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Dual Encoder—Decoder Network for Land Cover
Segmentation of Remote Sensing Image

Zhongchen Wang“, Min Xia

Abstract—Although the vision transformer-based methods
(ViTs) exhibit an excellent performance than convolutional neural
networks (CNNs) for image recognition tasks, their pixel-level
semantic segmentation ability is limited due to the lack of explicit
utilization of local biases. Recently, a variety of hybrid structures
of ViT and CNN have been proposed, but these methods have
poor multiscale fusion ability and cannot accurately segment high-
resolution and high-content complex land cover remote sensing im-
ages. Therefore, a dual encoder—decoder network named DEDNet
is proposed in this work. In the encoding stage, the local and global
information of the image is extracted by parallel CNN encoder and
transformer encoder. In the decoding stage, the cross-stage fusion
module is constructed to achieve neighborhood attention guidance
to enhance the positioning of small targets, effectively avoiding
intraclass inconsistency. At the same time, the multihead feature
extraction module is proposed to strengthen the recognition ability
of the target boundary and effectively avoid interclass ambiguity.
Before outputting, the fusion spatial pyramid pooling classifier is
proposed to merge the outputs of the two decoding strategies. The
experiments demonstrate that the proposed model has superior
generalization performance and can handle various semantic seg-
mentation tasks of land cover.

Index Terms—Dual encoder—decoder, image segmentation, land
cover, vision transformer.

I. INTRODUCTION

AND cover segmentation is an important issue in remote
L sensing image processing. It involves the processing of
massive remote sensing image data and requires algorithms
with high-level semantic segmentation capacity at the pixel
level [1]. Accurate land cover segmentation technology can
provide reliable data support for urban planning, ecological
environment detection [2], [3], and other fields [4], and help to
improve the efficiency of urban resource utilization and prevent
natural disasters [5], [6]. Therefore, the development of efficient
and accurate land cover segmentation algorithm is one of the
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research hotspots of remote sensing image processing, and it is
also an urgent need in practical application.

Before deep learning technology is applied to semantic
segmentation, machine learning methods are the mainstream,
mainly divided into two categories: feature-based [7] and pixel-
based [8]. These traditional methods require manual design of
features and rules, and are difficult to deal with complex scenes
and multicategory problems. With the development of deep
learning technology, CNN-based methods have shone in the field
of computer vision. As an important downstream task of com-
puter vision, semantic segmentation emphasizes the pixel-level
classification ability of the model, which puts forward higher
requirements for the feature extraction and judgment ability
of the model [9], [10], [11], [12]. In 2015, Long et al. [13]
proposed a fully convolutional neural network. It modifies the
traditional convolutional neural network to support pixel-level
output. However, it is still difficult to locate the edge of the
object, and it is prone to segmentation defects at the pixel
level, and the processing of occluded objects is still not ideal.
In 2015, Ronneberger et al. [14] proposed a network UNet
with encoder—decoder structure and introduced skip-connection.
However, when dealing with excessive length-width ratio input
images, cross-layer interaction loses its effect, resulting in low
accuracy. In 2017, Zhao et al. [15] proposed PSPNet, which
is characterized by a pyramid pooling structure that enables
the network to effectively focus on scenes at different scales.
However, it does not deal with the scale and rotation invariance
in geometry, and it is easy to lose spatial information. In 2018, Li
etal. [16] proposed DeepLabV3, which uses dilated convolution
and atrous spatial pyramid pooling (ASPP) structure to process
multiscale objects, but it has poor accuracy in segmenting vivid,
moving, and deformed objects. In 2020, Khan et al. [17] com-
bined the advantages of DenseNet [18] and UNet in multiscale
feature extraction and retaining low-level features, respectively,
and innovatively proposed a deep hybrid network based on two
classical networks, which provides a new idea for semantic
segmentation tasks.

In summary, CNN-based semantic segmentation methods
generally have two ways to obtain global information. First,
the receptive field is improved by using dilated convolution
or multiscale pooling for deep features. Second, the overall
architecture of encoder—decoder is adopted in the model and
the context is connected by skip connection. The application of
transformer [19] in the field of image has completely changed
the method of obtaining global information. Transformer uses
a self-attention mechanism to calculate the correlation between
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each element and other elements in the sequence data [20], and
through the whole image processing, thereby eliminating the
limitations of local features and obtaining more global context
information. ViT, proposed by Dosovitskiy et al. [21] in 2020,
is an image classification model based on transformer, which
applies self-attention mechanism to image recognition for the
first time. However, its self-attention is always carried out on the
largest window, which causes its complexity to increase squarely
with the size of the image, so it is not suitable for processing
dense predictive tasks. Based on the idea of ViT, Chen et al. [22]
proposed SETR in 2021, which uses transformer as an encoder
in a seq2seq framework and uses small kernel convolutions,
allowing it to extract features without increasing the depth of the
feature maps. Wang et al. [23] proposed PVT in 2021. It is based
on the feature pyramid structure and uses a hierarchical form to
aggregate multiscale information of the network from low to
high. With the further exploration of transformer in the field
of vision, researchers have found that the simple transformer
structure is difficult to adapt to the detection and segmentation
tasks that require higher accuracy, and the larger computational
complexity is difficult to cope with high-resolution data input.
Therefore, based on these challenges, Liu et al. [24] proposed
swin transformer in 2021. It can compute self-attention within
a partitioned window and associate global information using
window shift operations.

In recent years, hybrid models based on CNN and transformer
have emerged in an endless stream [25], [26], [27]. In 2021,
Graham et al. [28] proposed a lightweight vision transformer
model LeViT through adaptive multiscale feature fusion and
cross-layer information transmission. Wu et al. [29] proposed
CVT in 2021, which introduces the characteristics of convolu-
tional neural networks into the ViT architecture. The adaptive
ability of transformer methods in different tasks is strengthened.
In 2022, Chen et al. [30] proposed mobile-former, which uses a
bidirectional bridge connection between MobileNet and trans-
former. The bridge is modeled using a proposed lightweight
cross-attention mechanism, which achieves high accuracy with
minimal computational cost. In 2022, Lee et al. [31] proposed
MPViT, which can independently encode different scale tokens
through multiple paths, so as to achieve fine and rough feature
representation at the same feature level. The hybrid model can
retain the ability of CNN to extract local features while utiliz-
ing the global attention mechanism of transformer to capture
long-range semantic relationships.

In semantic segmentation research on land cover, remote sens-
ing images are diverse in terms of height and angle of capture,
and complex object occlusion relationships within the images
severely affect the coherence of semantic information, leading
to misdetection or omission [32]. Existing hybrid models mostly
pursue lightweight design, which results in shallow depth and
insufficient multiscale capability, lacking recognition of small
targets and edge details, and prone to intraclass inconsistency
and interclass ambiguity [33]. In view of these problems, we de-
sign a hybrid structure network of dual encoder—decoder. In the
encoding stage, the network uses two strategies, convolution and
transformer, to extract features from the image in stages. In the
decoding stage, on the one hand, same-stage and adjacent-stage

2373

features are fused across stages to achieve multiscale fusion.
On the other hand, multihead extraction of deep features is
performed to expand the receptive field. Finally, an improved
spatial pyramid pooling (SPP) classifier is used to integrate the
outputs of the two decoders. The main contributions of our work
are listed as follows.

1) In order to achieve accurate segmentation with high reso-
lution, we propose a dual encoder—decoder network DED-
Net. This method can combine the advantages of CNN
and transformer to make full use of global information.
It can complete end-to-end training without any manual
parameter adjustment, simplifying the process of land
cover detection.

2) We propose the cross-stage fusion (CF) module between
encoders with its submodule: the neighbored-stage atten-
tion guidance (NAG) unit, the multihead feature extrac-
tion (MFE) module, and the fusion spatial pyramid pool-
ing (FSPP) classifier. DEDNet can effectively fuse dual
encoder and cross-scale features to improve the under-
standing of global context information. MFE can perform
multiple fusion in deep channels, improve the receptive
field of the model, and effectively deal with interclass
ambiguity and intraclass inconsistency. FSPP can reduce
the influence of feature map attributes on classification
performance and improve the generalization performance
of the model.

3) Quantitative and qualitative experiments on three datasets
show that the comprehensive performance of our pro-
posed DEDNet is always superior to other state-of-the-art
methods, achieving high-precision land cover semantic
segmentation.

II. METHODOLOGY

This article proposes a network DEDNet with dual encoder—
decoder. It combines CNN-based and transformer-based fea-
ture extraction, extended receptive field, and attention guidance
strategies in both encoding and decoding stages, which enables
it to effectively fuse local features and global features and
accurately identify land cover. The overall architecture of the
DEDNet network is shown in Fig. 1. In this section, we first intro-
duce the dual encoder stage of ResNet [34] and swin transformer.
Then, we introduce the CF module with its submodule: NAG
unit, and the MFE module in the dual decoder stage. Finally, we
describe the fusion pyramid pooling (FSPP) classifier for fusing
the output features of the dual decoder.

A. Dual Encoder

ResNet is used as the convolution encoder. The translation
invariance of CNN gives it strong image recognition and gener-
alization abilities, and it is robust to small changes in the image.
The residual structure of ResNet prevents gradient disappear-
ance even when it has many convolutional layers. At the same
time, it has more channels than the same-stage swin transformer,
giving it stronger model expression and local feature extraction
capabilities. The residual unit can be mathematically represented
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Fig. 1. Overall structure of DEDNet.

as follows:

Tit1 = Wipry(Wiri) +r;

ey

where 7; is the input vector of the ith residual unit, the func-
tion (-) represents ReLu function, and W; represents weight
matrices.

Swin-T is used as the transformer encoder. First, the input
RGB image is partitioned into nonoverlapping patches through
patch partition, and each patch is treated as a token. Then,
the vector dimension is set using a linear embedding layer.
Next, by employing window-based self-attention computation,
each window contains the same patches, addressing the issue
of quadratic growth in computational complexity with image
size, as observed in ViT [35]. Meanwhile, patches originally be-
longing to different windows can interact after the shift window
operation. The continuous swin transformer block using the shift
window partition method can be mathematically represented as
follows:

$; = MSA,(LN(s;_1)) + 5i_1 )

= MLP(LN(&,)) + & 3)

8i41 = MSA (LN(si41)) + 5 (4)
Si+1 = MLP(LN(8;41)) + 8i41 (5)

where MSA,, and MSAy,, represent multihead self-attention
modules with regular and shifted windowing configurations,
respectively, MLP represents multilayer perceptron, s; and s;
represent the output characteristics of MSA ), module and
MLP module, respectively, LN represents LayerNorm layer.
To achieve the construction of multilevel features, swin trans-
former uses patch merging before the stages, while ResNet
uses convolution groups in stages. Their purposes are the same,
which is to form a hierarchical structure through stage-by-stage
downsampling to extract multiscale features, which is crucial for

‘ - ’

[¢—Decoder 2

TABLE I
HIERARCHICAL STRUCTURE OF DUAL ENCODER

downsp. rate

Stage Transformer encoder Convolution encoder .
(output size)
1x1,64
SI Swin. [7]12; 936} 2 Res.|3x3.64 | x3 (56455 6
1x1,256
- . 1x1,128
$2 Swin. 7}:;;122 x2  Res.|3x3,128] x4 (288;28)
L ] 1x1,512
- : 1x1,256
S3  Swin. 7hX 2’31824 X6 Res.|3x3,256 | x6 (1i6xx14)
| ed ] 1x1,1024
- . 1x1,512
S4  Swin. 7hX 2772648 X2  Res.|3x3,512| x3 (732XX7)
| ea ] 1x1,2048

semantic segmentation tasks. The specific composition of each
stage is shown in Table I. In the hybrid encoder structure, we
refer to two common encoder mixing structures shown in Fig. 2.
Currently, existing hybrid structures can be broadly categorized
into two types: serial structure and parallel structure. Models
with the latter architecture have gained prominence in the field
of semantic segmentation. Sgformer [36] has achieved excellent
boundary segmentation results in land cover detection tasks.
ST-UNet [35] has demonstrated high accuracy in multiclass,
large-scale remote sensing image datasets. In addition, as shown
in Tables VI, VII, and VIII, [37], [38] of parallel structure
generally exhibit higher segmentation accuracy on land cover
datasets compared to [28], [39] of serial structure. Therefore,
we adopt the strategy of parallel extraction of features using
ResNet and swin transformer in the encoding stage.

B. CF Module

To make reasonable use of the advantages of ResNet and swin
transformer, we propose a CF module that can fuse the dual



WANG et al.: DUAL ENCODER-DECODER NETWORK FOR LAND COVER SEGMENTATION OF REMOTE SENSING IMAGE

: Transformer module or global feature extraction structure

.: Convolution module or local feature extraction structure

(b)

Fig. 2. Two main hybrid structures. (a) serial structure; (b) parallel structure.

encoder features. As shown in Fig. 3, this module can fully
integrate the outputs of the two strategies at the same stage during
decoding, as well as achieve CF, thus completing the fusion of
the encoder with the encoder and the encoder with the decoder
within one module.

Given stage n, the output s € R *¢s by the swin trans-
former encoder is reshaped into f, € R*"*® and the output
by the ResNet encoder is f. € R *"*%_First, f, enhances
the local information understanding ability of the feature map
through a 3 x 3 convolution, and then the channel is increased
to ¢, through a 1 x 1 convolution. At the same time, f,. and f;
are concatenated to obtain rich channel dimension information,
and the channel is then reduced to ¢, through global pooling
and 1 x 1 convolution to fully fuse multichannel and global
information. Then, the sigmoid activation function is applied
to map the value of each weight in the feature map to the
interval [0, 1] to obtain w, which can reflect the importance
of the corresponding channel. f. will be merged with f; by
addition after weighting the attention parameters, resulting in
fa € Rerhxw In the decoding stage, the next stage of the
CF output, which has a richer semantic information feature
map, will guide attention on f,;. The calculation formula for
the abovementioned process can be expressed as

(hxw)

w = o(Convy 1 (Convy g (Avg(Cat[f,, f5]))) (6)
fa = Convixi(Convzys(fs)) ©w + fr (7

where Conviy 1 () represents 1 x 1 convolution layer with batch
normalization. Convsys(-) represents 3 x 3 convolution layer
with batch normalization and ReLU, Avg(-) represents adaptive
average pooling, Cat[-] represents concatenation, o (-) represents
sigmoid activation function, and © represents element-level
multiplication.

C. NAG Unit

Decoder is often used to reconstruct the original input image
or complete the corresponding task from the feature vectors
obtained from the encoder. However, some traditional decoders
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often lose detailed information when processing large input im-
ages, resulting in difficulties for the model to accurately capture
details of images [40]. To address these issues, we combine the
self-attention mechanism and the ideas of BiseNet [41], [42] to
design the NAG unitin CF, as shown in Fig. 3. It can dynamically
adjust the attention of the network in different regions to enhance
the attention to targets in complex backgrounds, weaken inter-
ference from nontarget information thereby further improving
the performance and effectiveness of the decoder.

Depth-wise convolution (DWConv) is used to process the
output fif! € R2¢sxh/2xw/2 of the CF module in stage (n + 1)
to obtain the high-level features f;, € R¢*"/2x%/2_ At the same
time, DWConv also process fy of the CF module in stage
n, as the low-level feature f; € R *hxw Then, three linear
transformations are performed to map f}, into query matrix g, key
matrix k, and value matrix v. Then, by matrix multiplication of ¢
and k and applying the softmax activation function, the attention
score matrix is obtained. This matrix is then multiplied by the v
to obtain a feature map that considers global information. This
feature map is then activated by the sigmoid function to serve as
the guide feature map f, € R *"/2xw/2 guiding the low-level
feature map. There are two guiding methods. The first method is
that f; is globally pooled to obtain a feature map with a same size
as fy, so that it can be multiplied by f, and then upsampled to
restore its original size. The second method is that f; is processed
through 1 x 1 convolution without changing channels, and f,
is upsampled to the same size as f;, and then multiplied by it.
Finally, the outputs of these two guiding methods are added and
fused together. The calculation formula for the abovementioned
process can be expressed as

fo = 8(Convi_,(fn) @ Convi, (fn)) ® Convi,y (fa)- (8)
fa1 = Up(Ave(fi) © o(f,)) ©)
fg2 = Convii(fi) © o(Up(fy)) (10
four = Convsys(fg1 + fg2) (11)

where J(-) represents softmax activation function, Up(-) repre-
sents the upsampling, and ® represents matrix multiplication.

D. MFE Module

Low-view building images exhibit complex occlusion rela-
tionships and few smooth contours, being characterized by a
multitude of small protrusions or depressions, such as bound-
aries, chimneys, and corners obstructed by vegetation [43].
The model tends to blur these small angular boundaries and
targets, impacting the accuracy of predictions. Therefore, to
improve edge localization and segmentation, the model adopts a
multiscale information fusion strategy after preliminary feature
extraction. For instance, the pyramid pooling module (PPM)
of PSPNet utilizes pooling layers of different sizes to ex-
tract features of four different scales. In addition, the ASPP
of DeepLabV3plus employs multirate dilated convolutions to
create significantly different receptive fields between features.
Taking inspiration from these approaches, we introduce the MFE
module, illustrated in Fig. 4, for performing multiscale fusion of
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low-resolution high-channel feature maps after preliminary fea-
ture aggregation. MFE utilizes strip convolution and a residual
structure to achieve a wide range of equivalent receptive fields
at a low computational cost.

The MFE unit divides the input feature into five heads evenly
along the channel dimension, denoted as z;, ¢ €{1,2,3,4,5}.
Each head has a corresponding convolutional layer denoted as
L;(-), and its output y; can be represented as follows:

Ji Li(xi + yi-1),

1=1

i=234,5. a2

For each head, when ¢ €{1,2,3}, it corresponds to a 3 x 3
convolution. To reduce the number of model parameters, we use
stripe convolutions for ¢ = 4 and ¢ = 5, which are equivalent
to 5 x 5 and 7 x 7 convolution kernels, respectively. We use a
split design to realize these convolution kernels, which operate
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in parallel cascade while maintaining the same receptive field as
the original convolution kernels. Here, Conv,,,,, () represents
the convolution kernel, ~ and w represent the number of rows
and columns of the kernel, and C;(+) is the specific composition
in each head, which can be expressed as follows:

Convs,4(+), i=1,2,3
L;(-) = q Convg, () + Convy,5(-), i=4 (13)
C0nV7><1(') + COHV1X7(-), i =95.

When the input features pass through these filters, their filtered
output features can be considered as a result of increased re-
ceptive field. Due to the combinatorial effect, this design can
generate many equivalent feature scales, thereby enhancing the
feature selection ability of the convolution kernel at different
scales. At the same time, we use coordinate attention [44] outside
of the MFE unit to dynamically learn the relationships between
multiple channels and adaptively allocate different weights to
enhance the perception efficiency of the module. This improves
the performance of the model when processing low-angle build-
ing images with rich details and occlusions.

E. Fusion Spatial Pyramid Pooling Classifier

The two decoders employ different feature processing strate-
gies. Decoder 1 consists of CF and NAG, producing shallow
features enhanced through attention mechanisms. Decoder 2, on
the other hand, comprises MFE and skip connections, resulting
in features processed at multiple scales in the deep layers.
Therefore, fusing the output features from these two decoders
can complement contextual semantic information. However,
simple concatenation and dimension reduction may lead to the
loss of diversity between low-level spatial information and high-
level semantic information, potentially increasing false positive
rates [45].

To interact with semantic information across channel dimen-
sions and reduce false positives, we draw inspiration from the
commonly used SPP approach in object detection and create
fusion spatial pyramid pooling (FSPP) classifier, as shown in
Fig. 5. In FSPP, the feature maps are sequentially passed through
three maxpooling layers using a kernel size of 5 and padding
of 2. This constructs a pyramid-shaped spatial pooling layer
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at different scales. This design, without adding parameters,
effectively achieves the receptive field of maxpooling layers
with kernel sizes of 5, 9, and 13. Unlike traditional symmetric
receptive fields, the receptive field of FSPP adapts to different
scales in different positions for pooling operations. With the in-
troduction of FSPP, the semantic information differences caused
by the channel fusion operation of the dual decoder are flexibly
alleviated by the multiscale pooling layers. This helps mitigate
the risk of model overfitting and reduces the false positive rate,
enabling the model to better adapt to targets or scenes at various
scales.

III. EXPERIMENTS
A. Datasets

To test the performance of our proposed model for different
land cover scenes, we select three datasets with different num-
bers of classes, different focus objects, and different resolutions
for comparative experiments. Moreover, the cropped datasets
are all subjected to data augmentation to improve the model’s
generalization ability and anti-interference ability, including the
following three different types: horizontal and vertical rotation
(50%), random rotation (—10° to 10°). After obtaining the raw
dataset, we use hold out cross-validation [46] with an 8:2 ratio
to split the data into a training set and a validation set. By using
these three different datasets, we can evaluate the proposed
model’s adaptability and accuracy under different resolutions,
target categories, and land cover conditions, helping to verify
the model’s generalization ability. Sliced images in the datasets
and their labels are shown in Fig. 6.

1) Building and Water Dataset: We created a building and
water dataset (BWD) to test the model’s comprehensive perfor-
mance. The dataset was created from remote sensing images
captured by Google Earth (GE), with a total of 300 original
images with a size of 1600 x 900, including rural parks in
Asia and Europe, private residences in the U.S., and coastal
and lakeside residential areas. In terms of dataset processing,
first, the photos were divided into 224 x 224 images and labeled
as three classes of objects: water, building, and background.
Then, a total of 10000 raw datasets were obtained through
data augmentation and selection. The remote sensing images
in this dataset have a low viewing angle, rich object details, and
complex occlusion relationships, which pose a great challenge
to the model’s ability to handle edge details and small targets.

2) Gaofen Image Dataset (GID): This dataset is the large-
scale classification set of the publicly available GID [47] to
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test the ability to handle multiclass high-resolution images.
This dataset is a large-scale land cover dataset constructed
from remote sensing images from the GF-2 satellite. It contains
150 GF-2 images with pixel-level annotations, with a size of
7200 x 6800, including towns, villages, forests, and rivers in
various regions of China. The images were labeled into six
classes: buildings, farmland, forests, meadow, water, and back-
ground. In terms of dataset processing, we first selected 30 raw
images with single-image classification of three or more classes
and divided the photos into 512 x 512 images. Then, a total of
11400 raw datasets were obtained through data augmentation.
This dataset has diverse categories and high resolution, which
poses a great challenge to the model’s ability to handle interclass
ambiguity and intraclass inconsistency.

3) L8SPARCS Dataset: This multispectral public dataset
was developed by M. Joseph Hughes, Oregon State Univer-
sity, and was derived manually from precollection Landsat-8
scenes, which contains 80 1000x 1000 pixel subsets of Landsat
8 OLI/TIRS scenes. Each scene comes with manually created
cloud-realistic masks and color composite preview images. Each
image is provided as a thematic raster, including categories, such
as clouds, cloud shadows, snow/ice, water, and land. This dataset
can verify the generalization ability of the model in land cover
segmentation under the influence of clouds and cloud shadows.

B. Implementation Details

In terms of hardware, our experiments were conducted on
an Intel Core i5-13600KF CPU and an NVIDIA RTX 3090
GPU. The software used was based on PyTorch (version 1.13.1),
with adaptive moment estimation (Adam) [48] employed as
the optimizer, and cross-entropy loss used as the loss function.
During the network training period, the Poly strategy is applied
to dynamically adjust the learning rate, starting at 0.001 with
a decay exponent of 0.9, and a maximum training iteration of
200. Due to memory constraints, the batch size is set to 32 for
BWD and L8SPARCS, and 4 for GID. The evaluation metrics
in this study encompass precision (P), recall (R), F1 score,
pixel accuracy (PA), mean pixel accuracy (MPA), and mean
intersection over union (MIoU)

TP
P=——- 14
TP + FP (14)
TP
R= ——r 15
TP + FN (15)
P xR
Fl1=2x 16
P+R (16)
k .
PA — kzz:% a7
Zi:o Ej:o Pij
1 K Dii
MPA = - —[d (18)
k
k ; Zj:o Pi,j
1 & i
MIoU = v (19)
k k
k+1 ; D0 Pig T D j—0Pii — Pisi
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Fig. 6. Sliced images in the datasets and their labels. (a) BWD. (b) GID. (c) LESPARCS Dataset.
TABLE II
COMPARISON OF DIFFERENT DUAL ENCODER STRATEGIES

Method Dual Encoder PA(%) MPA(%) MIoU(%)

Variant_l VGGL6+PVT-T 93.03 94.24 871.72 Image Stage 1 Stage 2 Stage 3 Stage 4 ) Ground Truth

Variant_2 VGG16+Swin-T 93.73 93.28 88.46

Variant_3 ResNet50+PVT-T 94.57 94.33 90.18 Fig. 7.  Visualization of dual encoder fusion features in each stage.

Variant_4 ResNet50+Swin-T 94.78 94.40 90.52

The bold entities indicate the optimal.
TABLE III
ABLATION OF NAG CONNECTION POSITION IN DECODER1

where TR, TN, FP, and FN denoFe true posmyes, true negatives, Method PA(%) MPA (%) MIoU(%)
false posmves, and false negatives, respectlv.ely. k represents 2 94,46 9391 2900
the object segmentation class. The true class is represented by 1243 94.78 94.40 90.52
pi,i- pi,; represents the number of pixels related to class 7, but 142434 94.61 94.17 90.22

predicted as class j.

C. Dual Encoder—Decoder Strategy Analysis

1) Encoder Strategy Analysis: The primary role of the en-
coder is to capture local and global information within the image,
enabling subsequent layers of the network to understand the
semantic content of different regions in the image. A reliable hi-
erarchical encoder can progressively extract features and encode
them into higher level representations. Our model adopts a paral-
lel structure with both CNN and transformer encoders. VGG [49]
and ResNet are common choices for CNN encoder, capable of
multiscale feature extraction. PVT and swin transformer, on
the other hand, are effective at capturing global features hier-
archically. To select the most suitable encoder combination for
our dual branch parallel structure and efficiently achieve cross-
encoder fusion of local and global features, we conduct com-
parative experiments with various combinations, while keeping
other training parameters at their default values in Table II. Ex-
perimental results suggest that VGG struggles with high depth,
large-scale semantic segmentation tasks, whereas ResNet can
effectively constrain the performance of output features at each
stage using residual blocks, preventing feature divergence. PVT,
based on patch-wise image block encoding, tends to lose global
information during feature extraction, whereas swin transformer
achieves global information association for the entire image
using shifted windows. Therefore, our proposed model utilizes
ResNet and swin transformer as the dual encoder.

2) Decoder Strategy Analysis: In order to visually compare
the multiscale features of the fusion, Fig. 7 shows the typical
channel characteristics of the CF module output at each stage.
In the low-level stage of feature fusion, feature maps can only
encode low-level information, such as color and texture, so

The bold entities indicate the optimal.

vegetation areas with huge differences from house features will
be suppressed, but roads and shadows similar to house colors are
still difficult to distinguish. As the number of layers further deep-
ens, the network focuses more on capturing abstract semantic
information in the image, such as the concepts of objects, object
parts, and overall scenes. The resolution of these feature maps
is relatively low, but for the dense prediction task of semantic
segmentation, they contain more representative information. Itis
worth noting that although the output feature map of CF at stage
4 constructs good edge details, the interference of background
information increases. This is because as the stage increases, the
channel gap between the output features of the CNN encoding
block and the transformer encoding block in the same stage
gradually widens, resulting in global attention loss after feature
fusion.

We repeat the use of CF in Decoder 1, but the NAG submodule
in CF might impact the results when it connect between different
adjacent CF stages. Therefore, we conduct ablation experiments
on the NAG connections between different CF stages. The ex-
perimental results are shown in Table III. The numbers in 1<-2,
1+ 2 <3, and 1< 2 < 3 <4 represent the corresponding CF
stages, while the “4+—" indicates the NAG connections and their
directions. As the table shows, the best results are obtained when
the NAG is applied between adjacent CF stages, specifically
between CF Stage 1 and CF Stage 3.

In Decoder 2, we replace MFE with ASPP and PPM to
compare their deep processing capabilities. The experimental
results are shown in Table V. Meanwhile, to verify the rationality
of the skip-connection method used in the upsampling stage, we
compare it with no skip-connection and concatenation-based
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TABLE IV
COMPARISON OF UPSAMPLING SKIP CONNECTIONS IN DECODER2

Method PA (%) MPA (%) MIoU (%)
None 94.45 94.21 89.52
Addition 94.78 94.40 90.52
Concatenation 94.37 94.27 90.07
The bold entities indicate the optimal.
TABLE V

ABLATION FOR DIFFERENT MODULES IN THE MODEL

El E2 D1 D2 CLF MIoU(%)
Swin-T - - - - 85.11
Swin-T ResNet50 - - - 87.15(2.0471)
Swin-T ResNet50 CF - - 88.74(1.597)
Swin-T ResNet50 CF ASPP - 89.26
Swin-T ResNet50 CF PPM - 89.91
Swin-T ResNet50 CF MFE - 90.18(1.4471)
Swin-T ResNet50 CF MFE FSPP 90.52(0.341)

skip-connection similar to the decoder of UNet. The experi-
mental results are shown in Table IV. The addition-based skip-
connection achieves the best performance during the upsampling
stage.

D. Ablation Experiments for Modules

In this section, we conduct an ablation study on BWD to
evaluate the efficacy of the modules used in the encoding and
decoding stages. Table V shows the results. Fig. 8 shows each
ablation variant. In addition, Fig. 9 intuitively shows the impact
of our proposed modules on the model.

1) Ablation for Dual Encoder: InFig. 9(a), the ResNet50 en-
coder ignores the attention to all backgrounds, but the attention
intensity to the target area is weak. The situation in Fig. 9(b)
is quite different. Part of the attention of the Swin-T encoder
is attracted by the background, but the attention intensity to the
target areais very high. These phenomena show that although the
CNN-based ResNet50 has limited ability to extract key features,
it is also difficult to be interfered. Although the Swin-T based on
the self-attention mechanism has a high degree of attention to
the target, it has poor anti-interference. Therefore, we upgrade
the single-path structure of Fig. 8(a) to the double-path structure
of Fig. 8(b), and connect the features of each stage of the two
encoders through a simple parallel connection. The experimental
results show that the MIoU value is increased to 87.15 %, which
is limited compared to the performance improvement of a single
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Ilustration of the architecture variants. (a) Single encoder. (b) Dual encoder. (c) Dual encoder with single decoder. (d) Dual encoder—decoder.

Tmportan

Image & GT (a) (b) (C) (d) (e)

Fig.9. Ablation heatmaps of the modules. The first line of each sample is the
attention to the buildings, and the second line is the attention to the water. (a)
ResNet50 encoder. (b) Swin-T encoder. (¢) Model without CF and MFE. (d)
Model without MFE. (e) Complete model.

encoder. From the unsatisfactory visualization effect of Fig. 9(c),
it can be seen that this structure inherits the defects of the two
types of encoders.

2) Ablation for CF: Comparing Fig. 8(b) and (c), it can be
seen that CF is used to fuse the output features of the two
encoders and serve as a decoder. It can enhance the local feature
extraction ability of the transformer encoder while improving
the global attention of the convolutional encoder, fully realizing
the complementary advantages of the two. Experimental results
show that CF can increase the MIoU value by 1.59% compared to
simply parallelizing two encoders, but the surrounding attention
area of the target edge in Fig. 9(d) is scattered, which causes the
edge between classes to be blurred.

3) Ablation for MFE: Comparing Fig. 8(c) and (d), it can
be seen that we use MFE as the second decoder strategy, re-
sponsible for multiscale extraction of deep features, to improve
edge segmentation ability and reduce interclass ambiguity of the
model. This is consistent with the role of the ASPP module in
DeepLabV3plus and the PPM module in PSPNet. Therefore, we
replace MFE with ASPP and PPM for comparison. Experimental
results show that MFE performs the best among these modules,
increasing MIoU of DEDNet by 1.44%. As shown Fig. 9(e),
the attention of the target edge is optimized to reduce interclass
ambiguity.

4) Ablation for FSPP: As a classifier, this module can fuse
the outputs of two decoder strategies at multiple scales and
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TABLE VI
EVALUATION RESULTS OF DIFFERENT MODELS ON THE BWD
Frameworks Models Building Water Overall results
P(%) R(%) F1(%) P(%) R(%)  F1(%) PA(%) MPA(%)  MIoU(%)
DeiT 69.09  85.08 76.26 9329  89.22 91.21 88.58 86.20 79.82
ViTs SETR 76.02  85.40 80.44 9352 90.19 91.82 90.47 88.70 82.76
PVT 80.55 89.75 84.90 96.09  91.02 93.49 90.64 90.00 83.32
Swin-Unet 80.09  85.98 82.93 9587  92.64 94.23 91.42 92.14 85.38
BiseNetV2 78.86 8221 80.50 03.95 9428 94.11 91.67 90.24 84.30
PAN 80.89  85.62 83.19 96.88  93.39 95.10 92.51 92.11 86.59
DeepLabV3plus 83.94  85.41 84.67 96.76  92.97 94.83 94.03 92.67 87.29
CNNs HRNet 8536  83.84 84.59 98.07  94.95 96.48 93.93 93.15 87.96
PSPNet 8633  91.19 88.69 98.51 94.77 96.60 94.05 93.79 88.32
UNet 86.15  92.59 89.25 98.70  95.54 97.09 93.97 93.41 88.49
OCRNet 8423 9207 87.89 98.32  98.16 98.20 93.86 93.54 88.83
ACFNet 85.31 93.51 89.22 98.72  97.85 98.28 94.21 93.56 89.51
LeViT 75.33 85.25 79.98 9549  91.88 93.65 89.40 86.86 80.46
Hybrid CVT 8334  84.12 83.73 9576 95.01 95.38 88.83 89.17 83.61
structures DBNet 86.57  92.01 89.21 98.91 96.44 97.66 94.15 93.55 89.37
(ViT+CNN) DBPNet 86.33 92.19 89.16 98.87 97.12 97.99 94.46 93.82 89.48
DEDNet(Ours) 86.75  92.94 89.74 98.95  97.64 98.29 94.78 94.40 90.52

The bold entities indicate the optimal.

effectively avoid overfitting. Experimental results show that
FSPP can increase MIoU by 0.34%.

E. Comparative Experiments on Different Datasets

In this section, we compare our proposed model with state-of-
the-art models on three different datasets in order to demonstrate
the feasibility of our algorithm. In the table, CNNs represent
models based on convolution, including DeepLabV3plus [16],
UNet [14], etc. ViTs represent models based on version trans-
former, including SETR [22], DeiT [50], etc. Hybrid structures
represent combination models based on CNN and transformer,
including LeViT [28], CVT [29], etc. These methods all have
their own characteristics. DBNet [37] and DBPNet [38] adopt
a dual branch architecture to extract spatial and semantic in-
formation. PAN [51] use pyramid structures for multiscale
feature fusion. HRNet [52] and OCRNet [53] have efficient
parallel computing capabilities and use high-resolution feature
maps to improve the spatial resolution of the model. ACFNet
uses a category-based receptive field adjustment and attention
mechanism. Swin-Unet [54], UNet [14] use different backbones
to compose encoder—decoder structures and skip connections.
DeiT [50] uses knowledge distillation and data augmentation
techniques to achieve performance comparable to large-scale
pretrained models when using limited amounts of labeled data.

1) Comparative Experiments on BWD: InTable VI, P, R, and
F1 scores are used to evaluate the segmentation performance for
two targets. For building detection, our model outperforms other
methods in terms of P and F1, reaching 86.75% and 89.74%,
respectively, with R slightly lower than ACFNet. For water
detection, our model achieves the best P and F1 scores, reaching
98.95% and 98.29%, respectively, with R slightly lower than
OCRNet. Second, PA, MPA, and MIoU are selected to evaluate
the comprehensive segmentation capability of the model. Our
model achieve the best scores, reaching 94.78%, 94.40%, and
90.52%, respectively. It can be seen that the ViTs struggle to

leverage their advantages in pixel-level semantic segmentation
scenarios, with overall scores generally lower than CNNs. How-
ever, hybrid structures have great potential.

Fig. 10 shows the segmentation results of different models on
object boundaries. The first and second rows show images of a
residential house and a swimming pool photographed from a low
angle. Due to the low angle, the buildings and vegetation in the
images have complex occlusion relationships, which result in
extremely irregular shapes for each category. There are many
protrusions and cavities at category boundaries, such as the
chimney of the house in the first row. PSPNet, UNet, and OCR-
Net cannot recognize the shape of the chimney, while DBNet,
DBPNet, and ACFNet only roughly segment the chimney into a
jagged shape. DEDNet can restore the rectangular shape of the
chimney completely. The third and fourth rows show images of a
factory photographed from a high angle. Due to the higher angle,
the shapes of the objects are relatively regular, but sometimes
objects and shadows or road colors are similar, such as the narrow
street, shadow, and house colors in the third row. CNN-based
models cannot fully identify the background between houses.
Due to the lack of multiscale extraction of deep features, DBNet
and DBPNet are difficult to locate sparse edge features, so they
can only roughly divide the chimney into jagged shapes. The
MFE module uses multiscale strip convolution and coordinate
attention to make DEDNet better understand the geometric
structure of the target edge, which improves the anti-interference
ability of the model when dealing with sparse and irregular
edges.

Fig. 11 shows the attention of different models to small
objects. The first and second rows show images of amusement
facilities and swimming pools photographed from a close dis-
tance. Due to the short distance, small interfering objects at the
water boundary in the image, like the handrail at the edge of
the swimming pool in the first row, are prominently marked in
the label. PSPNet, OCRNet, and DBNet are unable to identify
the shape of the handrails. UNet and ACFNet could only extract
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Fig. 11. Comparison of small target results among different models on BWD.

very little information, resulting in a disconnect between the
steps leading into the water and the pool. However, our model
can accurately recognize the handrails and steps at the edge of the
pool, ensuring the continuity of the water. The third and fourth
rows show images of multiple buildings and water photographed
from a long distance. Due to the long distance, the resolution of
the targets is low and the attention of the model to the details
of the targets will decrease significantly, such as the buildings
in the distance and the vegetation in the background in the third
row image. None of the CNN-based models fully capture the
outline of the hut. DBNet and DBPNet utilize deconvolution

b
DBNet

DBNet
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ACFNet DEDNet Ground Truth

Comparison of edge segmentation results among different models on BWD.

DBPNet ACFNet DEDNet Ground Truth

layers and channel attention modules as decoders, respectively.
However, these decoders can only correlate a portion of the
encoder’s information through skip connections, lacking the
global information combined with the dual encoder. This global
information integration is crucial for capturing subtle features.
In contrast, the CF module in our model allows for a more
comprehensive integration of the global information from the
dual encoder, enabling DEDNet to better focus on small targets.

2) Comparative Experiments on GID: In Table VII, we use
the class pixel accuracy (CPA) score to evaluate segmenta-
tion performance on five target objects. Our proposed method
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TABLE VII
EVALUATION RESULTS ON THE GID

CPA (%) Overall results
Frameworks Models —
Building Farmland Forest Meadow Water PA(%) MPA(%) MIoU(%)
DeiT 86.85 73.23 95.48 73.78 89.61 85.24 84.08 74.46
ViTs SETR 90.24 76.94 94.46 73.48 90.14 85.93 85.80 75.99
PVT 89.94 77.38 92.35 74.81 91.61 86.11 85.52 76.15
Swin-Unet 93.86 94.14 97.41 87.90 92.80 90.68 91.95 82.04
BiseNetV?2 90.72 83.59 96.64 90.08 94.48 90.61 91.69 83.46
DeepLabV3plus 91.55 89.87 97.30 90.02 94.52 92.20 91.85 85.30
CNNs PAN 91.75 92.87 96.90 90.36 96.13 93.40 93.47 87.78
HRNet 95.30 94.78 97.42 89.11 96.78 93.69 94.10 88.27
UNet 90.89 89.65 97.24 80.49 95.08 93.92 92.85 88.30
ACFNet 92.50 93.36 97.09 87.70 95.70 93.94 93.68 88.94
PSPNet 91.31 93.74 95.74 91.79 96.91 94.23 93.86 89.55
OCRNet 94.22 94.40 97.33 90.03 97.50 94.89 94.60 90.61
LeViT 89.46 88.28 95.11 76.15 91.95 86.79 85.66 77.82
Hybrid CVT 91.29 78.40 96.68 82.38 91.32 88.18 86.91 78.53
structures DBNet 96.13 95.95 97.26 89.96 97.13 95.09 94.99 90.68
(ViIT+CNN) DBPNet 95.36 94.73 97.44 91.79 96.22 95.21 95.02 90.99
DEDNet(Ours) 94.28 96.61 97.40 91.92 97.71 95.78 95.57 92.07

The bold entities indicate the optimal.
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Fig. 12.

achieves the highest accuracy in segmenting farmland, meadow,
and water, with scores of 96.61%, 91.92%, and 97.71%, respec-
tively, while slightly lower scores than DBNet and DBPNet in
building and forest. Then, we use PA, MPA, and MlIoU to evalu-
ate the overall segmentation ability. Our proposed model achieve
the best scores of 95.78%, 95.57%, and 92.07%, respectively.
In Fig. 12, we find that multiclass land cover segmentation
faces some challenges and difficulties during the segmentation
process. First, the main difficulty lies in interclass ambiguity.
Different types of land cover may appear visually similar, for
example, the boundary between buildings and farmland may
be blurred, and water and farmland may have similar colors
and textures. This interclass ambiguity makes it difficult for

OCRNet

Comparison of segmentation results among different models on GID.

DBPNet DEDNet

Ground Truth

DBNet

the model to accurately distinguish between these similar cat-
egories, resulting in misclassification and confusion. Another
difficulty is intraclass inconsistency. The same type of land
cover may have different appearances and features in different
images, such as different types of buildings and different stages
of farmland, which increases the difficulty of handling intraclass
variability. UNet, PSPNet, and OCRNet have rough boundaries
for building groups. ACFNet tends to mistake dark backgrounds
for crops. UNet, ACFNet, and PSPNet have obvious intraclass
inconsistencies. DBNet and DBPNet mistakenly identify con-
tainers with similar colors and shapes to buildings. However, our
model can effectively avoid interclass ambiguity and intraclass
inconsistency.
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TABLE VIII
EVALUATION RESULTS ON THE L8SPARCS
Frameworks Models CPA(%) Overall Results
Cloud Cloud shadow Snow/Ice Water Land PA(%) MPA(%) MIloU(%)
DeiT 89.68 78.25 91.62 94.03 94.60 92.27 89.63 80.37
ViTs SETR 91.74 82.29 91.25 92.61 93.96 92.50 90.37 80.73
PVT 91.95 82.25 93.75 90.95 94.62 92.97 90.70 81.86
Swin-Unet 91.78 82.53 94.26 92.10 95.31 93.47 91.20 83.07
UNet 87.57 72.62 92.58 92.63 92.96 90.60 87.67 78.62
BiseNetV2 92.20 84.51 93.98 93.67 94.44 93.30 91.76 82.52
CNNs PSPNet 93.56 85.35 94.24 93.48 95.71 94.34 92.47 84.98
PAN 92.52 85.79 93.90 94.46 96.03 94.40 92.54 85.12
DeepLabV3plus 93.40 85.48 94.37 95.92 96.03 94.65 93.04 85.52
HRNet 93.12 86.83 96.18 93.48 96.77 95.11 93.28 86.88
ACFNet 93.25 86.78 95.38 96.31 96.66 95.19 93.70 87.11
OCRNet 84.91 89.32 96.46 93.15 93.68 94.27 93.69 88.17
LeViT 94.15 85.52 93.91 93.47 92.13 88.36 85.31 82.48
Hybrid CVT 93.89 82.52 95.05 89.41 97.09 94.05 90.38 84.43
structures DBNet 95.40 88.15 96.10 95.91 96.87 95.72 94.36 88.25
(ViT+CNN) DBPNet 95.13 89.38 96.32 96.15 97.03 95.95 94.68 88.86
DEDNet(Ours) 94.76 88.53 98.73 96.40 97.51 96.34 94.98 89.90

The bold entities indicate the optimal.
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Fig. 13.

3) Comparative Experiments on LSSPARCS: In Table VIII,
we use the CPA to evaluate segmentation performance on five
target objects. Our proposed method achieves the highest ac-
curacy in segmenting snow/ice, water, and land, with scores
of 98.73%, 96.40%, and 97.51%, respectively, while slightly
lower scores than DBNet and DBPNet in cloud and cloud
shadow. Then, we use PA, MPA, and MIoU to evaluate the
overall segmentation ability. Our proposed model achieve the
best scores of 96.34%, 94.98%, and 89.90%, respectively.

In Fig. 13, the focus of the first and second rows is on small
streams within mountainous and wetland areas. The small
size and meandering shapes of these streams, combined with
complex terrain and various environmental interferences like
vegetation and rocks, make it challenging to distinguish the

OCRNet

DBNet DBPNet DEDNet Ground Truth

Comparison of segmentation results among different models on LESPARCS.

target from the background. In addition, variations in lighting
conditions can affect image brightness and contrast, further
adding to the segmentation challenges. In the third and fourth
rows, the areas exhibit significant changes in elevation, transi-
tioning from low-altitude regions to high-altitude regions with
transformations from forests to grasslands and then to snowy
areas. These regions lack distinct boundary features, making
it difficult for segmentation algorithms to accurately capture
and delineate these edge details. Furthermore, clouds and their
shadows can severely disrupt coherent semantic information,
leading to the loss of contextual cues. To overcome these
challenges, the model needs to combine sensitivity to subtle
texture differences with the utilization of contextual information
from the surrounding background. DeepLabV3plus and HRNet
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Fig. 14.

exhibit strong local feature extraction capabilities, but they
lack the ability to handle interference effectively, making it
difficult for them to capture continuous streams. ACFNet and
OCRNet, while excelling at category discrimination, suffer from
limited global receptive fields, making it challenging to associate
semantic information between distant pixels. This limitation can
lead to confusion between ridge shadows and cloud shadows.
DBNet and DBPNet, due to their use of transformer encoding at
multiple scales, exhibit strong global comprehension abilities,
almost entirely avoiding false detections. However, their ability
to recover fine details is still not as strong as our proposed model.

4) Efficiency Analysis: Based on performance metrics such
as floating-point operations (Flops), parameter count (Params.),
and inference time, we compare the efficiency of our proposed
model with other models. We randomly select 500 images of
size 224 x 224 pixels from the validation set for inference
operations, and average all results to evaluate model inference
time. As shown in Fig. 14, the Flops of our proposed model
is significantly lower than those of CNNs, but due to frequent
use of self-attention mechanism and deeper encoder channels,
the Params. of our model is higher. ViTs have smaller Params
and Flops, but their segmentation results are far inferior to
our proposed model. The comprehensive performance of the
compared hybrid models is better, but their inference speed is
slower than ours.

IV. CONCLUSION

In this article, we proposes an end-to-end land cover remote
sensing image segmentation method using a dual encoder—
decoder network. The proposed method first uses CNN and
transformer as dual encoder to extract local and global features
of the image. Then, CF and MFE are used as dual decoder
to perform multiscale feature fusion and deep feature mining.
The experiments show that compared with other state-of-the-
art methods, our proposed method can accurately locate small
targets and restore target boundaries completely, avoiding in-
traclass inconsistency and interclass ambiguity. In addition, it
can handle different types of land cover segmentation tasks with
strong generalization performance.

However, there is still room for improvement in our proposed
method. First, there is an excessive reliance on a large and diverse
set of labeled data, as our model generally employs self-attention
mechanism, making the network prone to overfitting on small
datasets. Second, the model has a large number of parameters,

Floating point comparison diagram of models efficiency metrics. The label corresponds to the abscissa data.

making it challenging to efficiently deploy the model in edge
devices or resource-constrained environments. Future work will
focus on optimizing the multiscale fusion of the model by
introducing innovative encoding strategies to maintain perfor-
mance while reducing the number of parameters. In addition, we
will fully explore the model’s outstanding multiclass semantic
segmentation capability and investigate its applicability in other
domains, such as healthcare and environmental monitoring.
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