256 × 256 and randomly divide them into 6096/764/764
pairs for the training/validation/testing sessions,
respectively.

4) Sun Yat-Sen University change detection dataset (SYSU-
CD) [27] contains 20 000 pairs of orthographic aerial
images with the spatial resolution of 0.5 m taken in Hong
Kong. Each image is 256 × 256 pixels. We use the 12 000/
4000/4000 training/validation/testing pairs based on the
dataset provider splitting. It is worth noting that SYSU-CD
presents multiple types of changed objects in the more
complex scenario, making it a particularly challenging
dataset.

2) Baseline and State-of-the-Art Methods: We compare the
DST-VGG with the baseline and state-of-the-art methods as
follows. The first three methods serve as the baselines, while the
last seven methods represent the advanced networks developed
over the past three years. We implement these change detection
networks using the publicly available codes and default hyper-
parameters.

1) FC-EF [18]: Bitemporal change detection images are
concatenated as a single input to FCN.

2) FC-Siam-Diff [18]: A siamese FCN is employed to ex-
tract the multilevel features, utilizing the differences of
these features to detect the changed information.

3) FC-Siam-Conc [18]: The multilevel features are ex-
tracted and fused using a Siamese FCN with the cascaded
architecture.

4) IFNet [25]: The CBAM is applied to the heterogeneous
features at each level of the cascaded decoder, and deep
supervision is used for the improved training of interme-
diate layers.

5) SNUNet-CD [28]: A combination of siamese structure
and UNet++ is utilized to extract the high-level features.

6) BIT [26]: A serial hybrid network that embeds trans-
former into ResNet.

7) DCFF-Net [70]: A parallel pure CNN that combines
VGG16 with UNet++, and integrates the CBAM and
deep supervision.

8) TransUNetCD [56]: A serial cascaded hybrid network
that embeds transformer into UNet.

9) ICIF-Net [57]: A parallel hybrid network focusing on
the interaction and fusion of transformer and CNN.

10) FCCDN [41]: A supervised model with self-supervised
strategy, producing the features rich in semantic infor-
mation.

11) P2V [71]: A method for mining spatio-temporal features
from two change images.

3) Implementation Details: We implement our model using
PyTorch and train it on a single NVIDIA GeForce RTX 3090
GPU. During the training, we optimize the model with Adam
optimizer. The batch size is set to 4. The learning rate is initially
set to 5× 10−5 and linearly decays to 0 over the course of 200
epochs.

4) Evaluation Metrics: F1-score is an index used to measure
the performance of binary classification models, taking into
account both precision and recall. So, we primarily employ F1-
score with respect to the change category as the main evaluation
metric. F1-score is shown as follows:

F1 =
2× TP

2× TP + FP + FN
. (25)

In addition, we also report precision, recall, intersection over
union (IoU) for the change category, and overall accuracy (OA).
These metrics are defined as follows:

precision =
TP

TP + FP
(26)

recall =
TP

TP + FN
(27)

IoU =
TP

TP + FP + FN
(28)

OA =
TP + TN

TP + TN + FP + FN
(29)

where TP, TN, FP, and FN represent the number of true positive,
true negative, false positive, and false negative, respectively.

B. Experimental Results

1) Results Analysis and Comparison: Tables I and II present
the overall comparison results for the test sets: LEVIR-CD,
SVCD, WHU-CD, and SYSU-CD. Through quantitative analy-
sis, our model has demonstrated the obvious improvements over
other methods in the three key indicators, F1 score, IoU, and OA,
across these datasets. This shows the significant advantage of our
model over other models. In some scenarios, our model is worse
than the IFNet and FC-Siam-Diff on the precision, and is worse
than the DCFF-Net on the recall, because these models favor
changed or unchanged regions. However, change detection is a
pixel-level classification problem that considers both changed
regions and unchanged regions, so the bias for a certain class is
not conducive to the overall detection results.

Notably, our method outperforms the recent DCFF-Net by
the F1 score improvement of 0.78/0.31/ 0.91/0.83 on the four
datasets, underscoring the significance of both global informa-
tion provided by transformer and local information represented
by the CNN for change detection. Furthermore, our approach
also shows a performance advantage over the two serial net-
works, BIT and TransUNetCD, reinforcing the superiority of
the parallel combination of the transformer and CNN. In sum-
mary, our proposed model achieves the state-of-the-art results
by leveraging a parallel architecture of transformer and CNN
with the multiscale and self-supervised features that enhance its
discrimination capabilities (refer to the analysis of Table III).

The comparison of visualization results on the four datasets
is shown in Figs. 6 and 7. We use different colors to represent
TP(white), TN(black), FP(green), and FN(red) in the change
maps. It is observed that our model maintains the best structured
state compared to other models from (a) and (c) of LEVIR-
CD and (a), (b), and (e) of WHU-CD. In addition, our model
demonstrates the superior performance in detecting dense small
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TABLE I
COMPARISON RESULTS ON THE THREE CHANGE DETECTION DATASETS

Fig. 6. Visualization results of various methods on the LEVIR-CD and SVCD test sets. We use different colors to represent TP(white), TN(black), FP(green),
and FN(red) in the change maps. (a) and (e) Prediction results of these methods for different samples, respectively.

objects and edge objects, as evidenced by LEVIR-CD (d) and
WHU-CD (d).

The SVCD dataset poses the unique challenges due to its
varying illumination conditions and high occurrence of pseu-
dochanges, such as the snow cover is added in image 2 of (a),

and illumination differences are visible in (b) and (e) image
pairs. However, our model outperforms other methods in these
difficult scenes, particularly for the three detection requirements
of structured changed regions, small targets, and edge targets.
The challenge of the SYSU-CD dataset lies also in the high
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Fig. 7. Visualization results of various methods on the WHU-CD and SYSU-CD test sets. We use different colors to represent TP(white), TN(black), FP(green),
and FN(red) in the change maps. (a) and (e) Prediction results of these methods for different samples, respectively.

TABLE II
COMPARISON RESULTS ON SYSU-CD DATASET

intraclass variation and low interclass variance of background
and targets. Our model is still able to maintain the structure
of targets relatively well in the scenes where the targets are
cluttered and close to the background. The detection results are
well understood. Most of structured regions are obtained from
the dense global information of transformer, and small targets

and edges are captured with the low-level detail information
of the CNN. This once again validates the importance of our
parallel hybrid architecture.

2) Training Processes Analysis and Efficiency Comparison:
We evaluate the performance of the DST-VGG on the four
datasets by tracking the two metrics, F1 score and loss, as
depicted in Fig. 8. The F1 score and loss curves provide an
intuitive understanding that our model is stably convergent and
efficient. The peak values on the F1 curves are observed at
the points 0.9212(LEVIR-CD), 0.9765(SVCD), 0.9544(WHU-
CD), and 0.8100(SYSU-CD) for four datasets, indicating that
our model requires a training process of just 35 epochs. Given
the SVCD dataset’s abundance of small targets and intricate
labelings, the DST-VGG exhibits a slight growth even after 35
epochs. Comparing the datasets, the SYSU-CD appears to be the
most challenging and prone to the rapid overfitting. This could
potentially be attributed to the different distribution between
training data and validation data, wherein the overfitting on train-
ing data impairs the generalization capacity of the DST-VGG.
Currently, no relevant studies have been conducted to explain
this phenomena.

The further conjoint analysis with the F1 values of
0.9215(LEVIR-CD), 0.9771(SVCD), 0.9569(WHU-CD), and
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TABLE III
ABLATION STUDIES FOR THE OVERALL NETWORK ON THE THREE DATASETS

Fig. 8. Training processes analysis of the DST-VGG.

0.8313(SYSU-CD) in Tables I and II reaffirms the strong gen-
eralization ability of our model. With 0.9771(SVCD) value, it
reveals that the F1 performance for the SVCD test set without
applying any data augmentations. Based on the hybrid features,
dense connection, and deep supervision in our model, the pro-
posed network greatly contributes to the stability and efficiency
of training processes. Among them, the combination of the
VGG16 and Swin-V2 architecture plays a key role for the stable
convergence of the model.

We report the number of parameters, FLOPs, F1, and OA
of the compared models and our model on the SVCD dataset
in Table IV. Although our model is expensive in the number
of parameters and FLOPs, our detection results are the best.
And remote sensing change detection does not have strict re-
quirements for real-time performance and model size. So, it is
necessary to pay a certain computational cost to obtain more
accurate detection results in practical applications.

C. Ablation Studies and Parameter Analysis

1) Ablation Study of the Overall Network: For the overall
network architecture, our contributions consist of the three parts:
Swin-V2 main network, MFP, and CNN branch network trained
using the SSL strategy. As shown in Table III, we perform the
ablation study for these three contributions on the LEVIR-CD,

TABLE IV
EFFICIENCY COMPARISON OF METHODS

SVCD, and WHU-CD datasets. According to the data analysis
of Table III, Swin-V2 main network has the largest effect on the
overall performance improvement, and the latter two have the
similar effects. Especially on the SVCD dataset, the Swin-V2
main network shows an improvement of F1 score 2.77% com-
pared to the CNN main network. The different combinations
of two contributions occasionally occur the mutually exclusive
phenomenas. However, our model achieves the better results
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TABLE V
LONGITUDINAL DISSECTION (LEFT) AND HORIZONTAL PROMOTION (RIGHT) FOR MFP ON THE LEVIR-CD DATASET

TABLE VI
ABLATION STUDIES FOR SWIN-V2 ON THE THREE DATASETS

than the baseline on the three datasets, using the three contri-
butions together. Our ablation experiment uses F1 score as the
main evaluation metric that is roughly positively correlated with
OA. This also verifies the importance of our parallel architecture
consisting of Swin-V2 main network and CNN branch network.
The three types of multiscale features and the encoder semantic
features guided by the SSL strategy also have clear guiding
effects on the model performance.

2) Parameter Analysis of Swin-V2: We mainly perform the
ablation study of the Swin-V2 blocks about the pretrained
weights and number of blocks as described in Table VI. We
only use two Swin-V2 blocks for S1,1, S1,2, and S2,1. For the
U-shaped structure formed by [S1,0, S2,0, S3,0, S4,0, S3,1, S2,2,
S1,3], we try the three configurations of Swin-V2 blocks: [2, 2,
2, 2, 2, 2, 2], [2, 2, 6, 2, 6, 2, 2], and [2, 2, 18, 2, 18, 2, 2]. The
ablation results on the three datasets show that the combination
of the pretrained weights and configuration of [2, 2, 6, 2, 6, 2, 2]
has the advanced detection performance and robust application
scenarios. This is due to the facts that the pretrained weights
usually contain the prior information of upstream tasks, and too
many Swin-V2 blocks maybe lead to the underfitting of some
intermediate layer parameters of the model.

3) Ablation Study of the Swin-V2 Architecture: By perform-
ing the ablation study for the Swin-V2 architecture, we further
have a clear understanding of the detection performance of
different Swin-V2 architectures from Table VII. Similar to the
UNet and UNet++, the performance of the Swin-V2++ is supe-
rior to the ability of the pure Swin-V2 architecture. The dense
connection undoubtedly makes the extracted change features
more diverse. However, the emphasis on detail features from
the VGG16 is significantly more important for change detec-
tion. The combination of the VGG16 and Swin-V2++ greatly

TABLE VII
ABLATION STUDIES FOR SWIN-V2 ARCHITECTURE ON THE TWO DATASETS

TABLE VIII
ABLATION STUDY FOR THE SUPERVISED STRATEGIES OF CNN BRANCH

NETWORK ON THE THREE DATASETS

improves the change discrimination capability of the model on
VHR remote sensing images.

4) Ablation Study of the MFP: We propose the MFP using
the combination of GT, Res2Net-Conv, and SK-Conv. In the left
subtable of Table V, we present a detailed ablation analysis for
these three modules with FC-Siam-Diff and our model as the
base lines on the LEVIR-CD dataset. In the right subtable of
Table V, we further test the plug-and-play performance of the
MFP based on the other four models. The data of the left subtable
support the detection role of each module and the improvement
of overall performance using the MFP. Specifically, the MFP
improves F1 scores by 0.70% and 0.215% on FC-Siam-Diff
and our model (our model has a high complexity), respectively.
Through the analysis of the right subtable, FC-Siam-Conc,
IFNet, SNUNet-CD, and FCCDN achieve the improvements
of 0.77%, 0.36%, 0.07%, and 0.46% in F1 score, respectively.
The experiments on the longitudinal dissection and horizontal
promotion support that the MFP effectively improves the perfor-
mance of change detection models by providing the interlayer
interaction information and intralayer multiscale information.

5) Ablation Study of the SSL Strategy: We compare the per-
formance gains brought by guiding the CNN branch network
under the three strategies of unsupervised, supervised, and self-
supervised, as shown in Table VIII. On the LEVIR-CD, SVCD,
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Fig. 9. Example for the visualization of the DST-VGG. It is obvious that the CNN branch network focuses on detailed information, while the main network
focuses on structured global information for change detection. Feature fusion module fuses these two kinds of information, and then, obtains the change probability
map by the CBAM.

and WHU-CD datasets, the self-supervised strategy achieves the
best results. The reason for this phenomenon is that SSL provides
the deep features with semantic information for change detection
tasks [41].

D. Network Visualization

To further elucidate the practical effect of each network
module, we conduct the analysis of network visualization. As
depicted in Fig. 9, we broadly segment the network into three
components: CNN branch network, main network, and fea-
ture fusion modules. Given that the CNN branch network is
a dual-branch network with shared weights, we only present
the activation maps for one branch. It is distinctly seen that the
encoder layers furnish attention to the low-level detail informa-
tion for main network. Conversely, the DST-VGG provides the
structured abstract features. Feature fusion modules concentrate
on detailing the differential specifics of remote sensing objects
while preserving the structural information. The consolidation
and retention of these two types of information are pivotal for
change detection in VHR images. By contrasting the label and
change activation map acquired through the CBAM, it becomes
evident that our model exhibits the robustness in the intricate
scene and different lighting condition.

V. CONCLUSION

In this article, we propose a new end-to-end hybrid network
DST-VGG for change detection in VHR remote sensing im-
ages. The difference between our proposed network and other
networks is that the output features of the VGG16 encoders in
our model are used in the DST in which more Swin-V2 blocks
are added for extracting discriminative features. Our network
is specifically designed for change detection in VHR images.

It not only integrates the benefits of both the transformer and
deep convolutional networks, but also successfully captures the
features of change relationship via the DST and catches the
detailed features in both prechanged and postchanged regions
using the VGG16. Furthermore, the integration of detail features
from the encoders of VGG16 and global features of the DST
presents a new deep learning paradigm that can be effective for
other image detection tasks, such as classification and object
detection, in remote sensing. We also design an MFP module
that can be seamlessly integrated with different image detection
networks to provide the diverse multiscale features, bridging the
feature gap between local and global aspects. We employ SSL
policy that guides the VGG16 in delivering the encoder semantic
features for the main network. Compared with other existing
networks, our network results in the rapid but stable convergence
and state-of-the-art performance on four commonly utilized
public datasets of change detection. Moving forward, we will
primarily focus on lightening the transformers in an effort to
reduce the model complexity.
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