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ALS Point Cloud Semantic Segmentation Based
on Graph Convolution and Transformer
With Elevation Attention

Shuowen Huang ', Qingwu Hu'"”, Pengcheng Zhao

Abstract—Semantic segmentation of airborne point clouds is
crucial for 3D scene reconstruction and remote sensing in surveying
applications. Current deep learning methods for point clouds pri-
marily focus on effectively aggregating local neighborhood infor-
mation. However, they often overlook the fusion of global context
information and elevation features, which are vital for airborne
point clouds. In this study, we propose Dense-LGEANet, a novel
network with dense connected architecture and multiscale feature
supervision based on our designed LGEA module. The key compo-
nent of our LGEA module is the combination of the graph convolu-
tion block and the transformer block with elevation attention. It can
effectively fuse local neighborhood information and global context
information to improve the accuracy of semantic segmentation
of airborne point cloud. Moreover, the designed dense connected
network architecture can enhance the feature extraction capability
for point cloud objects at different scales by facilitating interactions
between multiple up-sampling and down-sampling layers. We have
conducted multiple experiments on the public point cloud dataset.
Experimental results show that our method can achieve an mIoU of
58.5% and an mF1 of 72.0% on the ISPRS Vaihingen 3D dataset,
while an mIoU of 67.2% and an mF1 of 78.3% on the LASDU
dataset. It demonstrates the superior performance of our network
and the effectiveness of the proposed feature enhancement module
and network architecture.

Index Terms—Airborne laser scanning (ALS), graph con-
volution, point cloud, semantic segmentation, transformer.

I. INTRODUCTION

OINT cloud is a compact and reliable digital representation
P of real world in three dimensions. It comprises numerous
3D points that store valuable information, including location co-
ordinates, color, normal vectors, and reflectance intensity, which
can provide rich spatial information for complex environments
[1]. Therefore, point cloud is suitable for realistic representation
of large scene. In recent years, the development and popularity
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of light detection and ranging (LiDAR) equipment have made it
increasingly convenient to obtain point cloud data from various
scenes. According to the scanning platform and scene, point
cloud can be categorized into terrestrial laser scanning (TLS)
point clouds, vehicle laser scanning (VLS) point clouds, and
airborne laser scanning (ALS) point clouds. Among them, ALS
point clouds have wider usage in the field of geographic in-
formation due to their high scanning platform, wide coverage,
and ability to generate digital elevation models. So they are
widely employed in urban planning [2], power line detection
[3], forest surveying [4], and other domains [5]. All of these
applications require the extraction of semantic information from
airborne point cloud data. Therefore, semantic segmentation of
airborne point clouds has been an important research topic for
the photogrammetry and remote sensing community.

Semantic segmentation for ALS point clouds has unique
characteristics compared to TLS and VLS point clouds, such as
a large number of geometric instances, different scale between
categories, the variability in elevation distribution, complex
spatial structure, and so on. Consequently, it is challenging
to achieve fully automatic and accurate semantic segmentation
for ALS point clouds. The semantic segmentation methods of
ALS point clouds typically fall into two categories: traditional
machine learning methods and deep learning methods. Over the
past few decades, traditional machine learning methods have
made significant advancements. These methods primarily focus
on extracting various manual features to capture the local geo-
metric structure of the point cloud. They employ the classifiers
like random forests and support vector machines to predict the
label of each point [6], [7]. However, due to the limitation of
low dimensional manual features, these algorithms often fail to
deliver satisfactory semantic segmentation results in complex
point cloud scenarios. In order to improve the accuracy of se-
mantic segmentation, scholars have integrated graphical models
such as Markov random field (MRF) and conditional random
field (CRF) with machine learning models. For example, the
work in [8] proposes a coarse-to-fine MRF method for ground
point cloud segmentation, which develops a feature extraction
algorithm for rough segmentation, and then uses MRF for global
adjustment. Wolf et al. [9] use random forest method to initialize
the unary potentials of a densely CREF, so that it can perform fast
semantic segmentation of point clouds. Yang et al. [10] design
a continuous CRF convolution method for segmentation, which
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can effectively capture the structure of features in large-scale
point cloud.

In recent years, deep learning algorithms have demonstrated
their effectiveness in extracting high dimensional semantic fea-
tures for 2D image semantic segmentation tasks [11]. Taking
inspiration from this success, researchers have started to ex-
plore the use of neural networks to learn discriminative high-
dimensional features for 3D point cloud semantic segmentation.
However, 3D point clouds present unique challenges due to
their irregular spatial distribution, occlusion, and uneven density.
In addition, the extra dimension of point clouds significantly
increases the complexity of the features. These factors make
feature extraction and fusion of 3D point cloud data difficult.
To address these challenges, researchers have attempted to con-
vert point clouds into images or voxels [12], and learn point
cloud features using well-established 2D or 3D convolutional
neural networks. However, these approaches inevitably lead to
the loss of feature information, and the accuracy and speed of
these methods are limited by the size of the image and voxel
resolutions. PointNet [13] is the first network that operates
directly on the original point cloud, and has been promoted and
applied to point cloud classification, semantic segmentation, and
target detection. Since then, neural networks that directly process
the original input point clouds have become popular in re-
search. These networks can be categorized into four main types:
MLP (multilayer perceptron)-based methods, convolution-
based methods, graph-based methods, and transformer-based
methods.

MLP-based methods usually employ shared MLPs to extract
features independently for each point and aggregate these fea-
tures through pooling operations. PointNet++ [14] develops
multiple sampling and grouping techniques to capture more
local information. However, PointNet++ only extracts infor-
mation from points within the local region and does not fully
capture the structural relationships between points in that region.
To improve the performance of networks in complex scenes,
RandLANet [15] proposes a local feature aggregation module
that can effectively preserve geometric details while gradually
increasing the perceptual field of points. So-Net [16] uses self-
organizing feature mapping to analyze the distribution of point
clouds to achieve a permutation-invariant network for point
cloud semantic segmentation. PointASNL [17] introduces the
adaptive sampling module to adaptively adjust the coordinates
of the initial sampling points to make it more suitable for feature
learning with intrinsic geometric characteristics. SCF-Net [18]
aggregates local key features using a dual-distance attention pool
block that considers both geometric and feature distances. In or-
der to enhance the segmentation capability of point cloud scene
boundaries, BAAF-Net [19] designs a bilateral filter module to
capture local geometric and semantic information. And LGS-
Net [20] uses a parallel attention fusion module that focuses
on geometric structure and semantic information to reduce the
ambiguity of features and improve the mining of local geometric
structure information.

Convolution-based methods have been devoted to designing
effective convolution operations for disordered and nonuniform
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point clouds. For example, PointCNN [21] introduces the x-
Conv module to aggregate information on the spatial struc-
ture and local features of points. PointConv [22] multiplies
the weights obtained from the local relative coordinates with
the inverse density coefficients as a new weight function for
feature learning. RS-CNN [23] explicitly encodes the geometric
relationship of points and proposes a new convolution operator
relational shape convolution. KPConv [24] applies the convo-
lution weights defined in Euclidean space to the input points
around the kernel points, thus proposing a module for point
continuous convolution. Moreover, DenseKPNet [25] extracts
initial geometric features from coarse to fine through multiscale
kernel point convolution, and uses dense connections to learn
expressive local geometric features. PAConv [26] constructs the
convolution kernels by dynamically combining weight matrices
stored in a weight library, which reduces the complexity of
the model while maintaining the ability to capture important
features.

Graph-based approaches aim to represent points as nodes in
a graph, and establish edges based on the relationships between
these points. As a natural representation of point clouds, a graph
can effectively encode local geometric structure through graph
convolution. SPG [27] first segments large point clouds into
meaningful target shapes using an unsupervised method, then
constructs a superpoint graph and extracts features on these
superpoints using PointNet. DGCNN [28] proposes EdgeConv,
which aggregates local neighborhood information by graph edge
convolution. DGANet [29] employs an improved K-nearest
neighbor search algorithm for constructing a dilated graph,
which allows the network to learn local features with maximum
receptive field during convolution. AdaptConv [30] develops
an adaptive convolution kernel that can dynamically extract
feature information of each point, thereby establishing diverse
connections between different points in the local neighborhood.
DDGCN [31] constructs a dynamic neighborhood graph by
obtaining the similarity matrix of the point cloud to further
encode local features in the point cloud.

Transformer-based methods are inspired by the self-attention
mechanism’s success in natural language processing and im-
age processing. Some researchers have developed point cloud
processing networks based on transformers to improve seg-
mentation accuracy. For instance, MLMSPT [32] leverages a
multiscale transformer to capture relationships between different
features while aggregating information from various levels of
contextual information at each scale. Point transformer [33]
uses vector self-attention and subtraction relations to com-
pute the importance of edge points, which improves segmen-
tation accuracy and network extensibility. PCT [34] proposes a
permutation-invariant point cloud transformer based on offset
attention, which is suitable for unstructured point cloud learn-
ing in irregular domain. Stratified transformer [35] samples
neighborhood dense points and remote sparse points as keys,
expanding the effective receptive field of the model. Fast point
transformer [36] designs a lightweight transformer network that
encodes continuous three-dimensional coordinates based on a
voxel hashing architecture to improve computing efficiency.
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The above-mentioned methods have made significant ad-
vancements in the field of point cloud semantic segmentation.
However, challenges still exist in the ALS point cloud semantic
segmentation. First, most of them have focused on how to ag-
gregate the local neighborhood information of points. However,
airborne point clouds usually cover a larger geographic range
than TLS and VLS point clouds, making it difficult to encode
global context information for large scenes. Although previous
research has attempted to enhance semantic segmentation ac-
curacy by increasing the network’s receptive field [37], it still
lacks the fusion of global features. And then, the objects in
airborne point clouds usually exhibit extreme scale variations,
and the single encoding and decoding architecture used in most
networks cannot fully exploit feature information at all scale
levels.

Second, as mentioned earlier, different category in the air-
borne point cloud usually have different elevation distributions.
And previous studies have proved that elevation information is
a feature information that cannot be ignored in airborne point
cloud semantic segmentation [38], [39]. However, most of the
existing methods simply encode the elevation information and
add it into the input features, which may ignore the importance
of elevation features within the encoding layer. Consequently,
it is still worthwhile to explore techniques for incorporating
elevation attention into the global feature representation.

To tackle the above-mentioned challenges, we present a
novel network architecture for ALS point cloud semantic seg-
mentation. Specifically, in order to encode the global feature
and elevation information, we design a feature enhancement
module, referred as local and global feature enhancement with
elevation attention (LGEA) module, which comprises the graph
convolution block and the transformer block. The graph con-
volution block facilitates effective aggregation of local posi-
tion and feature information within the point cloud. Simul-
taneously, the transformer block captures global information
through the utilization of the self-attention mechanism based
on elevation attention. In addition, to enable comprehensive
utilization of information at various levels, we construct a
dense hierarchical architecture named Dense-LGEANet driven
by multiscale loss based on LGEA module, which can im-
prove perception ability of multiple categories at different
scales.

In brief, our contributions can be summarized as follows.

1) We propose the LGEA module, a novel point cloud
feature enhancement module. Compared with previous
approaches, this module effectively integrates local and
global feature information and enhances object perception
through elevation attention.

2) We design Dense-LGEANet, a dedicated network de-
signed for ALS point cloud semantic segmentation. It can
provide effective supervision of point cloud features at
multiple scales, thus improving the classification accu-
racy of objects with varying resolutions in airborne point
clouds.

3) We evaluate our approach on publicly available airborne
point cloud datasets, including the ISPRS Vaihingen 3D
dataset, LASDU dataset, and WHU point cloud dataset.
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The results demonstrate the significant performance im-
provement achieved by our method.

The subsequent sections of this article are organized as
follows. Section II presents the detailed introduction of the
proposed LGEA module and Dense-LGEANet. In Section III,
extensive experiments are conducted on the ISPRS Vaihingen
3D dataset and the LASDU dataset to show the superior perfor-
mance of our method. Furthermore, a comprehensive ablation
experiment and generalization test are performed to validate
the effectiveness of our proposed module and network. Finally,
Section IV concludes this article and provides some potential
future research directions.

II. METHODOLOGY

In this section, we first introduce the proposed LGEA module.
The LGEA module includes graph convolution block, trans-
former block, and elevation attention block. We will introduce
them separately. Then, we analyze the structure of the proposed
Dense-LGEANet network. Finally, the designed loss function
of the network is given.

A. LGEA Module

As illustrated in Fig. 1, the LGEA module takes the original
point features as input and leverages the graph convolution block
and transformer block to extract local and global features of the
point cloud, respectively. The elevation attention block is also
incorporated to enhance the perception ability of the features.
Finally, the LGEA module fuses the features output by graph
convolution block and transformer block to obtain the enhanced
features as output.

1) Graph Convolution Block: To construct the graph, for
each point p; in point cloud P = {p;|i = 1,...,n}, its near-
est k points {p!,...,p,...p*} is calculated. Then a directed
graph can be denoted as G = (V, E), where the vertices V' =
{Vi]i=1,...,n} and edges E C V2. Considering a point p; C
R3 with its corresponding feature f; C R as input, the local
information of the point can be easily represented by a graph. The
edge feature for each connection can be expressed as follows:

eij = g(e(pi, 2)1B(fir fr)) )

where function g() comprises a set of learnable parameters,
typically implemented as a shared MLP. The || indicates concate-
nation operation. Function ¢() and 3() are employed for position
encoding and graph feature encoding, respectively. Specifically,
their definitions are as follows.

a) Position encoding: Geometric information is the most
important attribute of point cloud, which can be intuitively
reflected by the position information of the point. Therefore,
it is necessary to encode the position information to get the
spatial distribution of points. Inspired by RandLA-Net [15], we
encode the positional relationship between points through the
nearest neighbor points of spatial coordinates. Specifically, for
each point p,; which is regarded as the central point, its relative
position relationship can be encoded by its KNN neighboring
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Fig. 1. Proposed LGEA module.

points as follows:

@(pi ;) = MLP(pil|(p; — pi)ll(pi, pj)sy) 2)

where p; and p; represent the coordinates of the central point and
its KNN neighboring points, respectively, and (p;, p;), denotes
the Euclidean distance between p; and p;.

b) Graph feature encoding: Different from position en-
coding, the graph feature encoding layer takes the feature en-
coded by the preceding network layer as input. Following the
approach of DGCNN [28], the layer can be defined as follows:

B(fis fr) = MLP(fil|(fx — fi) | (fi; fr)a) (3)

where the coordinates of the central point and its neighboring
points in feature space are denoted as f; and f, respectively,
while the feature distance between them is represented as
(fis fr)o-

c¢) Attention score: After obtaining the feature e;; of each
edge, a local aggregation operation is needed to update the
feature of the center point, so as to achieve a similar effect as the
convolution operation. Max pooling is the most commonly used
aggregation operation, but it will lose some features of points
in large-scale point cloud semantic segmentation, resulting in
loss of precision, which has been demonstrated in [15], [40],
and [41]. Following it, in order to preserve important features,
an attention score is calculated for each edge as follows:

aij = p(eij) )
where function p() is a shared MLP layer followed by a softmax
activation. Subsequently, to aggregate the features of neighbor-

ing points, the graph features are weighted by the attention scores
and summed as follows:

k
fi=a | 5(v(ey) - ay) Q)
j=1

where f; represents the enhanced feature output after the graph
convolution block. a(), d() and () are MLP layer. - is dot
product, and Z?Zl is sum operation.

2) Transformer Block: Transformer is a network architecture
commonly composed of three modules: input feature embed-
ding, positional encoding, and self-attention. The core com-
ponent is self-attention, which can generate attention features
based on the input features of the global context. To begin
with, the input feature fi,, can acquire three learnable weight
matrices Wq, Wk, and Wy through MLP. Consequently, the
matrices Query(Q), Key(K), and Value(V) can be expressed in
the following manner:

Q= fia x Wq
K:finXWK (6)
VZfinXWV

where X is matrix multiple.
Next, the attention weight between any point feature can then
be obtained by matching the Q and the K matrix

A = softmax (Q\;%K> (7)

where A is the generated attention map, and C represents the
dimension of Q and K. The attention feature is then defined as
the product of A and V

fsa:AXV 3)

Finally, the output feature by transformer block can be defined
as follows:

fout = MLP(fsa) + fin- (9)

It should be noted that the designed transformer block differ
from the previous methods in that the encoding of neighborhood
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Fig. 2. LASDU dataset colored by elevation.

features is discarded, because the graph convolution block men-
tioned earlier can well encode the local neighborhood features
of the point cloud. And then, elevation feature and elevation
self-attention feature are added to the block, which makes the
network more suitable for semantic segmentation of airborne
point clouds in large scenes. We will introduce it in the next
section.

3) Elevation Attention: Point clouds captured from airborne
environments exhibit distinct characteristics compared to those
captured indoors. And the height distribution of various point
cloud classes follows a consistent pattern. For instance, as illus-
trated in Fig. 2, roof points within the LASDU dataset usually
have higher elevations, while ground and low vegetation points
tend to have lower elevations. In order to integrate this attention
into the global feature scale, we compute the elevation attention
score using the following formula:

fete = MLP(Z) (10)

Sele = softmax (fele X eTle) (11)

Aatter = Apefore + Sele (12)

where Z is the z coordinates of the input point set, f%_ is the

transpose of elevation coding feature fe;e, Seje is the eleva-
tion attention score, and Ay fore is the is the attention weight
obtained in (7). Moreover, the elevation coding feature f.. is
added to fip_pefore to increase the sensitivity of input features
for elevation

finfafter = finfbefore + fele~ (13)

B. Network Architecture of Dense-LGEANet

Dense connection and deep supervision have been success-
fully applied in 2D image segmentation such as UNet++ [42],
and has gradually attracted the attention in the field of 3D
point cloud [25], [43], [44]. It can train the network with richer
features to improve the segmentation performance of different
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size objects. Inspired by it, we design the Dense-LGEANet,
which is built upon the LGEA module and shown in Fig. 3. The
network is a dense hierarchical network by constructing skip
pathways between down-sampling and up-sampling layers. The
down sampling layers use the farthest point sampling algorithm
to reduce the number of point cloud and encode the feature
by convolution module, while up sampling layers restore point
cloud to its original dimension by nearest neighbor interpolation
to output per-point prediction. Following PointNet+—+, the down
sampling layers and up sampling layers can be defined as set
abstraction (SA) layers and feature propagation (FP) layers, re-
spectively. Consequently, each feature F; ; extracted by different
layer can be expressed as follows:

SA( i— 1,]) j =0
- MLP(] zk]k O||FP( it+1,5— 1)),i=10,j>0
W) MLP([F i ol FP(Fig1-1)l[SA(Fi-1,-1),
1>0,7>0
(14)
where MLP denotes multilayer perceptron, and || means the
concatenation operation. It is worth noting that we use multiple
SA operations between different layer to facilitate the interaction
between features at different scales. Meanwhile, to optimize
computational efficiency, we selectively incorporate the LGEA
module into the j = 0 layer. Because of the dense connectivity of
the entire network, the features extracted by the LGEA module
can be effectively propagated to every layer.

C. Multiscale Loss Function

The distribution of object scales in airborne point clouds is
uneven, such as the roof is much larger than the car. To enhance
the accuracy of object segmentation across different scales, the
network uses a multiscale feature supervision training approach.
Specifically, the features F(0,3), F(1,2), F(2,1), and F(3,0) pass
through the fully connected layer to predict the confidence
scores for all candidate semantic categories, respectively. In
addition, deep supervision can be achieved by utilizing la-
bels of different resolutions { Ly € RVN*¢ L; € RN/4*C L, €
RN/16xC [, ¢ RN/64xCY The multiscale feature loss func-
tion based on the cross-entropy loss can be defined as follows:

3 N; C
’mf loss — Z)‘- Ll loss — Z Z Z)\-z (chj 1Og ﬁicj

i=0 j=1 c=1

+ (1= L) 10g (1- 7))

where L; ;55 represents the loss of the different feature, while 1
serves as a weight hyper-parameter. C stands for the total number
of categories, while N; signifies the count of points within the
respective category.

15)

III. EXPERIMENTS AND RESULTS

A. Datasets and Configuration

ISPRS Vaihingen 3D dataset [45] and LASDU dataset [46]
are used for our experiments. The ISPRS Vaihingen 3D dataset
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Fig. 3. Architecture of the proposed network.
TABLE I TABLE II

CLASS DISTRIBUTION OF THE ISPRS VAIHINGEN 3D DATASET CLASS DISTRIBUTION OF THE LASDU DATASET
Class Training Set Test Set Class Training Set Test Set
Powerline 546 600 Ground 704425 637257
Low Vegetation 180850 98690 Building 508479 395109
Impervious Surfaces 193723 101986 Tree 204775 108466
Car 4614 3708 Low Vegetation 210495 192051
Fence 12070 7422 Artifact 66738 53061
Roof 152045 109048 Total 1694912 1385944
Facade 27250 11224
Shrub 47605 24818
Tree 135173 54226
Total 753876 411722

comprises point clouds obtained from ALS in three distinct
regions, encompassing a total of nine classifications: powerline,
low vegetation, impervious surfaces, car, fence, roof, facade,
shrub, and tree. The data is collected above Stuttgart, Germany,
at an approximate altitude of 500 m, with a flying angle of
around 45°. The point density averages at approximately 6.7
points per square meter. Each point entry includes various fields
such as XYZ coordinates, reflectivity, repeat count information,
and label. The training set consists of 753876 points, while
the testing set contains 410722 points. Table I provides an
overview of the category distribution within the dataset. Fol-
lowing RFFS-Net [37], we partition the entire scene into regular
cuboid blocks measuring 30 m x 30 m horizontally. During
network training, we sample 4096 points from each block as
input, whereas in the test phase, all points are utilized to calculate
accuracy.

LASDU is a large-scale airborne point cloud dataset acquired
by the use of a Leica ALS70 system onboard an aircraft with
a flying height of about 1200 m. The point density is ap-
proximately 3—4 points per square meter. It encompasses four
distinct regions, namely Sections I-I'V, with semantic categories

including ground, buildings, trees, low vegetation, and artifacts.
A comprehensive breakdown of the category distribution can be
found in Table II. Sections II and III are used as the training set,
and the remaining Sections I and IV are selected as our test set.
Due to the relatively lower point density in LASDU, the dataset is
partitioned into regular cuboid blocks measuring 50 m x 50 min
the horizontal dimensions. During network training, 4096 points
are sampled from each block and fed into the network.

The WHU point cloud dataset is used to test the generalization
capability, including info point cloud and Luojia Hill point
cloud. The area corresponding to the data is the Department
of Information Science and Luojia Hill, Wuhan University. It is
collected using the Luojia Yiyun FT1500 LiDAR system [49], a
UAV-based device utilizing rotating mirror scanning. The point
clouds are highly dense, precise with common types of campus
elements, covering with lots of trees and buildings. However,
it has no semantic labels, so we provide the orthophoto for
qualitative evaluation of test result.

In our experiment, we configure the graph convolution block
to utilize 16 nearest points, and the hyper-parameters for the
weight in the multiscale feature loss function are set to {1g =
0.5,A1 = 0.2, A2 = 0.2, 13 = 0.1}. The batch size is set to 16,
and the model is trained for 500 epochs with a learning rate of
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. Powerline

Fig. 4.

Low vegetation . Impervious surfaces

0.002 for each training run. To minimize the loss function, we
employ the Adam optimizer with a weight decay of 0.002. All
experiments are conducted on a single NVIDIA A40 GPU. Fol-
lowing the previous work [37], we employ the overall accuracy
(OA), IoU score, and F1 score as evaluation metrics to assess
the performance of our proposed Dense-LGEANet. The OA
represents the percentage of correctly classified points out of the
total points. The IoU score measures the ratio of the intersection
to the union of predicted and true values for the same class, while
the F1 score is the harmonic average of accuracy and recall for
each category. The IoU and F1 scores are particularly suitable for
evaluating performance when dealing with imbalanced category
distributions, as they assess performance on a per-category basis.
The mathematical definitions for each indicator are provided in
the following formula:

. TP
precision = TPLFP (16)
TP
- 1
recall TPLFN (I7)
TP
1 = 18
oUscore TP+ FPTFN (18)
Flscore — 2 x precision X recall (19)

precision + recall

where TP represents true positives, FP represents false positives,
and FN represents false negatives. The mean F1 score (mF1) and
mean IoU (mloU) can be calculated as the mean of the F1 scores
and IoU scores across all categories, respectively.

Car . Fence . Roof . Facade . Shrub. Tree

Visualization of the classification results achieved by proposed Dense-LGEANet on the ISPRS Vaihingen 3D dataset.

B. Semantic Segmentation Results

1) Results on the ISPRS Vaihingen 3D Dataset: Fig. 4 illus-
trates the visualization of the prediction outcomes achieved by
our Dense-LGEANet on the ISPRS Vaihingen 3D dataset. It can
be seen that most of the points are classified correctly. Notably,
the red boxes indicate the classification results for representative
regions. Our network demonstrates excellent performance in
classifying both large-scale point cloud objects such as roofs,
and small-scale point cloud objects including cars, fences, and
powerlines. This capability stems from the integration of our
well-designed LGEA module, which comprises a graph convo-
lution block for capturing local details and a transformer module
for encoding global information. Through the application of
multiscale feature supervision training, the network becomes
efficient in learning local features across various scales, as well
as global features.

Table III presents a comprehensive comparison of the clas-
sification performance achieved by our Dense-LGEANet on
the ISPRS Vaihingen 3D dataset against several other meth-
ods, including PointNet++ [11], PointSIFT [47], PointCNN
[21], DGCNN [28], KPConv [24], RandLA-Net [15], SCF-Net
[18], and RFFS-Net [37]. The table clearly demonstrates the
superiority of our proposed neural network in terms of two
metrics, including mF1 and mIoU. Compared to the baseline
method of PointNet++-, our network achieved improvements of
2.0% in OA, 6.4% in mF1, and 6.5% in mloU. Furthermore,
when compared to the state-of-the-art performance of RFFS-
Net, Dense-LGEANet demonstrated improvements of 0.4% and
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TABLE III
QUANTITATIVE RESULTS OF THE DIFFERENT APPROACHES ON THE ISPRS VAIHINGEN 3D DATASET
Method Powerline Low_veg  Imp surf Car Fence  Roof Facade  Shrub  Tree OA mF1  mloU
PointNet++ 57.9 79.6 90.6 66.1 31.5 91.6 54.3 41.6 77.0 81.2  65.6 52.0
PointSIFT 55.7 80.7 90.9 77.8  30.5 92.5 56.9 444 79.6 822 677 54.6
PointCNN 61.5 82.7 91.8 75.8 359 92.7 57.8 49.1 78.1 833 695 56.3
DGCNN 44.6 71.2 81.8 42.0 11.8 93.8 64.3 46.4 81.7 783  59.7 46.8
KPConv 63.1 82.3 91.4 72.5 252 94.4 60.3 449 81.2 83.7 684 55.7
RandLA-Net 68.8 82.1 91.3 76.6  43.8 91.1 61.9 45.2 77.4 82.1 70.9 57.4
SCF-Net 64.2 81.5 90.8 739 352 93.6 61.5 43.4 82.6 83.2 69.8 56.8
RFFS-Net 75.5 80.0 90.5 78.5 455 92.7 57.9 48.3 75.7 82.1 71.6 58.2
Ours 72.2 80.8 92.1 78.7 41.2 93.9 61.5 47.2 80.5 83.2 720 58.5
The bold values mean the highest value of the current indicator.
. Ground . Building . Tree Low vegetation . Artifact
Fig.5.  Visualization of the classification results achieved by proposed Dense-  Fig 6.  Visualization of the point cloud feature on the LASDU dataset.

LGEANet on the LASDU dataset.

0.3% in mF1 and mloU, respectively. Notably, our network
achieved the highest classification performance in categories
such as impervious surfaces and roofs. This improvement can
be attributed to the incorporation of elevation attention, which
enhances the differentiation between these two feature types.
In addition, our method gets favorable results in challenging
categories such as powerline, car, and facade, where their points
are sparse and samples are limited. Because of the ability to
enhance each other between the features of different layers,
Dense-LGEANet can capture local features of different scales
to improve the performance of the category with little label.

2) Results on the LASDU Dataset: The visualization of pre-
diction results for the LASDU dataset achieved by our Dense-
LGEANet is depicted in Fig. 5. It shows that most of points are
correctly distinguished. The details of the scene’s classification
are highlighted by the red box. It can be seen that both the build-
ing points with regular structure and the tree points with irregular
structure have been accurately classified. This demonstrates the
network’s ability to perceive the overall structure as well as

the local structure. Furthermore, we visualize the last layer of
features in the network as shown in Fig. 6. The maximum value
in each point feature channel is selected as the feature response
value. It can be seen that due to the use of global transformer
feature and elevation attention, the Dense-LGEANet has larger
feature response value for the objects with greater height varia-
tions, and thus improves the perceptual ability of the network.
A performance comparison between our method and other
approaches on the LASDU dataset is presented in Table IV.
The methods included for comparison are PointNet++ [14],
PointCNN [21], DGCNN [28], KPConv [24], PosPool [48],
PointConv [22], and RFFS-Net [37]. Our Dense-LGEANet
demonstrates the best classification performance, outperforming
the other advanced methods in terms of mF1 and mIoU metrics.
Moreover, our network demonstrates superior performance in
four out of the five categories, including ground, building, tree,
and low vegetation, which can prove the high performance of our
method. It is worth noting that all of the methods have relatively
low classification accuracy on the artifact class of the LASDU
dataset. Because this category is composed of wall, fence, light
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TABLE IV
QUANTITATIVE RESULTS OF THE DIFFERENT APPROACHES ON THE LASDU DATASET

Method Ground Building  Tree Low veg  Artifact OA mF1 mloU

PointNet++ 87.7 90.6 82.0 63.2 313 82.8 71.0 59.0

PointCNN 89.3 92.8 84.0 62.8 31.7 85.0 72.1 60.9

DGCNN 90.5 93.2 81.6 63.3 37.1 85.5 73.1 61.6

KPConv 89.1 93.4 83.2 59.7 31.9 83.7 71.5 60.2

PosPool 88.3 93.7 83.9 61.0 38.3 83.5 73.0 61.4

PointConv 89.6 943 84.6 67.5 36.4 85.9 74.5 63.4

RFFS-Net 90.9 95.4 86.8 71.0 44.4 87.1 77.7 66.9

Ours 91.4 95.6 88.0 72.5 43.9 87.7 78.3 67.2

The bold values mean the highest value of the current indicator.
TABLE V TABLE VI
ABLATION STUDY OF THE CORE MODULES OF DENSE-LGEANET EXPERIMENT RESULTS OF DIFFERENT ELEVATION ATTENTION COMBINATION
METHODS

Model GCB TB EA DC mF1 mloU
A N 66.9 54.3 Model Q K \% SA mF1 mloU
B v 58.1 48.8 A 68.9 55.2
C v v 689 552 B v 69.1 55.3
D v v v 709 570 C v 69.5 55.9
E V 69.5 562 D v 69.8 56.6
F \ \ \ \ 720 585 E V v v v 70.9 57.0

The bold values mean the highest value of the current indicator.

pole, vehicle, and other artificial, the spatial and morphological
distribution of these objects are quite different, which brings
challenge to the training of the network.

However, our network’s classification accuracy in this cate-
gory is only second to that of RFFS-Net, which can be attributed
to the network’s ability to extract the global receptive field.

C. Ablation Study

In this section, we conduct ablation studies on the core com-
ponents, the integration of elevation attention features and dense
connected network architecture to demonstrate the effectiveness
of our Dense-LGEANet using the ISPRS Vaihingen 3D dataset.

1) Ablation Study of the Core Components: To verify which
component plays a key role in our network, we conducted some
ablation experiments as shown in Table V. Specifically, GCB
means graph convolution block, TB means transformer block,
EA means elevation attention, DC means dense connected net-
work architecture with multiscale feature supervision. Without
the addition of any modules, our network structure is the same
as the baseline of PointNet++. As can be seen from the table,
by adding the graph convolution block in model A, the mF1
and mloU experience increase by 1.3% and 2.3%, respectively,
which shows its ability to effectively aggregate local features.
However, when solely relying on the transformer block, the
classification accuracy significantly decreases, indicating that
encoding only global information is not suitable for large-scale
point cloud semantic segmentation. When local information
encoded in GCB is combined with global information encoded
in TB, the performance of the model can be further improved,
as shown in model C. The complete LGEA module, comprising
the GCB, TB, and EA, achieves an mloU of 57.0%, further
validating the effectiveness of our proposed module. In addition,
our approach achieves the best performance when employing the
dense connected network architecture, as shown in Model F.

The bold values mean the highest value of the current indicator.

Fig. 7 shows the detailed classification results of different
models. Subfigure (b) shows that the baseline method easily con-
fuses roof points with some tall tree points when no modules are
added. This situation improves when a dense connected network
architecture is used, but there is still a small proportion of facade
points and powerline points that are misclassified, as shown in
(c). The full model uses the transformer encoding mechanism
to fuse global context information and adds elevation attention,
so that it performs well in classifying objects at different scales,
such as powerline and fagade. The results are basically consistent
with the ground truth.

2) Ablation Study of How Elevation Attention Features Are
Combined: We conducted comparison experiments to explore
different methods of combining elevation attention features
within our transformer block. These experiments were per-
formed on a network without dense connected architecture.
In the transformer’s core self-attention mechanism, the query
items are represented by Q, the data items by V, and the cor-
responding keys by K. The final self-attention score (SA) is
a weighted sum of all data items, which is a global result.
Table VI illustrates the addition of global elevation coding
features to different parts of the transformer, with model E
achieving the best results. This result is also reasonable, because
adding elevation features to each item of self-attention makes
them have the same modal features, which is better for query in
global context information. At the same time, the combination of
elevation information is equivalent to adding an implicit position
code, which is more conducive to the learning of attention
scores.

3) Ablation Study of the Dense Connected Network Archi-
tecture: In order to explore the most reasonable dense network
structure design, we conducted multiple sets of ablation exper-
iments, as shown in Table VII. In particular, 3L represents the
3-layer network structure, 4L represents the 4-layer network
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Fig. 7.
(d) Ours.

TABLE VII
ABLATION STUDY OF THE DENSE CONNECTED NETWORK ARCHITECTURE

Model 3L 4L 5L DR MS mFl mloU
A \ 65.0 507
B \ \ 651 512
C \ < v 663  53.0
D v 68.7 552
E v Y 69.9  56.0
F v Y Y 72.0 585
G N 68.5  54.8
H y < 68.8 555
I N \ \ 70.6 575

The bold values mean the highest value of the current indicator.

structure, SL represents the 5-layer network structure, DR rep-
resents dense residual connection, and MS represents the multi-
scale loss function. As can be seen from the table, fewer network
structure layers cause the accuracy of semantic segmentation to
drop rapidly, but using DR and MS can improve the performance
to some extent. This also verifies their effectiveness, but in com-
parison, the performance improvement brought by MS is more
significant than that of DR, which can also be observed in other
network structures with different layers. This shows that in a
densely connected network architecture, multiscale loss function
can promote the network’s learning of features at different scales,
thereby improving performance. Furthermore, the network with
a 4-layer structure achieved the best results in our experiments.
Although there is not much performance gap with the network
with a 5-layer structure, more network layers mean more param-
eters and it is easier to cause the problem of overfitting.

D. Generalization Capability of the Proposed Model

To demonstrate the generalization capabilities of our proposed
model, we conduct additional experiment on WHU point cloud

Detailed results on the on the ISPRS Vaihingen 3D dataset with different models. (a) Ground truth. (b) Baseline. (¢) Ours without LGEA module.

Fig. 8.  Orthophoto corresponding to the WHU info point cloud.

dataset. In the experiment, we directly employ a pretrained
model derived from the LASDU dataset to classify the points
within the WHU point cloud dataset without retraining. It should
be noted that unlike the point clouds in the LASDU dataset, the
WHU point cloud dataset has a large difference in the elevation
distribution of building points and does not have any semantic
labels, which requires higher generalization performance of
the test model. The corresponding orthophoto and semantic
segmentation results are presented in Figs. 8 and 9, respectively.
It can be seen that our model can classify most of the point
clouds correctly, and the classification results can roughly cor-
respond to the orthophoto. However, in the classification results
of RFFS-Net, some building points are misclassified as artifact
points, which may be caused by the inconsistent elevation of the
buildings in the area. Our model overcomes this challenge by
incorporating elevation attention and global context information.
Fig. 10 provides a detailed view of the semantic segmentation
results obtained by our test model. It shows that our model
successfully distinguishes between buildings, trees, and arti-
facts (vehicles) adjacent to buildings, which verifies the strong
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Fig. 10.  Detailed results on the WHU info point cloud. (a) Raw point cloud.
(b) Result of RFFS-Net. (¢) Result of ours.

generalization ability of our proposed method. Figs. 11 and 12
show the classification results of the Luojia Hill point cloud.
Compared with the info point cloud, it has greater elevation
variation, but our network still classifies most areas correctly,
which further validates the effectiveness of our proposed feature
enhancement module.

E. Discussion

In the experiment, we compare the performance of different
models on the ISPRS Vaihingen 3D dataset, LASDU dataset,
and WHU point cloud dataset. The experimental results show
that our method gets excellent results on different datasets. It
can achieve an mloU of 58.5% and an mF1 of 72.0% on the
ISPRS Vaihingen 3D dataset, while an mloU of 67.2% and
an mF1 of 78.3% on the LASDU dataset. Our method also

Low vegetation . Artifact

©

Generalization validation results tested on the WHU info point cloud. (a) Input point cloud. (b) Result of RFFS-Net. (c) Result of ours.

Fig. 11.  Orthophoto corresponding to the WHU Luojia Hill point cloud.

achieves good results on some challenging categories, such as
powerline, car, facade, artifact, etc. Through detailed ablation
experiments, we conclude that the main reason for the im-
provement in model performance is the addition of the LGEA
feature enhancement module and the densely connected network
structure. The global context information obtained by the trans-
former and elevation attention in the LEGA module improve
the network’s perception of challenging objects and enhance the
generalization ability of the model. However, it should be noted
that global information obtained by transformer block cannot
be used alone. Only combined with local information obtained
by the graph convolution block, it can achieve better results.
Moreover, through ablation experiments on dense connected
network architecture, we find that too few network layers will
cause network performance to decline rapidly, but more network
layers do not mean a significant improvement in performance be-
cause it will cause training difficulties. Consequently, designing
a network structure with a reasonable number of layers is worth
exploring.
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IV. CONCLUSION

In this research, we present a novel Dense-LGEANet model
designed specifically for semantic segmentation of airborne
point clouds. In order to fuse local features and global context
information and improve the semantic segmentation accuracy
of large-scale airborne point clouds, we propose the LEGA
module, which includes graph convolution block and trans-
former block. The position encoding, graph feature encoding,
and attention score in the graph convolution block provide
effective encoding of local neighborhood information of point
clouds. Meanwhile, transformer combined with elevation atten-
tion effectively improves the network’s ability to perceive object
features with complex structures and differences in elevation
distribution. Through dense connected network architecture and
multiscale loss function supervision, our method effectively
achieves semantic segmentation of airborne point clouds, and
has excellent performance on the ISPRS Vaihingen 3D dataset,
LASDU dataset, and the WHU point cloud dataset. However, it
should be noted that our network also has limitations, such as
the global information extraction of the transformer and the use
of dense connected network architecture will inevitably increase
the computational complexity.

Moving forward, our future work aims to design a more
lightweight transformer module to reduce network parameters.
In addition, we intend to explore methods for training the net-
work with fewer labeled data or even in the absence of labeled
data, considering the high costs associated with data labeling
and training.
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