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Joint Network Combining Dual-Attention Fusion
Modality and Two Specific Modalities for Land

Cover Classification Using Optical and SAR Images
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Abstract—Optical and synthetic aperture radar (SAR) images
provide various complementary information on land properties,
which can substantially improve the accuracy of land cover clas-
sification because of the fusion of their multisource information.
However, excellent extraction of the discriminative information of
optical and SAR images and effective integration of the interpreta-
tion information of multisource data remain challenging issues. In
this study, we have proposed a novel joint network that combines
a dual-attention fusion modality and two specific modalities to
achieve superior land cover classification maps, which has two
modes of encoding-level fusion (JoiTriNet-e) and decoding-level
fusion (JoiTriNet-d). We first proposed a strategy for the fusion
modality and specific modalities joint learning, the goal of which
was to simultaneously find three mapping functions that project op-
tical and SAR images separately and together into semantic maps.
Two architectures were constructed using the proposed strategy,
which improved the performance of multisource and single-source
land cover classification. To aggregate the heterogeneous features
of optical and SAR images more reasonably, we designed a multi-
modal dual-attention fusion module. Experiments were conducted
on two multisource land cover datasets, among which comparison
experiments highlighted the superiority and robustness of our
model, and ablation experiments verified the effectiveness of the
proposed architecture and module.

Index Terms—Convolutional neural network (CNN), data
fusion, deep learning (DL), land cover classification, multimodal
semantic segmentation, optical images, synthetic aperture radar
(SAR) images.

I. INTRODUCTION

W ITH the rapid development of Earth observation tech-
nologies, a substantial number of remote sensing satel-

lites equipped with different types of sensors are operated to
observe the Earth [1]. Therefore, multisource remote sensing
images (RSIs) can be obtained of most regions of Earth [2].
These include optical images with abundant spectral and spatial
information and synthetic aperture radar (SAR) images with
all-day and all-weather capabilities. These multisource RSIs
provide complementary information on land features [3], [4],
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[5]. Optical images with high spatial resolution can not only
provide rich texture information but also present the essential
features of ground objects through the multiple different bands
contained in them. However, owing to the passive imaging of
optical sensors and the influence of natural climate, optical
images cannot always be obtained. By contrast, active SAR
imaging is not limited by weather conditions and can provide
unique scattering and geometric features for ground targets.
However, given the inherent speckle noise, the image resolution,
signal-to-noise ratio, and semantic interpretation of SAR are
lower than those of optics [6]. This has encouraged researchers
to combine complementary optical and SAR images for specific
applications. Integrating radiation information from optical im-
ages and scattering information from SAR images is beneficial
for land cover classification [7], [8], [9]. This plays an essential
role in agricultural resources statistics [10], [11], ecological
environmental monitoring [12], [13], and urban construction
planning [14], [15].

Methods for multisource land cover classification using op-
tical and SAR images can be divided into machine learning
(ML) and deep learning (DL). Traditional ML methods first fuse
optical and SAR images with pixel-, feature-, or decision-level
fusion algorithms [16] and then exploit the support vector ma-
chine [17], Markov random field [18], subspace [19], decision
tree [20], and other classification methods. These methods rely
on prior knowledge and artificial descriptors with limited feature
expression abilities, which often cannot adequately express com-
plex semantic information. In contrast, DL methods overcome
the limitations of artificial features and have become the most
advanced tools for a range of tasks in the field of remote sensing
image interpretation owing to their powerful feature extraction
ability [21], [22], [23]. Various encoder–decoder architectures
developed in recent years have considerably improved the accu-
racy of semantic segmentation, making deep convolutional neu-
ral networks (DCNNs) the current mainstream method for land
cover classification [24]. In this context, the open multisource
land cover datasets SEN12MS [25] and DFC2020 [26], which
drive the training of multimodal DL models, have been released
successively, providing a new opportunity for more accurate land
cover classification using optical and SAR images.

There are two major issues in applying a DCNN to multi-
source land cover classification using optical and SAR images.
One is how to excellently extract the discriminative information
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of specific modalities, the quality of which affects the perfor-
mance of the fusion feature and determines the upper limit of the
entire model. However, current research mostly employs a differ-
ent [27], [28] or pseudo identical [29], [30] two-stream network
to extract features from optical and SAR images, where these
streams are directly coupled and cannot be used to sufficiently
explore the features of specific modalities. The second is how to
effectively capture complementary information in multisource
RSIs data and integrate multimodal information, the amount of
which directly affects the performance of the fusion features and
determines the lower limit of the entire model. Most previous
studies [30], [31], [32] have designed fusion modules based on
attention mechanisms; however, they consider channel attention
while excluding the role of spatial attention.

To address these issues, we have proposed a joint network
that combines a dual-attention fusion modality and two specific
modalities to obtain excellent land cover classification maps,
which has two modes of encoding-level fusion (JoiTriNet-e)
and decoding-level fusion (JoiTriNet-d). On the one hand, we
proposed a strategy for the fusion modality and specific modal-
ities joint learning (FSMJL) to improve the ability to extract
modality-specific discriminative information. On the other hand,
we designed a new multimodal dual attention fusion mod-
ule (MDAFM) to improve the ability to integrate multisource
complementary information. Specifically, the FSMJL aims to
simultaneously find three mapping functions that project op-
tical and SAR images separately and together into semantic
maps, enabling the model to improve the performance of both
multisource and single-source land cover classifications. The
MDAFM aims to perform channel and spatial attention before
and after cascading convolution operations to aggregate comple-
mentary information of heterogeneous features more effectively.
The contributions of this study can be summarized as follows.

1) We first analyzed the multimodal semantic segmentation
architecture based on the encoder–decoder structure and
summarized two architectures: encoding level feature fu-
sion (ELF) and decoding level feature fusion (DLF). We
then proposed the FSMJL strategy to improve the ability to
extract discriminative information from specific modali-
ties and accordingly designed fusion modality and specific
modalities joint learning architecture of encoding-level
feature fusion (FSMJL-ELF) and fusion modality and
specific modalities joint learning architecture of decoding-
level feature fusion (FSMJL-DLF) architectures.

2) Second, we designed a new multimodal feature fusion
module, MDAFM, which comprises two channel attention
blocks, spatial attention, and Conv-BN-ReLU blocks.

3) Based on the designed architectures and module, we
constructed JoiTriNet-e and JoiTriNet-d. They not only
demonstrate exceptional performance compared to other
multisource land cover classification methods but also
exhibit robustness in generating accurate land cover clas-
sification maps when only one modality is available, even
surpassing the accuracy of networks trained on a single
modality.

4) We demonstrated the superiority and robustness of the
proposed network through comparative experiments on

two multisource land cover datasets and verified the ef-
fectiveness of the proposed strategy and module through
ablation experiments.

The rest of this article is organized as follows. Section II
presents relevant research on the land cover classification of
multisource RSIs. Section III introduces the proposed joint net-
work combining dual-attention fusion modality and two specific
modalities. Section IV describes the experiments and discusses
the results of the comparative and ablation experiments. Finally,
Section V concludes this article.

II. RELATED WORK

A. Land Cover Classification of RSIs

Traditional land cover classification methods for RSIs typi-
cally use a limited number of rules to categorize images based
on different spatial units, such as pixels and objects [33].
However, artificial feature descriptors in traditional ML ap-
proaches often only involve low-level features of the spectral
and spatial domains, making it difficult to effectively recog-
nize complex land structures. Recently, DL has been widely
applied in land cover classification owing to its advantages in
multiscale and multilevel feature extraction and has achieved
optimal results [34]. Land cover classification methods based
on DL can be broadly divided into two categories according to
the spatial representation level of the labels, namely patches,
and pixels. Patch-level algorithms are suitable for land cover
classification of medium-resolution RSIs because they lack the
fine structural information of the image [35]. Sharma et al. [36]
proposed a patch-based recurrent neural network for land cover
classification in multitemporal and multispectral RSIs. Song
et al. [37] designed a lightweight convolutional neural network
(CNN) for land cover mapping using Landsat-8 data. Pixel-level
algorithms aim to assign land cover labels to each pixel in RSIs
using end-to-end DL models, similar to semantic segmentation
in natural images. Currently, state-of-the-art semantic segmen-
tation frameworks for RSIs are encoder–decoder structures [38],
[39] that capture rich multilevel contextual information over
relatively large receptive fields. Ghosh et al. [40] proposed a
dilated stacked U-Net architecture for semantic segmentation
of RGB RSIs. Mohammadimanesh et al. [41] introduced a fully
convolutional network architecture for classifying complex land
cover ecosystems using polarized SAR images. Liu et al. [42]
proposed a dense dilated convolution merging network for land
cover classification using fused local and global contextual
information.

Owing to the limitations of remote sensing satellite sen-
sors, it is usually impossible to meet all the requirements for
high temporal, spatial, and spectral resolutions. The fusion of
complementary information from multisource RSIs for land
cover classification has proven to be a promising approach for
improving accuracy [9].

B. Multisource Land Cover Classification of RSIs

Land cover classification methods for multisource RSIs can
be divided into either ML- or DL-based. Traditional methods
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primarily consist of two steps, namely multisource RSIs fusion
and ML-based classification. For example, Iervolino et al. [43]
fused multispectral, panchromatic, and SAR data based on
generalized intensity-hue-saturation transform and the atrous
wavelet transform, and used a standard maximum likelihood
classifier for land classification. In terms of multisource RSIs
fusion methods, salentinig et al. [15] explored the multispec-
tral and SAR data fusion techniques at the raw data, feature,
and decision levels. Kulkarni et al. [16] summarized various
pixel-level methods for SAR and optical image fusion. In terms
of ML-based classification methods, Sukhavatanavit et al. [17]
proposed an algorithm based on genetic algorithms and support
vector machines for the classification of SAR and multispectral
images. Qin et al. [20] proposed a general model for multi-
source RSIs classification based on the Markov random field.
In addition, other methods include subspace [19] and decision
tree [20], [44] and other methods. However, these artificial
feature descriptor methods often rely on prior knowledge and
have limited expressive ability, thereby impeding their ability to
fully express complex high-level semantic information.

In recent years, state-of-the-art multisource land cover clas-
sification methods have commonly been based on DL. Chen
et al. [27] designed a deep neural network framework for
land cover classification using multisensory remote sensing
data, which consisted of two CNN for extracting features from
multi/hyperspectral and light detection and ranging (LiDAR)
data, and one fully connected deep neural network for fusing
heterogeneous features. Hughes et al. [29] proposed a pseudosi-
amese architecture with two identical yet separate convolutional
streams (PSCNN) to address the task of identifying correspond-
ing patches in very high-resolution optical and SAR imagery
of urban scenery, whose information is only fused in a final
fully connected decision layer by concatenation and a 1 × 1
convolutional operation.

However, these patch-based multimodal depth models cannot
perform pixel-by-pixel classification of high-resolution multi-
source RSIs. Xu et al. [28] studied a two-branch CNN for pixel-
wise multisource remote sensing data classification (MRSDC)
by fusing hyperspectral imagery (HSI) and data from multiple
other sensors, such as LiDAR and visible images, which used
the spectral and spatial features of hyperspectral data extracted
using a two-tunnel CNN framework and other remote sensing
data features extracted by a CNN with a cascade block. Audebert
et al. [45] explored the advantages and disadvantages of early
and late fusion strategies for urban segmentation using paired Li-
DAR and multispectral data. The results of experiments on deep
full convolutional networks (FCNs) indicated that late fusion re-
covers some critical errors on hard pixels from ambiguous data,
whereas early fusion (V-FesuNet) allows for stronger multi-
modal joint features of learning but higher sensitivity to missing
or noisy data. Xu et al. [46] proposed a fusion-FCN framework
for classification using three different types of data, that is,
LiDAR data, HSI data, and very high-resolution images with
RGB channels. Benedetti et al. [47] developed an M3 fusion
(multiscale/modal/temporary fusion) architecture that integrates
CNN to manage relatively high spatial resolution information
and a recurrent neural network to analyze time-series informa-
tion.

In summary, land cover classification models based on mul-
timodal DL typically extract features from single modal net-
works and learn their fusion representations for classification.
However, to date, most research works have focused on directly
extracting multimodal features through a coupled two-stream
network of different or pseudoidentical streams. This has limited
the investigation of sufficient features of specific modalities.
Therefore, we propose a joint learning strategy that efficiently
extracts modality-specific discriminant information by simulta-
neously learning both fusion and specific modality branches.

C. Multimodal Feature Fusion in DL

Learning the fusion representation of multimodal features
is one of the most crucial aspects of multimodal DL meth-
ods. However, early models typically obtained fusion features
through simple fusion rules, such as addition, multiplication, and
concatenation. Therefore, Feng et al. [48] proposed an adaptive
feature fusion module that integrates HSI and LiDAR features
more naturally based on squeeze-and-excitation networks rather
than simply stacking features. Liu et al. [49] proposed a multi-
modal network for land cover mapping, which included a pyra-
mid attention fusion module to obtain fine-grained contextual
representations of each modality and a gated fusion unit for
the early merging of features. Hong et al. [50] investigated
four plug-and-play fusion modules, namely, early fusion, middle
fusion, late fusion, and encoder–decoder fusion, and designed a
cross-fusion module.

Optical images record the spectral features of ground ob-
jects, whereas SAR images record the scattering features. Given
that they are complementary in the interpretation process, re-
searchers have proposed a series of methods to fuse these
complex heterogeneous features to improve the accuracy of
land cover classification. Li et al. [30] proposed a multimodal
bilinear fusion network (MBFNet) for land cover classification
that used a bilinear pooling operation to fuse fine channel-
attention maps of optical and SAR features. The attention maps
were obtained using a second-order attention-based channel
selection module that operates on the features extracted from
two AlexNets without sharing weights. Subsequently, they [51]
explored the inherent complementarity between optical and SAR
features and proposed a cooperative attention-based heteroge-
neous gated fusion network consisting of a dual-stream feature
extractor, multimode cooperative attention module, and gated
heterogeneous fusion module to improve land cover classifica-
tion by hierarchical fusion of optical and SAR features. Kang
et al. [52] investigated where and how to fuse the optical and
SAR images in a modular fully convolutional network model
and proposed a cross-gate module with bidirectional information
flow to improve the accuracy of land cover classification by
preserving important or complementary features. Ren et al. [31]
constructed a multimodal land cover classification dataset based
on optical images from the Gaofen-2 satellite and SAR images
from the Gaofen-3 satellite and designed a dual-stream deep
high-resolution network (DDHRNet) that enhances multimodal
feature representation by improving the squeeze-and-excitation
module. Li et al. [32] studied land use classification based on
optical and SAR image fusion and developed a large-scale joint
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optical and SAR land use classification dataset. The authors
designed a multimodal-cross attention network (MCANet) for
semantic segmentation, which included a pseudosiamese fea-
ture extraction module for independent feature extraction of
optical and SAR images, a multimodal-cross attention module
for second-order hidden feature mining, and a low–high-level
feature fusion module for multiscale feature fusion.

In summary, these studies were dedicated to designing an
attention-based fusion module to combine the heterogeneous
complementary features of optics and SAR. The attention mech-
anism was inspired by the human cognitive system, which
allows the network to amplify critical details and focus more
on the essential aspects of an image by imitating the selective
attention of human vision [53]. However, these attention-based
feature fusion modules only consider channel attention, without
considering the application of spatial attention. Therefore, we
introduced spatial attention into the fusion module to integrate
useful multisource information more effectively.

III. METHODOLOGY

In this section, we introduced the dual-attention fusion modal-
ity and specific modalities for land cover classification using op-
tical and SAR images. First, we summarized two multimodal se-
mantic segmentation architectures based on an encoder–decoder
structure, proposed a strategy for the FSMJL to excellently
extract the discriminant information of specific modalities, and
accordingly proposed two novel architectures. We then provided
a detailed description of the dual-attention fusion modality and
specific modalities joint network built on the proposed architec-
ture. Finally, we introduced an MDAFM designed to effectively
integrate the complementary information from multisource op-
tical and SAR images.

A. Task Description and Possible Architecture

Let (Xopt
i , Xsar

i ) ∈ {Xopt,Xsar} denote a co-registered optical
and SAR image datasets, and Yi ∈ Y denote the semantic labels
used for land cover classification. The task of fusing optical and
SAR images for land cover classification is to find a mapping
function ffus that simultaneously projects optical and SAR im-
ages from the same spatial location into semantic labels, denoted
as (Xopt

i , Xsar
i ) → Yi. In the semantic segmentation framework

based on DL, the encoder–decoder structure has been shown
to significantly improve the performance of segmentation. The
encoder extracts multiscale hierarchical features, while the de-
coder fuses them, and the semantic segmentation head recovers
the original resolution by upsampling to generate the semantic
segmentation map. Let us represent the encoder, decoder, and
semantic segmentation head as E , D, and H, respectively.

According to the location of the multimodal feature fusion,
there are two potential encoder–decoder based multimodal se-
mantic segmentation architectures.

ELF architecture is illustrated in Fig. 1(a). The optical and
SAR images were input into the corresponding encoder for
separate independent encoding. The features extracted at the
encoding-level were fed into a fusion module to obtain the fusion
features, and the final segmentation was then obtained along a

Fig. 1. Four possible architectures for land cover classification using optical
and SAR images. (a) ELF architecture. (b) DLF architecture. (c) FSMJL-ELF.
(d) FSMJL-DLF. “→” indicates the direction of the data flow.

single stream of the decoder and semantic segmentation head.
The network proposed by Liu et al. [49] and MCANet [32], as
well as the “early fusion” and “late fusion” discussed by Kang
et al. [52], fall into this architecture.

DLF architecture is shown in Fig. 1(b). The optical and SAR
images were processed through two complete encoder–decoder
structures to obtain decoding-level features. After fusion by the
fusion module, the fusion features were sent to the segmentation
head for the final segmentation, as shown in the figure. The
“output fusion” discussed by Kang et al. [52] belongs to this
architecture.

Given that the quality of optical and SAR features used for
fusion determines the capability of the fusion feature, to more
effectively extract modality-specific features to generate better
fusion results, we proposed a strategy for FSMJL. It enables the
network to deeply explore discriminative information specific
to each modality through dedicated branches. There are two
architectures corresponding to ELF and DLF.

The FSMJL-ELF, shown in Fig. 1(c), consists of two encoders,
one fusion module, three consecutive decoders, and segmenta-
tion heads. The optical and SAR images were separately fed as
inputs into the optical encoder Eopt and the SAR encoder E sar.
The optical and SAR encoding features are then fused using
the feature fusion module F . The fusion features, together with
the optical and SAR encode-level features, are modeled through
three independent streams: (H◦D)opt, (H◦D)sar, and (H◦D)fus,
which connect the decoder and segmentation head to obtain
three segmentation results. This process can be summarized as
follows:

⎧⎪⎨
⎪⎩

fopt
(
Xopt

i

)
=Hopt◦Dopt

(Eopt
(
Xopt

i

))
fsar
(
Xsar

i

)
=Hsar◦Dsar

(E sar
(
Xsar

i

))
ffus
(
Xopt

i , Xsar
i

)
=Hfus◦Dfus

(F(Eopt
(
Xopt

i

)
, E sar

(
Xsar

i

)))
.

(1)
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The FSMJL-DLF, as shown in Fig. 1(d), consists of two
encoder–decoders, one fusion module, and three segmentation
heads. Not only is the architecture composed of one fewer
decoder than the first, but the flow of the architecture is also
different. The optical and SAR images are input to the com-
plete encoder–decoder streams of optical (D◦E)opt and SAR
(D◦E)sar, respectively. Therefore, the feature fusion module F
fuses the features at the decoding-level. The optical and SAR
decoding features with the fusion features only must be sent
to three independent segmentation heads Hopt, Hsar, and Hfus

to obtain three final segmentation results. This process can be
summarized as follows:

⎧⎪⎨
⎪⎩

fopt
(
Xopt

i

)
=Hopt

((D◦E)opt(
Xopt

i

))
fsar
(
Xsar

i

)
=Hsar

((D◦E)sar(
Xsar

i

))
ffus
(
Xopt

i , Xsar
i

)
=Hfus

(F((D◦E)opt(
Xopt

i

)
,
(D◦E)sar(

Xsar
i

)))
.

(2)

The goal of the FSMJL strategy is to simultaneously find
three mapping functions: fopt : X

opt
i → Yi, fsar : X

sar
i → Yi, and

ffus : (X
opt
i , Xsar

i ) → Yi, where fopt and fsar project optical and
SAR images, respectively, into the semantic map, and ffus

projects optical and SAR images together into the same semantic
map. The former encourages modality-specific branches to learn
the discriminant information of a specific modality, whereas the
latter encourages the modality-fusion branch to learn the detailed
information of multiple modalities and integrate high quality
multisource information.

The advantages of the proposed strategy lie in the following
three aspects.

1) It enables the model not only to deal with multisource
RSIs but also to handle single-source RSIs according to
the input data, thereby demonstrating excellent flexibil-
ity in practical applications. When only one modality
is available, other fusion networks experience a rapid
decline in classification performance, while the proposed
modality-specific branch remains unaffected. The pro-
posed network can consistently produce robust land cover
classification maps with accuracies significantly higher
than those obtained from the network trained on a single
modality.

2) Modality-specific branches provide greater feature ex-
traction capability by learning from their branches, thus
enriching the discriminate information needed for the
integration of the fusion features.

3) Meanwhile, the learning of the modality-fusion branch
not only improves the ability of its fusion feature module
to integrate multisource information but also implicitly
helps modality-specific branches to further explore dis-
tinguishing features. The segmentation performance of
the modality-fusion and modality-specific branches is im-
proved simultaneously.

To demonstrate the effectiveness of the proposed strategy,
an ablation experiment was conducted in Section IV-D, with
FSMJL-DLF identified as the optimal architecture among the
two designs.

B. Joint Network Combining Dual-Attention Fusion Modality
and Two Specific Modalities

Both the proposed architectures were composed of multiple
identical encoders, decoders, segmentation heads, and a feature
fusion module. We chose the off-the-shelf ResNet101 [54] ini-
tialized with ImageNet [55] as the encoder. The atrous spatial
pyramid pooling module exploited in DeepLabV3+ [56] was
used as the decoder, followed by a 1×1 convolution and a bilin-
ear interpolation layer with a factor of four as the segmentation
head. To integrate as much effective multisource information as
possible, we proposed a novel MDAFM, which is described in
Section III-C. Three cross-entropy loss functions were simulta-
neously used to supervise the optical and SAR modality-specific
branches and modality-fusion branches, respectively. The over-
all loss function is calculated as follows:

L =
∑

m∈{opt,sar}
Lce (Y |Xm;Wm ) + Lce (Y |X;W ) (3)

where W = {W opt,W sar,W fus} represents the weights of the
optical, SAR, and fusion modality branches.

Fig. 2 illustrates the proposed encoding-level fusion frame-
work of the joint network combining dual-attention fusion
modality and two specific modalities (JoiTriNet-e). The op-
tical and SAR images were input into ResNet101 to obtain
five stacked layer features. The second- and fifth-layer features
were input into the MDAFM to obtain low- and high-level
fusion features. The optical, SAR, and fused encoding-level
features were individually entered into the decoder exploited in
DeepLabV3+, where the low- and high-level features were input
together. We stacked the optical, SAR, and fusion segmentation
heads on three parallel branches to obtain the final semantic
segmentation results and exploited the triplet segmentation loss
for supervision.

Fig. 3 shows the proposed decoding-level fusion framework
of the joint network combining dual-attention fusion modality
and two specific modalities (JoiTriNet-d). The advanced se-
mantic features of the optical and SAR images were extracted
by a stacked ResNet101 encoder and DeepLabV3+ decoder,
respectively. These were fed into the MDAFM to obtain fusion
features of the same size. We attached the optical, SAR, and
fusion segmentation heads to the distinct features obtained in the
previous step to achieve the final semantic segmentation results,
which were supervised by triplet segmentation loss.

C. Multimodal Dual-Attention Fusion Module

Given that the ability of the feature fusion module to integrate
information determines the interpretability of the fusion fea-
tures, to more effectively capture complementary information in
optical and SAR images, we proposed MDAFM, that performs
channel attention for a single modality followed by spatial
attention after cascading convolution fusion. As shown in Fig. 4,
it comprises two channel attention blocks, spatial attention and
Conv-BN-ReLU blocks.

The inspiration for this design comes from feature channels
representing the discriminative ability of different modalities
and feature spaces representing the positional information of
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Fig. 2. Encoding-level fusion framework of the joint network combining dual-attention fusion modality and two specific modalities (JoiTriNet-e).

Fig. 3. Decoding-level fusion framework of the joint network combining dual-attention fusion modality and two specific modalities (JoiTriNet-d).

Fig. 4. Structure of the MDAFM.
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image features. The channel attention mechanism was used to
focus on the band information of a specific modality to improve
its feature-extraction ability. After the cascading convolution
operation, spatial attention is then used to focus on the position to
improve the interpretation ability of the fused features. However,
most of the current fusion modules exclude the important role
of spatial attention. The detailed operation of the proposed
MDAFM module is described as follows.

Given two modality-specific feature maps Fopt ∈ RC×H×W

and Fsar ∈ RC×H×W as inputs, H , W , and C represent the
height, width, and channel of the features, respectively. Two
channel attention modules are exploited to individually infer
domain specific 1-D channel attention maps, Mopt

c ∈ RC×1×1

and Msar
c ∈ RC×1×1, before merging operations, and broadcast

them along the spatial dimension, which can be formulated
as Fopt

ca = Mopt
c (Fopt)⊗ Fopt and Fsar

ca = Msar
c (Fsar)⊗ Fsar, re-

spectively, where ⊗ denotes the elementwise production
operation. Subsequently, the channel attention features of dif-
ferent modalities are combined using a concatenation oper-
ation, and one Conv-BN-ReLU block is involved in refin-
ing and interactively fusing the features. A spatial attention
module is then applied to learn the positional information of
the fusion features by inferring the 2-D spatial attention map
Mfus

s ∈ R1×H×W and broadcasting it along the channel dimen-
sion, that is, Ffus

sa = Mfus
s (Ffus)⊗ Ffus. This further enhances

the useful features and suppresses useless noise to effectively
integrate full-modality discriminative information. The channel
and spatial attention modules used in this study were referenced
from the CBAM [57] and can be summarized as follows:

MC = σ (MLP (AvgPool (F)) + MLP (MaxPool (F)))

MS = σ
(
f7×7 ([AvgPool (F) ; (MaxPool (F))])

)
(4)

where σ denotes the sigmoid function, AvgPool(·) and
MaxPool(·) denote the average-pooling and max-pooling oper-
ations, respectively, MLP(·) denotes the multilayer perceptron
with one hidden layer, and f7×7 represents a convolution oper-
ation with a filter size of 7 × 7.

IV. EXPERIMENT

A. Dataset Configuration

The experiments were conducted on two multimodal land
cover classification datasets, namely DFC2020 and Dongying,
to quantitatively and qualitatively evaluate the performance of
the proposed method.

1) DFC2020: This dataset is the land cover mapping dataset
released by the 2020 IEEE Data Fusion Contest [26], which
is a subset of the SEN12MS dataset [25] and contains 6114
pairs of labeled optical-SAR image data. The optical image is
multispectral data with 13 bands acquired by Sentinel-2, among
which we only used the high-resolution RGB bands as input to
the optical branch of the proposed network. The SAR image is
dual-polarization data composed of VV and VH components
obtained by Sentinel-1 during the same season. The ground
sampling distance of all the data was 10 m, and the size of
each image patch was 256 × 256 pixels. There are two types of

Fig. 5. Example of DFC2020 dataset.

Fig. 6. Example of Dongying dataset.

annotations, namely MODIS-derived land cover maps sampled
across the globe and semimanually generated high-resolution
labels with a resolution of 10 m. We used high-resolution anno-
tations for supervision, which follows a simplified version of the
IGBP classification scheme consisting of ten land cover classes.
Since the rarity of the savanna and snow/ice categories in this
dataset, we excluded them and used eight land cover categories
for classification, that is, “forests,” “shrublands,” “grasslands,”
“wetlands,” “croplands,” “urban/built-up,” “barren,” and “wa-
ter.” Fig. 5 shows an example of DFC2020.

2) Dongying: Ren et al. [31] published the multimodal RSI
dataset including Xi’an, Dongying, and Pohang subsets.Herein,
we used the Dongying subset as it is the largest and has a total
of 7831 optical–SAR image pairs. The optical image is three-
band data fused with panchromatic and multispectral images
acquired from the Gaofen-2 satellite. The SAR image is VV
polarization data obtained from the Gaofen-3 satellite in slider
spotlight mode. The spatial resolution of all data in this dataset
is 1 m after preprocessing, while the size of each image patch
was 256× 256 pixels. The labels were annotated using Labelme
software, with five land cover categories, namely, “buildings,”
“farmland,” “greenery,” “water,” and “roads.” Fig. 6 shows an
example of Dongying.

In this study, we randomly divided the datasets into training,
validation, and testing sets in a numerical ratio of 6 : 2 : 2;
the DFC2020 dataset had 3670 samples for training, 1222 for
validation, and 1222 for testing; Dongying had 4699 samples
for training, 1566 for validation, and 1566 for testing.

B. Experimental Setup

1) Implementation Details: All models were implemented in a
PyTorch environment and carried out on an NVIDA Tesla V100
GPU. All experiments were conducted under the same exper-
imental parameter conditions. We used the stochastic gradient
descent optimizer to train the model with an initial learning rate
of 1× 10−3 and conducted 200 epochs with a batch size of
eight, during which iterative training was terminated early if the
validation loss did not decrease for 20 consecutive epochs.

2) Evaluation Metrics: In this study, four indicators were
used to evaluate the accuracy of land cover classification, that
is, overall accuracy (OA), mean pixel accuracy (mPA), mean
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intersection over union (mIoU), and kappa coefficient (Kappa).
The OA is expressed as the percentage of correctly predicted
pixels over the total number of pixels, which directly reflects
the proportion of correct classifications by simple calculations.
Given that the number of samples in each category is often
unbalanced in practical applications, the OA cannot accurately
reflect the performance of the model. We used the mPA, mIoU,
and Kappa indicators to penalize the bias of the model to
synthetically evaluate whether the predicted results of the model
were consistent with the actual classification results. The OA,
mPA, mIoU, and Kappa were calculated as follows:

OA =

k∑
i=0

pii

k∑
i=0

k∑
j=0

pij

(5)

mPA =
1

k + 1

k∑
i=0

pii
k∑

j=0

pij

(6)

mIoU =
1

k + 1

k∑
i=0

pii
k∑

j=0

pij +
k∑

j=0

pji − pii

(7)

Kappa =
po − pe
1− pe

(8)

where, po =

k∑
i=0

pii

k∑
i=0

k∑
j=0

pij

, pe =

k∑
i=0

(
k∑

j=0

pij ×
k∑

j=0

pji

)
(

k∑
i=0

k∑
j=0

pij

)2 (9)

where k is the number of land type classes; in this study, k = 8.
pii is the number of the pixels of class i correctly predicted to
belong to class i, pij is the number of pixels of class i wrongly
predicted to belong to class j, and similarly, pji is the number
of the pixels of class j wrongly predicted to belong to class i.

3) Comparison methods: To evaluate the performance of the
proposed method, we compared the JoiTriNet-e and JoiTriNet-d
with respect to several state-of-the-art methods for land cover
classification tasks in multisource RSIs.

1) PSCNN [29] is a pseudosiamese CNN, which performs
land cover classification by dividing large RSIs into small
patch scenes. Since we focused on pixel-level classifi-
cation based on semantic segmentation, its classification
head was replaced with a segmentation head.

2) MRSDC [28] is a two-branch CNN whose input is HIS
image and visible/LiDAR data. Since we focused on the
joint application of optical and SAR images, the input of
the HSI branch was replaced with SAR image and the
input channel of the first convolutional layer was changed
accordingly.

3) V-FesuNet [45] is a deep FCN for segmentation of multi-
modal remote sensing data, which fuses multispectral and

TABLE I
COMPARISON OF DFC2020 AND DONGYING DATASET

TABLE II
EVALUATION METRICS (%) CALCULATED BY THE PROPOSED METHOD AND

OTHER METHODS FOR LAND COVER CLASSIFICATION OF MULTISOURCE RSIS

LiDAR data in the encoding phase. As in 2, the input of
the LiDAR branch was replaced with SAR image.

4) MBFNet [30] fuses optical and SAR features through a
bilinear pooling operation and a second-order attention-
based channel selection module. It is also a patch-based
land cover classification method operated as in 1.

5) DDHRNet [31] fuses optical and SAR features using mul-
timodal squeeze-and-excitation modules at various stages
of feature encoding.

6) MCANet [32] includes a pseudosiamese feature extraction
module composed of two ResNet101, a multimodal-cross
attention module, and a low–high-level feature fusion
module designed with reference to DeepLabV3+.

Among the aforementioned methods, MCANet strictly be-
longs to the ELF architecture; V-FesuNet and DDHRNet can be
regarded as an ELF architecture that integrates fusion modules
into the encoder in stages; while PSCNN, MRSDC, and MBFNet
can be categorized as DLF architecture after variation.

C. Comparative Experiments

1) Quantitative Result: We first calculated the metrics of
all methods to quantitatively compare the results of the pro-
posed method with other state-of-the-art methods for land cover
classification of multisource RSIs, as shown in Table II. The
proposed joint network combining dual-attention fusion modal-
ity and two specific modalities produced satisfactory results.
Both JoiTriNet-e and JoiTriNet-d outperform other methods,
in which JoiTriNet-d achieved state-of-the-art classification
performance among all the methods compared. Specifically,
JoiTriNet-d had the highest OA of 86.06% on the DFC2020
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TABLE III
PA (%) AND IOU (%) FOR EACH CATEGORY ON DFC2020 AND DONGYING DATASETS CALCULATED BY DIFFERENT METHODS

Fig. 7. Land cover classification maps of different methods on the DFC2020 dataset. (a) Optical images. (b) SAR images. (c) Annotations. (d) PSCNN.
(e) VFesuNet. (f) MRSDC. (g) MBFNet. (h) DDHRNet. (i) MCANet. (j) JoiTriNet-e. (k) JoiTriNet-d.

dataset, achieving an improvement of 1.51% compared with the
other best method MCANet. JoiTriNet-d also had the highest
OA of 94.13% on the Dongying dataset, 1.01% higher than
MCANet. Considering that MCANet is an ELF architecture, we
compared it with JoiTriNet-e, another encoding-level feature
fusion. JoiTriNet-e could increase the OA by 1.18% to the
second highest on the DFC2020 dataset, and the same per-
formance was also achieved on the Dongying dataset. These
results highlight the superiority of the proposed method, which
improves the performance of multisource RSIs land cover clas-
sification algorithm through joint learning of fusion and specific
modalities.

The improvement of the Kappa, mPA, and mIoU is particu-
larly noteworthy as they better reflect the model performance
in the case of class-imbalanced samples. Notably, the mIoU
value of JoiTriNet-d showed a significant increase of 2.66% and
1.89% on the DFC2020 and Dongying datasets, respectively.
Furthermore, we presented the PA and IoU values for each
category in Table III to verify the prediction ability of our method

across different categories. Our method achieved the highest PA
and IoU values for all categories in the Dongying dataset and
also improved the accuracy to varying degrees in the DFC2020
dataset with varying degrees of accuracy improvement for all
categories in the DFC2020 dataset.

2) Qualitative Analysis: To visually assess the segmentation
performance of the proposed method, we present comparisons
of the land cover classification maps generated using different
methods for several samples of the test set. The samples shown
in Fig. 7 are selected from the DFC2020 dataset. Overall, com-
pared with PSCNN, VFesuNet, and MBFNet methods, MRSDC,
DDHRNet, MCANet, and the proposed methods showed finer
segmentation granularity, among which JoiTriNet-d performed
particularly well. The other methods showed varying degrees of
confusion between “croplands” and “grasslands,” “wetlands,”
“barren” in different scenarios. For example, most of the other
methods in Groups I failed to separate the “grasslands” from
the “croplands,” and in Groups II they also misidentified the
“grasslands” as “croplands.” The Groups III and IV misclassified
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Fig. 8. Land cover classification maps of the different methods used on the Dongying dataset. (a) Optical images. (b) SAR images. (c) Annotations. (d) PSCNN.
(e) VFesuNet. (f) MRSDC. (g) MBFNet. (h) DDHRNet. (i) MCANet. (j) JoiTriNet-e. (k) JoiTriNet-d.

Fig. 9. Detailed comparison of the classification results generated using different methods on the DFC2020 dataset. (a) Optical images. (b) SAR images.
(c) Annotations. (d) PSCNN. (e) VFesuNet. (f) MRSDC. (g) MBFNet. (h) DDHRNet. (i) MCANet. (j) JoiTriNet-e. (k) JoiTriNet-d. The main differences are
highlighted with white rectangles.

large areas of “wetlands” and “barren” as “croplands.” This
is primarily because these categories are inherently difficult to
distinguish in this scenario, and optical and SAR images have
varying degrees of confusion with these categories. The fusion
process does not completely distinguish between confusion
categories, because the interference between the discriminant
features of specific modalities weakens the ability of the fusion
features. In the proposed JoiTriNet, this situation was improved
because the feature-extraction ability of the modality-specific
branches was enhanced during the joint learning process, thereby
enhancing the discriminative ability of the modality-fusion
branch and alleviating the phenomenon of low separability
between categories. Furthermore, the superiority of our method
was also demonstrated by the land cover classification map
obtained from the Dongying dataset shown in Fig. 8. Overall,
our method outperformed others by effectively distinguishing

between “greenery” and “farmland” while maintaining clear
boundaries between “farmland” and “water.”

In addition, the proposed method yielded more accurate pre-
dictions for some thin-strip-shaped surface features, as shown
in Figs. 9 and 10. Compared with other methods in the white
box selection area shown in Fig. 9, our method, especially
JoiTriNet-d, outlined the river completely and without trunca-
tion (in Groups I and II) and successfully predicted the forests
in the urban/built-up areas (in Groups III and IV). The samples
from the Dongying dataset illustrated in Fig. 10 more obviously
demonstrate that the proposed method enhanced continuity for
recognizing and classifying narrow ground objects, such as roads
and rivers.

3) Robustness Test: The proposed networks can not only
output the fusion modality classification results but also retain
the output of two modality-specific branches, namely optical
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Fig. 10. Detailed comparison of the classification results generated using different methods on the Dongying dataset. (a) Optical images. (b) SAR images.
(c) Annotations. (d) PSCNN. (e) VFesuNet. (f) MRSDC. (g) MBFNet. (h) DDHRNet. (i) MCANet. (j) JoiTriNet-e. (k) JoiTriNet-d. The main differences are
highlighted with white rectangles.

TABLE IV
EVALUATION METRICS (%) CALCULATED USING VARIOUS MULTISOURCE RSIS LAND COVER CLASSIFICATION METHODS

WHEN ONLY ONE MODAL DATA WAS AVAILABLE

modality and SAR modality. Even when only one modality of
data is available, the respective branch can still generate a robust
land cover classification map.

To evaluate its superiority, we compared the performance
of various multisource RSIs land cover classification networks
using only optical or SAR images. When only one modality of
data is available, the other modality branch utilizes all-black
data as the input to ensure the normal operation of the fusion
network. As shown in Table IV, while other fusion networks
rapidly declined in their classification performance and failed to
generate accurate land cover maps, our proposed method main-
tained a high level of accuracy. For instance, on the DFC2020
dataset with only optical images available, JoiTriNet-d achieved
an OA of 84.80%, whereas other methods struggle to reach even
half of that accuracy level. Similar results were observed when
only SAR images were used for classification. These findings
demonstrate the excellent robustness of our method as it remains
unaffected by the limited availability of modality data while
achieving consistently high accuracy.

TABLE V
EFFECTIVENESS OF THE FSMJL STRATEGY AND THE MDAFM MODULE IN

THE DONGYING DATASET

D. Ablation Study

1) Effectiveness of the FSMJL Strategy and MDAFM Mod-
ule: To verify the effectiveness of FSMJL strategy and the
contribution of MDAFM module, we conducted extensive ab-
lation experiments. As shown in Table V, the results of the
ablation experiments demonstrated how the proposed method
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Fig. 11. Visualization results of dual attention decoupling for the proposed MDAFM on FSMJL-DLF architecture. (a) Fusion features and (b) the final land
cover classification map generated using MDAFM with spatial attention blocks; (c) and (d) are generated without spatial attention blocks. The main differences
are highlighted with red boxes.

TABLE VI
EFFECTIVENESS OF FSMJL STRATEGY IN ENHANCING THE PERFORMANCE OF

MODALITY-SPECIFIC BRANCHES

successively improved the accuracy. Specifically, we utilized the
ELF and DLF architectures designed with ResNet101 encoder
and DeepLabV3+ decoder as baselines, which fused optical
and SAR features with the fusion rule of pixelwise addition.
When the FSMJL strategy was introduced into ELF and DLF
architecture, the performance of the fusion network signifi-
cantly improved. The metrics of ELF architecture are increased
by 0.65% (OA), 0.86% (Kappa), 0.75% (mPA), and 1.22%
(mIoU), respectively, while the DLF architecture achieves en-
hancements of 0.59% (OA), 0.77% (Kappa), 0.34% (mPA),
and 1.05% (mIoU). This improvement can be attributed to
enhancing feature extraction capabilities in modality-specific
branches through the FSMJL strategy, thereby boosting overall
modality-fusion branch performance. In addition, by introduc-
ing the MDAFM, compared with the slight improvement in
ELF architecture, DLF architecture demonstrated significant en-
hancement with improvements of 0.41% (OA), 0.55% (Kappa),
0.69% (mPA), and 0.75% (mIoU), respectively. This indicates
that the dual attention fusion implemented by MDAFM further
enhances the performance of the fusion network.

2) Contribution of Modality-Specific Branches: To illustrate
the effectiveness of the FSMJL strategy in enhancing the perfor-
mance of modality-specific branches, we compared it with the
DeepLabV3+ network trained solely on single-modal images.
As shown in Table VI, both ELF and DLF architectures exhibited
significant improvements. Taking the optical modality branch
of JoiTriNet-d as an example, the segmentation accuracy was
improved by 8.95% (OA), 10.23% (Kappa), 17.45% (mPA),
and 22.74% (mIoU). Combined with Table IV, our method sur-
passes the single-modal network in classification performance

TABLE VII
EFFECTIVENESS OF SPATIAL ATTENTION BLOCK IN MDAFM MODULE

when only one modality was available. These ablation results
demonstrate the effectiveness of the FSMJL strategy, achiev-
ing simultaneous improvement of modality-fusion branch and
modality-specific branches performance.

3) Decoupling of Dual Attention: The multimodal fusion
module designed herein incorporates spatial attention in addi-
tion to the channel attention mechanism for fusing multimodal
features. It applies channel attention to each modality individ-
ually, followed by cascade convolution fusion, and finally adds
spatial attention. To validate the effectiveness of this structure,
we conducted ablation experiments by removing the spatial
attention block from the fusion module under four architectures.
As shown in Table VII, the MDAFM with spatial attention block
performed better in ELF, DLF, and FSMJL-DLF architectures.
This indicates that the spatial attention block more effectively
integrates complementary information of multimodal features
and improves classification accuracy.

To visually assess the effectiveness of the spatial attention
block, we presented the fusion features aggregated by the
MDAFM and the final land cover classification map obtained by
the FSMJL-DLF architecture, in Fig. 11. The visualization re-
sults indicated that the fusion features generated by the MDAFM
with spatial attention block were more sensitive to the spatial
structure of ground objects and responded to the whole road and
the whole river, and the segmented road was more complete.
This indicates that spatial attention further focuses on location
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information and improves the interpretation ability of fusion
features.

E. Discussion

In this study, we illustrated JoiTriNet and the effectiveness
of FSMJL strategy and MDAFM module from various perspec-
tives. Compared with other methods for land cover classification
in multisource RSIs, JoiTriNet achieved the best performance.
The quantitative indicators showed significant improvement and
the visualization results of the land cover classification showed
enhanced refinement. Moreover, robust output was obtained
even when only one modality was available. Through ablation
studies, we validated that the FSMJL strategy enhanced both
modality-fusion branch and modality-specific branches segmen-
tation performance, while the MDAFM further improved fusion
features by introducing dual attention formed through spatial
attention. However, the SAR modality branch demonstrated a
smaller accuracy improvement compared with its optical coun-
terpart, and the impact of MDAFM on FSMJL-ELF architecture
was not as pronounced as in FSMJL-DLF architecture. There
remains ample room for improvement in these aspects. Overall,
our proposed method exhibits great potential.

V. CONCLUSION

In this study, we investigated multisource land cover clas-
sification using optical and SAR images. First, we analyzed
the multimodal semantic segmentation architecture based on
an encoder–decoder structure and summarized the encoding
and decoding level feature fusion architectures. Subsequently,
we proposed a strategy for FSMJL, leading to the design of
two corresponding architectures. The designed architectures im-
proved the accuracy of multisource and single-source RSIs land
cover classification by encouraging modality-specific branches
to learn unique discriminative information while encourag-
ing modality-fusion branch to learn detailed interpretation in-
formation. Furthermore, based on the proposed architectures,
we designed a joint network combining dual-attention fusion
modality and two specific modalities, which has two modes of
encoding-level fusion (JoiTriNet-e) and decoding-level fusion
(JoiTriNet-d). They included a novel MDAFM to efficiently
aggregate optical and SAR features. Finally, we evaluated the
proposed method through a series of experiments. Compar-
ative experimental results showed that the proposed method
outperformed other multisource RSIs land cover classification
methods, among which JoiTriNet-d achieved the highest level of
accuracy. Ablation experiments demonstrated the effectiveness
of the proposed architecture and module from different perspec-
tives. The experimental findings highlight the significant poten-
tial of our method in land cover classification tasks involving
multisource and single-source RSIs.

REFERENCES

[1] X. He, S. Zhang, B. Xue, T. Zhao, and T. Wu, “Cross-modal change
detection flood extraction based on convolutional neural network,” Int.
J. Appl. Earth Observ. Geoinf., vol. 117, 2023, Art. no. 103197.

[2] Y. Ma et al., “Remote sensing Big Data computing: Challenges and
opportunities,” Future Gener. Comput. Syst., vol. 51, pp. 47–60, 2015.

[3] H. Zhang and R. Xu, “Exploring the optimal integration levels between
SAR and optical data for better urban land cover mapping in the pearl river
delta,” Int. J. Appl. Earth Observ. Geoinf., vol. 64, pp. 87–95, 2018.

[4] J. Liu, M. Gong, K. Qin, and P. Zhang, “A deep convolutional coupling
network for change detection based on heterogeneous optical and radar im-
ages,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 545–559,
Mar. 2018.

[5] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778–782, May 2017.

[6] J. Kang et al., “DisOptNet: Distilling semantic knowledge from optical
images for weather-independent building segmentation,” IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1–15, 2022.

[7] P. Jain, B. Schoen-Phelan, and R. Ross, “Self-supervised learning for
invariant representations from multi-spectral and SAR images,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 7797–7808,
2022.

[8] H. Zhang, L. Wan, T. Wang, Y. Lin, H. Lin, and Z. Zheng, “Impervious
surface estimation from optical and polarimetric SAR data using small-
patched deep convolutional networks: A comparative study,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2374–2387,
Jul. 2019.

[9] L. Gómez-Chova, D. Tuia, G. Moser, and G. Camps-Valls, “Multimodal
classification of remote sensing images: A review and future directions,”
Proc. IEEE Proc. IRE, vol. 103, no. 9, pp. 1560–1584, Sep. 2015.

[10] Y. Alebele et al., “Estimation of crop yield from combined optical and SAR
imagery using Gaussian kernel regression,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 10520–10534, 2021.

[11] W. Zhao, Y. Qu, J. Chen, and Z. Yuan, “Deeply synergistic optical and
SAR time series for crop dynamic monitoring,” Remote Sens. Environ.,
vol. 247, 2020, Art. no. 111952.

[12] L. Gao, X. Li, F. Kong, R. Yu, Y. Guo, and Y. Ren, “AlgaeNet: A deep-
learning framework to detect floating green algae from optical and SAR
imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 2782–2796, 2022.

[13] M. Cutler, D. S. Boyd, G. M. Foody, and A. Vetrivel, “Estimating tropical
forest biomass with a combination of SAR image texture and landsat TM
data: An assessment of predictions between regions,” ISPRS J. Photogram-
metry Remote Sens., vol. 70, pp. 66–77, 2012.

[14] H. Zhang et al., “A manifold learning approach to urban land cover clas-
sification with optical and radar data,” Landscape Urban Plan., vol. 172,
pp. 11–24, 2018.

[15] A. Salentinig and P. Gamba, “Combining SAR-based and multispectral-
based extractions to map urban areas at multiple spatial resolutions,” IEEE
Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 100–112, Sep. 2015.

[16] S. C. Kulkarni and P. P. Rege, “Pixel level fusion techniques for SAR and
optical images: A review,” Inf. Fusion, vol. 59, pp. 13–29, 2020.

[17] C. Sukawattanavijit, J. Chen, and H. Zhang, “GA-SVM algorithm for
improving land-cover classification using SAR and optical remote sensing
data,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3, pp. 284–288,
Mar. 2017.

[18] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh,
P. Ghamisi, and S. Homayouni, “Support vector machine versus random
forest for remote sensing image classification: A meta-analysis and sys-
tematic review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 6308–6325, 2020.

[19] H. Bagan, T. Kinoshita, and Y. Yamagata, “Combination of AVNIR-2,
PALSAR, and polarimetric parameters for land cover classification,” IEEE
Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1318–1328, Apr. 2012.

[20] Y. Qin et al., “Forest cover maps of China in 2010 from multiple approaches
and data sources: PALSAR, landsat, modis, FRA, and NFI,” ISPRS J.
Photogrammetry Remote Sens., vol. 109, pp. 1–16, 2015.

[21] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag,, vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[22] X. X. Zhu et al., “Deep learning meets SAR: Concepts, models, pitfalls, and
perspectives,” IEEE Geosci. Remote Sens. Mag., vol. 9, no. 4, pp. 143–172,
Dec. 2021.

[23] G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing
image scene classification meets deep learning: Challenges, methods,
benchmarks, and opportunities,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 13, pp. 3735–3756, 2020.



LIU et al.: JOINT NETWORK COMBINING DUAL-ATTENTION FUSION MODALITY AND TWO SPECIFIC MODALITIES 3249

[24] W. Zhang, P. Tang, and L. Zhao, “Fast and accurate land-cover classifi-
cation on medium-resolution remote-sensing images using segmentation
models,” Int. J. Remote Sens., vol. 42, no. 9, pp. 3277–3301, 2021.

[25] M. Schmitt, L. H. Hughes, C. Qiu, and X. X. Zhu, “SEN12MS–a cu-
rated dataset of georeferenced multi-spectral Sentinel-1/2 imagery for
deep learning and data fusion,” ISPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci., vol. IV-2/W7, pp. 153–160, 2019, doi: 10.5194/isprs-an-
nals-IV-2-W7-153-2019.

[26] N. Yokoya, P. Ghamisi, R. Hänsch, and M. Schmitt, “2020 IEEE GRSS
data fusion contest: Global land cover mapping with weak supervision
[technical committees],” IEEE Geosci. Remote Sens. Mag., vol. 8, no. 1,
pp. 154–157, Mar. 2020.

[27] Y. Chen, C. Li, P. Ghamisi, X. Jia, and Y. Gu, “Deep fusion of remote
sensing data for accurate classification,” IEEE Geosci. Remote Sens. Lett.,
vol. 14, no. 8, pp. 1253–1257, Aug. 2017.

[28] X. Xu, W. Li, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource remote
sensing data classification based on convolutional neural network,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 937–949, Feb. 2018.

[29] L. H. Hughes, M. Schmitt, L. Mou, Y. Wang, and X. X. Zhu, “Identifying
corresponding patches in SAR and optical images with a pseudo-siamese
CNN,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 784–788,
May 2018.

[30] X. Li, L. Lei, Y. Sun, M. Li, and G. Kuang, “Multimodal bilinear fusion
network with second-order attention-based channel selection for land
cover classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 1011–1026, 2020.

[31] B. Ren et al., “A dual-stream high resolution network: Deep fusion of GF-2
and GF-3 data for land cover classification,” Int. J. Appl. Earth Observ.
Geoinformation, vol. 112, 2022, Art. no. 102896.

[32] X. Li et al., “MCANet: A joint semantic segmentation framework of optical
and SAR images for land use classification,” Int. J. Appl. Earth Observ.
Geoinformation, vol. 106, 2022, Art. no. 102638.

[33] L. Ma, M. Li, X. Ma, L. Cheng, P. Du, and Y. Liu, “A review of supervised
object-based land-cover image classification,” ISPRS J. Photogrammetry
Remote Sens., vol. 130, pp. 277–293, 2017.

[34] Q. Yuan et al., “Deep learning in environmental remote sensing:
Achievements and challenges,” Remote Sens. Environ., vol. 241, 2020,
Art. no. 111716.

[35] A. Sharma, X. Liu, X. Yang, and D. Shi, “A patch-based convolutional
neural network for remote sensing image classification,” Neural Netw.,
vol. 95, pp. 19–28, 2017.

[36] A. Sharma, X. Liu, and X. Yang, “Land cover classification from multi-
temporal, multi-spectral remotely sensed imagery using patch-based re-
current neural networks,” Neural Netw., vol. 105, pp. 346–355, 2018.

[37] H. Song, Y. Kim, and Y. Kim, “A patch-based light convolutional neural
network for land-cover mapping using landsat-8 images,” Remote Sens.,
vol. 11, no. 2, 2019, Art. no. 114.

[38] Y. Lin, F. Jin, D. Wang, S. Wang, and X. Liu, “Dual-task network for
road extraction from high-resolution remote sensing images,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 66–78, 2023.

[39] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. John-
son, “Deep learning in remote sensing applications: A meta-analysis
and review,” ISPRS J. Photogrammetry Remote Sens., vol. 152,
pp. 166–177, 2019.

[40] A. Ghosh, M. Ehrlich, S. Shah, L. S. Davis, and R. Chellappa, “Stacked
U-Nets for ground material segmentation in remote sensing imagery,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2018,
pp. 252–2524.

[41] F. Mohammadimanesh, B. Salehi, M. Mahdianpari, E. Gill, and M. Molin-
ier, “A new fully convolutional neural network for semantic segmentation
of polarimetric SAR imagery in complex land cover ecosystem,” ISPRS J.
Photogrammetry Remote Sens., vol. 151, pp. 223–236, 2019.

[42] Q. Liu, M. Kampffmeyer, R. Jenssen, and A.-B. Salberg, “Dense
dilated convolutions’ merging network for land cover classification,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 9, pp. 6309–6320,
Sep. 2020.

[43] P. Iervolino, R. Guida, D. Riccio, and R. Rea, “A novel multispectral,
panchromatic and SAR data fusion for land classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 10, pp. 3966–3979,
Oct. 2019.

[44] J. Reiche, C. M. Souza, D. H. Hoekman, J. Verbesselt, H. Persaud, and
M. Herold, “Feature level fusion of multi-temporal ALOS PALSAR and
Landsat data for mapping and monitoring of tropical deforestation and
forest degradation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 6, no. 5, pp. 2159–2173, Oct. 2013.

[45] N. Audebert, B. Le Saux, and S. Lefèvre, “Beyond RGB: Very high
resolution urban remote sensing with multimodal deep networks,” ISPRS
J. Photogrammetry Remote Sens., vol. 140, pp. 20–32, 2018.

[46] Y. Xu, B. Du, and L. Zhang, “Multi-source remote sensing data
classification via fully convolutional networks and post-classification
processing,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2018,
pp. 3852–3855.

[47] P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R. G. Pensa, and S. Dupuy,
“m3Fusion: A. deep learning architecture for multiscale multimodal mul-
titemporal satellite data fusion,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 12, pp. 4939–4949, Dec. 2018.

[48] Q. Feng, D. Zhu, J. Yang, and B. Li, “Multisource hyperspectral and
LiDAR data fusion for urban land-use mapping based on a modified
two-branch convolutional neural network,” ISPRS Int. J. Geo- Inf., vol. 8,
no. 1, p. 28, 2019.

[49] Q. Liu, M. Kampffmeyer, R. Jenssen, and A.-B. Salberg, “Multi-modal
land cover mapping of remote sensing images using pyramid attention and
gated fusion networks,” Int. J. Remote Sens., vol. 43, no. 9, pp. 3509–3535,
2022.

[50] D. Hong et al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., vol. 59, no. 5, pp. 4340–4354, May 2021.

[51] X. Li, L. Lei, Y. Sun, M. Li, and G. Kuang, “Collaborative attention-
based heterogeneous gated fusion network for land cover classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 3829–3845,
May 2021.

[52] W. Kang, Y. Xiang, F. Wang, and H. You, “CFNet: A cross fusion network
for joint land cover classification using optical and SAR images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 1562–1574,
2022.

[53] M. Hassanin, S. Anwar, I. Radwan, F. S. Khan, and A. Mian, “Vi-
sual attention methods in deep learning: An in-depth survey,” 2022,
arXiv:2204.07756.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conf. Comput.
Vis. pattern Recognit., 2009, pp. 248–255.

[56] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801–818.

[57] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

Xiao Liu received the B.S. degree in remote sens-
ing from the Shandong University of Science and
Technology, Qingdao, China, in 2021. She is cur-
rently working toward the M.S. degree in survey-
ing and mapping from the Institute of Geospa-
tial Information, Information Engineering University,
Zhengzhou, China.

Her research interests include remote sensing im-
age interpretation, deep learning, and image process-
ing.

Huijun Zou received the M.S. degree in management
from the Nanjing University of Science and Technol-
ogy, Nanjing, China, in 2006.

She is currently an Associate Professor with Infor-
mation Engineering University, Zhengzhou, China.
Her research interests include vocational education
and occupation skill appraisal.

https://dx.doi.org/10.5194/isprs-annals-IV-2-W7-153-2019
https://dx.doi.org/10.5194/isprs-annals-IV-2-W7-153-2019


3250 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Shuxiang Wang received the B.S. degree from Infor-
mation Engineering University, Zhengzhou, China, in
2005, and the M.S. degree from Hohai University,
Nanjing, China, in 2009, both in photogrammetry
and remote sensing. She is currently working toward
the Ph.D. degree in remote sensing image processing
and machine learning with Information Engineering
University.

She is currently an Associate Professor with Infor-
mation Engineering University. Her research focuses
on remote sensing image processing.

Yuzhun Lin received the B.S. and M.S. degrees in
photogrammetry and remote sensing from the In-
stitute of Geospatial Information, Information Engi-
neering University, Zhengzhou, China, in 2015 and
2018, respectively, where he is currently working
toward the Ph.D. degree in remote sensing image
processing and machine learning.

He is currently a Lecturer with Information
Engineering University. His research interests in-
clude remote sensing image processing and machine
learning.

Xibing Zuo received the M.S. degree in surveying
and mapping engineering from the PLA Strategic
Support Force Information Engineering University,
Zhengzhou, China, in 2022, where he is currently
working toward the Ph.D. degree in surveying and
mapping science and technology.

His research interests include machine learning and
remote sensing image processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


